Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T23:34:19.615Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2014

Inge Koch
Affiliation:
University of Adelaide
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M., and I.A., Stegun (1965). Handbook of Mathematical Functions. New York: Dover.Google Scholar
Aeberhard, S., D., Coomans and O., de Vel (1992). Comparison of classifiers in high dimensional settings. Tech. Rep. No. 92-02, Dept. of Computer Science and Dept. of Mathematics and Statistics, James Cook University of North Queensland. Data sets collected by Forina et al. and available at:www.kernel-machines.com/.Google Scholar
Aebersold, R., and M., Mann (2003). Mass spectrometry-based proteomics. Nature 422, 198–207.CrossRefGoogle ScholarPubMed
Aha, D., and D., Kibler (1991). Instance-based learning algorithms. Machine Learning 6, 37–66.CrossRefGoogle Scholar
Aharon, M., M., Elad and A., Bruckstein (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. on Signal Processing 54, 4311–4322.CrossRefGoogle Scholar
Ahn, J., and J.S., Marron (2010). The maximal data piling direction for discrimination. Biometrika 97, 254–259.CrossRefGoogle Scholar
Ahn, J., J.S., Marron, K.M., Mueller and Y.-Y., Chi (2007). The high-dimension low-sample-size geometric representation holds under mild conditions. Biometrika 94, 760–766.CrossRefGoogle Scholar
Amari, S.-I. (2002). Independent component analysis (ICA) and method of estimating functions. IEICE Trans. Fundamentals E 85A(3), 540–547.Google Scholar
Amari, S.-I., and J.-F., Cardoso (1997). Blind source separation—Semiparametric statistical approach. IEEE Trans. on Signal Processing 45, 2692–2700.Google Scholar
Amemiya, Y., and T.W., Anderson (1990). Asymptotic chi-square tests for a large class of factor analysis models. Ann. Stat. 18, 1453–1463.CrossRefGoogle Scholar
Anderson, J.C., and D.W., Gerbing (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 103, 411–423.CrossRefGoogle Scholar
Anderson, T.W. (1963). Asymptotic theory for principal component analysis. Ann. Math. Stat. 34, 122–148.CrossRefGoogle Scholar
Anderson, T.W. (2003). Introduction to Multivariate Statistical Analysis (3rd ed.). Hoboken, NJ: Wiley.Google Scholar
Anderson, T.W., and Y., Amemiya (1988). The asymptotic normal distribution of estimators in factor analysis under general conditions. Ann. Stat. 16, 759–771.CrossRefGoogle Scholar
Anderson, T.W., and H., Rubin (1956). Statistical inference in factor analysis. In Third Berkeley Symposium on Mathematical Statistics and Probability 5, pp. 111–150. Berkely: University California Press.Google Scholar
Attias, H. (1999). Independent factor analysis. Neural Comp. 11, 803–851.CrossRefGoogle ScholarPubMed
Bach, F.R., and M.I., Jordan (2002). Kernel independent component analysis. J. Machine Learning Res. 3, 1–48.Google Scholar
Baik, J., and J.W., Silverstein (2006). Eigenvalues of large sample covariance matrices of spiked population models. J. Multivar. Anal. 97, 1382–1408.CrossRefGoogle Scholar
Bair, E., T., Hastie, D., Paul and R., Tibshirani (2006). Prediction by supervised principal components. J. Am. Stat. Assoc. 101(473), 119–137.CrossRefGoogle Scholar
Barbedor, P. (2009). Independent component analysis by wavelets. Test 18(1), 136–155.CrossRefGoogle Scholar
Bartlett, M.S. (1938). Further aspects of the theory of multiple regression. Proc. Cambridge Philos. Soc. 34, 33–40.CrossRefGoogle Scholar
Bartlett, M.S. (1939). A note on tests of significance in multivariate analysis. Proc. Cambridge Philos. Soc. 35, 180–185.CrossRefGoogle Scholar
Beirlant, J., E.J., Dudewicz, L., Gyorfi and E., van der Meulen (1997). Nonparametric entropy estimation: An overview. Int. J. Math. Stat. Sci. 6, 17–39.Google Scholar
Bell, A.J., and T.J., Sejnowski (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159.CrossRefGoogle ScholarPubMed
Benaych-Georges, F., and R., Nadakuditi (2012). The eigenvalues and eignvectors of finite, low rank perturbations of large random matrices. Adv. Math. 227, 494–521.Google Scholar
Berger, J.O. (1993). Statistical Decision Theory and Bayesian Analysis. New York: Springer-Verlag.Google Scholar
Berlinet, A., and C., Thomas-Agnan (2004). Reproducing Kernel Hilbert Spaces in Probability and Statistics. Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
Bickel, P.J., and E., Levina (2004). Some theory for Fisher's linear discriminant function, ‘naïve Bayes’, and some alternatives when there are many more variables than observations. Bernoulli 10, 989–1010.CrossRefGoogle Scholar
Blake, C., and C., Merz (1998). UCI repository of machine learning databases. Data sets available at: www.kernel-machines.com/.Google Scholar
Borg, I., and P.J.F., Groenen (2005). Modern Multidimensional Scaling: Theory and Applications (2nd ed.). New York: Springer.Google Scholar
Borga, M., H., Knutsson and T., Landelius (1997). Learning canonical correlations. In Proceedings ofthe 10th Scandinavian Conference on Image Nanlysis, Lappeenranta, Finland.Google Scholar
Borga, M., T., Landelius and H., Knutsson (1997). A unified approach to PCA, PLS, MLR and CCA. Technical report, Linköping University, Sweden.Google Scholar
Boscolo, R., H., Pan and V.P., Roychowdhury (2004). Indpendent component analysis based on nonparametric density estimation. IEEE Trans. Neural Networks 15(1), 55–65.CrossRefGoogle Scholar
Breiman, L. (1996). Bagging predictors. Machine Learning 26, 123–140.
Breiman, L. (2001). Random forests. Machine Learning 45, 5–32.Google Scholar
Breiman, L., J., Friedman, J., Stone and R.A., Olshen (1998). Classification and Regression Trees. Boca Raton, FL: CRC Press.Google Scholar
Cadima, J., and I.T., Jolliffe (1995). Loadings and correlations in the interpretation of principle components. J. App. Stat. 22, 203–214.Google Scholar
Calinski, R.B., and J., Harabasz (1974). A dendrite method for cluster analysis. Commun. Stat. 3, 1–27.Google Scholar
Candes, E.J., J., Romberg and T., Tao (2006). Robust undertainty principles: Exact signal reconstruction from highly imcomplete frequency information. IEEE Trans. Inform. Theory 52, 489–509.CrossRefGoogle Scholar
Cao, X.-R., and R.-W., Liu (1996). General approach to blind source separation. IEEE Trans. Signal Processing 44, 562–571.Google Scholar
Cardoso, J.-F. (1998). Blind source separation: Statistical principles. Proc. IEEE 86(10), 2009–2025.CrossRefGoogle Scholar
Cardoso, J.-F. (1999). High-order contrasts for independent component analysis. Neural Comput. 11(1), 157–192.CrossRefGoogle ScholarPubMed
Cardoso, J.-F. (2003). Dependence, correlation and Gaussianity in independent component analysis. J. Machine Learning Res. 4, 1177–1203.Google Scholar
Carroll, J.D., and J.J., Chang (1970). Analysis of individual differences in multidimensional scaling via a n-way generalization of ‘Eckart-Young’ decomposition. Psychometrika 35, 283–319.CrossRefGoogle Scholar
Casella, G., and R.L., Berger (2001). Statistical Inference. Pacific Grove, CA: Wadsworth & Brooks/Cole Advanced Books and Software.Google Scholar
Chaudhuri, P., and J.S., Marron (1999). Sizer for exploration of structures in curves. J. Am. Stat. Assoc. 94, 807–823.CrossRefGoogle Scholar
Chaudhuri, P., and J.S., Marron (2000). Scale space view of curve estimation. Ann. Stat. 28, 408–428.CrossRefGoogle Scholar
Chen, A., and P.J., Bickel (2006). Efficient independent component analysis. Ann. Stat. 34, 2825–2855.CrossRefGoogle Scholar
Chen, J.Z., S. M., Pizer, E. L., Chaney and S., Joshi (2002). Medical image synthesis via Monte Carlo simulation. In T., Dohi and R., Kikinis (eds.), Medical Image Computing and Computer Assisted Intervention (MICCAI). Berlin: Springer. pp. 347–354.Google Scholar
Chen, L., and A., Buja (2009). Local multidimensional scaling for nonlinear dimension reduction, graph drawing and proximity analysis. J. Am. Stat. Assoc. 104, 209–219.CrossRefGoogle Scholar
Choi, S., A., Cichocki, H.-M., Park and S.-Y., Lee (2005). Blind source separation and independent component analysis: A review. Neural Inform. Processing 6, 1–57.Google Scholar
Comon, P. (1994). Independent component analysis, A new concept?Signal Processing 36, 287–314.CrossRefGoogle Scholar
Cook, D., A., Buja and J., Cabrera (1993). Projection pursuit indices based on expansions with orthonormal functions. J. Comput. Graph. Stat. 2, 225–250.CrossRefGoogle Scholar
Cook, D., and D., Swayne (2007). Interactive and Dynamic Graphics for Data Analysis. New York: Springer.CrossRefGoogle Scholar
Cook, R.D. (1998). Regression Graphics: Ideas for Studying Regressions through Graphics. New York: Wiley.CrossRefGoogle Scholar
Cook, R.D., and S., Weisberg (1999). Applied Statistics Including Computing and Graphics. New York: Wiley.CrossRefGoogle Scholar
Cook, R.D., and X., Yin (2001). Dimension reduction and visualization in discriminant analysis (with discussion). Aust. NZJ. Stat. 43, 147–199.Google Scholar
Cormack, R.M. (1971). A review of classification (with discussion). J. R. Stat. Soc. A 134, 321–367.Google Scholar
Cover, T.M., and P., Hart (1967). Nearest neighbor pattern classification. Proc. IEEE Trans. Inform. Theory IT- 11, 21–27.Google Scholar
Cover, T.M., and J.A., Thomas (2006). Elements of Information Theory (2nd ed.). Hoboken, NJ: John Wiley.Google Scholar
Cox, D.R., and D.V., Hinkley (1974). Theoretical Statistics. London: Chapman and Hall.CrossRefGoogle Scholar
Cox, T.F., and M.A.A., Cox (2001). Multidimensional Scaling (2nd ed.). London: Chapman and Hall.Google Scholar
Cristianini, N., and J., Shawe-Taylor (2000). An Introduction to Support Vector Machines. Cambridge University Press.Google Scholar
Davies, C., P., Corena and M., Thomas (2012). South Australian grapevine data. CSIRO Plant Industry, Glen Osmond, Australia, personal communication.Google Scholar
Davies, P.I., and N.J., Higham (2000). Numerically stable generation of correlation matrices and their factors. BIT 40, 640–651.CrossRefGoogle Scholar
Davies, P.M., and A.P.M., Coxon (1982). Key Texts in Multidimensional Scaling. London: Heinemann Educational Books.Google Scholar
De Bie, T., N., Cristianini and R., Rosipal (2005). Eigenproblems in pattern recognition. In E., Bayro-Corrochano (ed.), Handbook of Geometric Computing: Applications in Pattern Recognition, Computer Vision, Neuralcomputing, and Robotics, pp. 129–170. New York: Springer.Google Scholar
de Silva, V., and J.B., Tenenbaum (2004). Sparse multidimensional scaling using landmark points. Technical report, Standford University.Google Scholar
Devroye, L., L., Gyorfi and G., Lugosi (1996). A Probabilistic Theory of Pattern Recognition. Applications of Mathematics. New York: Springer.CrossRefGoogle Scholar
Diaconis, P., and D., Freedman (1984). Asymptotics of graphical projection pursuit. Ann. Stat. 12, 793–815.CrossRefGoogle Scholar
Domeniconi, C., J., Peng and D., Gunopulos (2002). Locally adaptive metric nearest-neighbor classification. IEEE Trans. Pattern Anal. Machine Intell. PAMI- 24, 1281–1285.CrossRefGoogle Scholar
Domingos, P., and M., Pazzani (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29, 103–130.CrossRefGoogle Scholar
Donoho, D.L. (2000). Nature vs. math: Interpreting independent component analysis in light of recent work in harmonic analysis. In Proceedings International Workshopon Independent Component Analysis and Blind Signal Separation (ICA 2000), Helsinki, Finland pp. 459–470.Google Scholar
Donoho, D.L. (2006). Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306.CrossRefGoogle Scholar
Donoho, D.L., and I.M., Johnstone (1994). Ideal denoising in an orthonormal basis chosen from a library of bases. Comp. Rendus Acad. Sci. A 319, 1317–1322.Google Scholar
Dryden, I.L., and K.V., Mardia (1998). The Statistical Analysis of Shape. New York: Wiley.Google Scholar
Dudley, R.M. (2002). Real Analysis and Probability. Cambridge University Press.CrossRefGoogle Scholar
Dudoit, S., J., Fridlyand and T.P., Speed (2002). Comparisons of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97, 77–87.CrossRefGoogle Scholar
Duong, T., A., Cowling, I., Koch and M.P., Wand (2008). Feature significance for multivariate kernel density estimation. Comput. Stat. Data Anal. 52, 4225–4242.CrossRefGoogle Scholar
Duong, T., and M.L., Hazelton (2005). Cross-validation bandwidth matrices for multivariate kernel density estimation. Scan d. J. Stat. 32, 485–506.Google Scholar
Elad, M. (2010). Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. New York: Springer.CrossRefGoogle Scholar
Eriksson, J., and V., Koivunen (2003). Characteristic-function based independent component analysis. Signal Processing 83, 2195–2208.CrossRefGoogle Scholar
Eslava, G., and F.H.C., Marriott (1994). Some criteria for projection pursuit. Stat. Comput. 4, 13–20.CrossRefGoogle Scholar
Fan, J., and Y., Fan (2008). High-dimensional classification using features annealed independence rules. Ann. Stat. 36, 2605–2637.CrossRefGoogle ScholarPubMed
Figueiredo, M.A.T., and A.K., Jain (2002). Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Machine Intell. PAMI- 24, 381–396.CrossRefGoogle Scholar
Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Ann. Eugenics 7, 179–188.CrossRefGoogle Scholar
Fix, E., and J., Hodges (1951). Discriminatory analysis, nonparametric discrimination: Consistency properties. Technical report, Randolph Field, TX, USAF School of Aviation Medicine.Google Scholar
Fix, E., and J., Hodges (1952). Discriminatory analysis: Small sample performance. Technical report, Randolph Field, TX, USAF School of Aviation Medicine.Google Scholar
Flury, B., and H., Riedwyl (1988). Multivariate Statistics: A Practical Approach. Cambridge University Press. Data set available at: www-math.univ-fcomte.fr/mismod/userguide/node131.html.CrossRefGoogle Scholar
Fraley, C., and A., Raftery (2002). Model-based clustering, discriminant ananlysis, and density estimation. J. Am. Stat. Assoc. 97, 611–631.CrossRefGoogle Scholar
Friedman, J.H. (1987). Exploratory projection pursuit. J. Am. Stat. Assoc. 82, 249–266.CrossRefGoogle Scholar
Friedman, J.H. (1989). Regularized discriminant analysis. J. Am. Stat. Assoc. 84, 165–175.CrossRefGoogle Scholar
Friedman, J.H. (1991). Multivariate adaptive regression splines. Ann. Stat. 19, 1–67.Google Scholar
Friedman, J.H., and W., Stuetzle (1981). Projection pursuit regression. J. Am. Stat. Assoc. 76, 817–823.CrossRefGoogle Scholar
Friedman, J.H., W., Stuetzle and A., Schroeder (1984). Projection pursuit density estimation. J. Am. Stat. Assoc. 79, 599–608.CrossRefGoogle Scholar
Friedman, J.H., and J.W., Tukey (1974). A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput. C- 23, 881–890.Google Scholar
Gentle, J.E. (2007). Matrix Algebra. New York: Springer.CrossRefGoogle Scholar
Gilmour, S., and I., Koch (2006). Understanding illicit drug markets with independent component analysis. Technical report, University of New South Wales.Google Scholar
Gilmour, S., I., Koch, L., Degenhardt and C., Day (2006). Identification and quantification of change in Australian illicit drug markets. BMC Public Health 6, 200–209.CrossRefGoogle ScholarPubMed
Givan, A.L. (2001). Flow Cytometry: First Principles (2nd ed.). New York: Wiley-Liss.CrossRefGoogle Scholar
Gokcay, E., and J.C., Principe (2002). Information theoretic clustering. IEEE Trans. Pattern Anal. Machine Intell. PAMI- 24, 158–171.CrossRefGoogle Scholar
Gordon, G.J., R. V., Jensen, L., Hsiao, S.R., Gullans, J.E., Blumenstock, S., Ramaswamy, W.G., Richards, D.J., Sugarbaker and R., Bueno (2002). Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 62, 4963–4967.Google ScholarPubMed
Gower, J.C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325–338.CrossRefGoogle Scholar
Gower, J.C. (1968). Adding a point to vector diagrams in multivariate analysis. Biometrika 55, 582–585.CrossRefGoogle Scholar
Gower, J.C. (1971). Statistical methods of comparing different multivariate analyses of the same data. In F. R., Hodson, D., Kendall, and P., Tautu (eds.), Mathematics in the Archeological and Historical Sciences, pp. 138–149. Edinburgh University Press.Google Scholar
Gower, J.C., and W.J., Krzanowski (1999). Analysis of distance for structured multivariate data and extensions to multivariate analysis of variance. Appl. Stat. 48, 505–519.Google Scholar
Graef, J., and I., Spence (1979). Using distance information in the design of large multidimensional scaling experiments. Psychol. Bull. 86, 60–66.CrossRefGoogle Scholar
Greenacre, M.J. (1984). Theoryand Applications of Correspondence Analysis. New York: Academic Press.Google Scholar
Greenacre, M.J. (2007). Correspondence Analysis in Practice (2nd ed.). London: Chapman and Hall/CRC Press.CrossRefGoogle Scholar
Gustafsson, J.O.R. (2011). MALDI imaging mass spectrometry and its application to human disease. Ph.D. thesis, University of Adelaide.Google Scholar
Gustafsson, J.O.R., M. K., Oehler, A., Ruszkiewicz, S.R., McColl and P., Hoffmann (2011). MALDI imaging mass spectrometry (MALDI-IMS): Application of spatial proteomics for ovarian cancer classification and diagnosis. In T.J. Mol. Sci. 12, 773–794.Google ScholarPubMed
Guyon, I., and A., Elisseeff (2003). An introduction to variable and feature selection. J. Machine Learning Res. 3, 1157–1182.Google Scholar
Hall, P. (1988). Estimating the direction in which a data set is most interesting. Prob. Theory Relat. Fields 80, 51–77.CrossRefGoogle Scholar
Hall, P. (1989a). On projection pursuit regression. Ann. Stat. 17, 573–588.CrossRefGoogle Scholar
Hall, P. (1989b). Polynomial projection pursuit. Ann. Stat. 17, 589–605.Google Scholar
Hall, P., and K.-C., Li (1993). On almost linearity of low dimensional projections from high dimensional data. Ann. Stat. 21, 867–889.CrossRefGoogle Scholar
Hall, P., J.S., Marron and A., Neeman (2005). Geometric representation of high dimension low sample size data. J.R. Stat. Soc. B (JRSS-B) 67, 427–444.Google Scholar
Hand, D.J. (2006). Classifier technology and the illusion of progress. Stat. Sci. 21, 1–14.Google Scholar
Harrison, D., and D.L., Rubinfeld (1978). Hedonic prices and the demand for clean air. J. Environ. Econ. Manage. 5, 81–102. (http://lib.stat.cmu.edu/datasets/boston).CrossRefGoogle Scholar
Hartigan, J. (1975). Clustering Algorithms. New York: Wiley.Google Scholar
Hartigan, J.A. (1967). Representation of similarity matrices by trees. J. Am. Stat. Assoc. 62, 1140–1158.CrossRefGoogle Scholar
Harville, D.A. (1997). Matrix Algebra from a Statistician's Perspective. New York: Springer.CrossRefGoogle Scholar
Hastie, T., and R., Tibshirani (1996). Discriminant adaptive nearest neighbor classification. IEEE Trans. Pattern Anal. Machine Intell. PAMI- 18, 607–616.CrossRefGoogle Scholar
Hastie, T., and R., Tibshirani (2002). Independent component analysis through product density estimation. In Proceedings of Neural Information Processing Systems, pp. 649–656.Google Scholar
Hastie, T., R., Tibshirani and J., Friedman (2001). The Elements of Statistical Learning – Data Mining, Inference, and Prediction. New York: Springer.Google Scholar
Helland, I.S. (1988). On the structure of partial least squares regression. Commun. Stat. Simul. Comput. 17, 581–607.CrossRefGoogle Scholar
Helland, I.S. (1990). Partial least squares regression and statistical models. Scan D.J. Stat. 17, 97–114.Google Scholar
Hérault, J., and B., Ans (1984). Circuits neuronaux à synapses modifiables: décodage de messages composites par apprentissage non supervisé. Comp. Rendus Acad. Sci. 299, 525–528.Google Scholar
Herault, J., C., Jutten and B., Ans (1985). Détection de grandeurs primitives dans un message composite par une architecture de calcul neuromimétique en apprentissage non supervisé. In Actes de Xeme colloque GRETSI, pp. 1017–1022, Nice, France.Google Scholar
Hinneburg, A., C.C., Aggarwal and D.A., Keim (2000). What is the nearest neighbor in high dimensional spaces? In Proceedings of the 26th International Conference on Very Large Data Bases, Cairo, Egypt pp. 506–515.Google Scholar
Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. J. Educ. Psych. 24, 417–441 and 498–520.CrossRefGoogle Scholar
Hotelling, H. (1935). The most predictable criterion. J. Exp. Psychol. 26, 139–142.Google Scholar
Hotelling, H. (1936). Relations between two sets of variates. Biometrika 28, 321–377.CrossRefGoogle Scholar
Huber, P.J. (1985). Projection pursuit. Ann. Stat. 13, 435–475.Google Scholar
Hyvarinen, A. (1999). Fast and robust fixed-point algorithm for independent component analysis. IEEE Trans. Neural Networks 10, 626–634.CrossRefGoogle ScholarPubMed
Hyvarinen, A., J., Karhunen and E., Oja (2001). Independent Component Analysis. New York: Wiley. ICA Central (1999). available at://www.tsi.enst.fr/icacentral/.CrossRefGoogle ScholarPubMed
Inselberg, A. (1985). The plane with parallel coordinates. Visual Computer 1, 69–91.CrossRefGoogle Scholar
Izenman, A.J. (2008). Modern Multivariate Statistical Techniques. New York: Springer.CrossRefGoogle Scholar
Jeffers, J. (1967). Two case studies in the application of principal components. Appl. Stat. 16, 225–236.CrossRefGoogle Scholar
Jing, J., I., Koch and K., Naito (2012). Polynomial histograms for multivariate density and mode estimation. Scan D.J. Stat. 39, 75–96.Google Scholar
John, S. (1971). Some optimal multivariate tests. Biometrika 58, 123–127.Google Scholar
John, S. (1972). The distribution of a statistic used for testing sphericity of normal distributions. Biometrika 59, 169–173.CrossRefGoogle Scholar
Johnstone, I.M. (2001). On the distribution of the largest principal component. Ann. Stat. 29, 295–327.Google Scholar
Johnstone, I.M., and A.Y., Lu (2009). On consistency and sparsity for principal components analysis in high dimensions. J. Am. Stat. Assoc. 104, 682–693.CrossRefGoogle ScholarPubMed
Jolliffe, I.T. (1989). Rotation of ill-defined principal components. Appl. Stat. 38, 139–147.CrossRefGoogle Scholar
Jolliffe, I.T. (1995). Rotation of principal components: Choice of normalization constraints. J. Appl. Stat. 22, 29–35.CrossRefGoogle Scholar
Jolliffe, I.T., N.T., Trendafilov and M., Uddin (2003). A modified principal component technique based on the LASSO. J. Comput. Graph. Stat. 12, 531–547.CrossRefGoogle Scholar
Jones, M.C. (1983). The projection pursuit algorithm for exploratory data analysis. Ph.D. thesis, University of Bath.Google Scholar
Jones, M.C., and R., Sibson (1987). What is projection pursuit?J.R. Stat. Soc. A (JRSS-A) 150, 1–36.Google Scholar
Joreskog, K.G. (1973). A general method for estimating a linear structural equation system. In A.S., Gold-berger and O.D., Duncan (eds.), Structural Equation Models in the Social Sciences, pp. 85–112. San Francisco: Jossey-Bass.Google Scholar
Jung, S., and J.S., Marron (2009). PCA consistency in high dimension low sample size context. Ann. Stat. 37, 4104–4130.CrossRefGoogle Scholar
Jung, S., A., Sen, and J.S., Marron (2012). Boundary behavior in high dimension, low sample size asymptotics of pca. J. Multivar. Anal. 109, 190–203.CrossRefGoogle Scholar
Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187–200.CrossRefGoogle Scholar
Kendall, M., A., Stuart and J., Ord (1983). The Advanced Theory of Statistics, Vol. 3. London: Charles Griffin & Co.Google Scholar
Klemm, M., J., Haueisen and G., Ivanova (2009). Independent component analysis: Comparison of algorithms for the inverstigation of surface electrical brain activity. Med. Biol. Eng. Comput. 47, 413–423.CrossRefGoogle Scholar
Koch, I., J.S., Marron and J., Chen (2005). Independent component analysis and simulation of non-Gaussian populations of kidneys. Technical Report.Google Scholar
Koch, I., and K., Naito (2007). Dimension selection for feature selection and dimension reduction with principal and independent component analysis. Neural Comput. 19, 513–545.CrossRefGoogle ScholarPubMed
Koch, I., and K., Naito (2010). Prediction of multivariate responses with a selected number of principal components. Comput. Stat. Data Anal. 54, 1791–1807.CrossRefGoogle Scholar
Kruskal, J.B. (1964a). Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis. Psychometrika 29, 1–27.CrossRefGoogle Scholar
Kruskal, J.B. (1964b). Nonmetric multidimensional scaling: A numerical method. Psychometrika 29, 115–129.CrossRefGoogle Scholar
Kruskal, J.B. (1969). Toward a practical method which helps uncover the structure of a set of multivari-ate observations by fining the linear transformation which optimizes a new ‘index of condensation’. In R.C., Milton and J.A., Nelder (eds.), Statistical Computation, pp. 427–440. New York: Academic Press.Google Scholar
Kruskal, J.B. (1972). Linear transformation of multivariate data to reveal clustering. In R. N., Shepard, A.K., Rommey and S.B., Nerlove (eds.), Multidimensional Scaling: Theory and Applications in the Behavioural Sciences, Vol. I, pp. 179–191. London: Seminar Press.Google Scholar
Kruskal, J.B., and M., Wish (1978). Multidimensional Scaling. Beverly Hills, CA: Sage Publications.CrossRefGoogle Scholar
Krzanowski, W.J., and Y.T., Lai (1988). A criterion for determining the number of groups in a data set using sum of squares clustering. Biometrics 44, 23–34.CrossRefGoogle Scholar
Kshirsagar, A.M. (1972). Multivariate Analysis. New York: Marcell Dekker.Google Scholar
Kullback, S. (1968). Probability densities with given marginals. Ann. Math. Stat. 39, 1236–1243.Google Scholar
Lawley, D.N. (1940). The estimation of factor loadings by the method of maximum likelihood. Pro C.R. Soc. Edinburgh A 60, 64–82.Google Scholar
Lawley, D.N. (1953). A modified method of estimation in factor analysis and some large sample results. In Uppsala Symposium on Psychlogical Factor Analysis, Vol. 17(19). Uppsala, Sweden: Almqvist and Wiksell pp. 34–42.Google Scholar
Lawley, D.N., and A.E., Maxwell (1971). Factor Analysis as a Statistical Method. New York: Elsevier.Google Scholar
Lawrence, N. (2005). Probabilistic non-linear principal component analysis with gaussian process latent variable models. J. Machine Learning Res. 6, 1783–1816.Google Scholar
Learned-Miller, E.G., and J.W., Fisher (2003). ICA using spacings estimates of entropy. J. Machine Learning Res. 4, 1271–1295.Google Scholar
Lee, J.A., and M., Verleysen (2007). Nonlinear Dimensionality Reduction. New York: Springer.CrossRefGoogle Scholar
Lee, S., F., Zou and F.A., Wright (2010). Convergence and prediction of principal component scores in high-dimensional settings. Ann. Stat. 38, 3605–3629.CrossRefGoogle ScholarPubMed
Lee, T.-W. (1998). Independent Component Analysis Theoryand Applications. Boston: Academic Publishers Kluwer.CrossRefGoogle Scholar
Lee, T.-W., M., Girolami, A.J., Bell and T.J., Sejnowski (2000). A unifying information-theoretic framework for independen component analysis. Comput. Math. Appl. 39, 1–21.CrossRefGoogle Scholar
Lee, T.-W., M., Girolami and T.J., Sejnowski (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and super-Gaussian sources. Neural Comput. 11, 417–441.CrossRefGoogle Scholar
Lee, Y.K., E.R., Lee, and B.U., Park (2012). Principal component analysis in very high-dimensional spaces. Stat. Sinica 22, 933–956.Google Scholar
Lemieux, C., I., Cloutier and J.-F., Tanguay (2008). Estrogen-induced gene expression in bone marrow c-kit+ stem cells and stromal cells: Identification of specific biological processes involved in the functional organization of the stem cell niche. Stem Cells Dev. 17, 1153–1164.CrossRefGoogle ScholarPubMed
Leng, C. and H., Wang (2009). On general adaptive sparse principal component analysis. J. of Computa-tional and Graphical Statistics 18, 201–215.Google Scholar
Li, K.-C. (1992). On principal Hessian directions for data visualization and dimension reduction: Another application of Stein's lemma. J. Am. Stat. Assoc. 87, 1025–1039.CrossRefGoogle Scholar
Lu, A.Y. (2002). Sparse principal component analysis for functional data. Ph.D. thesis Dept. of Statistics, Stanford University.Google Scholar
Ma, Z. (2013). Sparse principal component analysis and iterative thresholding. Ann. Stat. 41, 772–801.CrossRefGoogle Scholar
Malkovich, J.F., and A.A., Afifi (1973). On tests for multivariate normality. J. Am. Stat. Assoc. 68, 176–179.CrossRefGoogle Scholar
Mallat, S. (2009). A Wavelet Tour of Signal Processing the Sparse Way (3d ed.). New York: Academic Press.Google Scholar
Mammen, E., J.S., Marron and N.I., Fisher (1991). Some asymptotics for multimodality tests based on kernel density estimates. Prob. Theory Relat. Fields 91, 115–132.Google Scholar
Marčenko, V.A., and L.A., Pastur (1967). Distribution of eigenvalues of some sets of random matrices. Math. USSR-Sb 1, 507–536.CrossRefGoogle Scholar
Mardia, K.V., J., Kent and J., Bibby (1992). Multivariate Analysis. London: Academic Press.Google Scholar
Marron, J.S. (2008). Matlab software. pcaSM.m and curvdatSM.m available at: www.stat.unc.edu/postscript/papers/marron/Matlab7Software/General/.Google Scholar
Marron, J.S., M.J., Todd and J., Ahn (2007). Distance-weighted discrimination. J. Am. Stat. Assoc. 102(480), 1267–1271.CrossRefGoogle Scholar
McCullagh, P. (1987). Tensor Methods in Statistics. London: Chapman and Hall.Google Scholar
McCullagh, P., and J., Kolassa (2009). Cumulants. Scholarpedia 4, 4699.CrossRefGoogle Scholar
McCullagh, P., and J.A., Nelder (1989). Generalized Linear Models (2nd ed.), Vol. 37 of Monographs on Statistics and Applied Probability. London: Chapman and Hall.Google Scholar
McLachlan, G., and K., Basford (1988). Mixture Models: Inference and Application to Clustering. New York: Marcel Dekker.Google Scholar
McLachlan, G., and D., Peel (2000). Finite Mixture Models. New York: Wiley.CrossRefGoogle Scholar
Meulman, J.J. (1992). The integration of multidimensional scaling and multivariate analysis with optimal transformations. Psychometrika 57, 530–565.CrossRefGoogle Scholar
Meulman, J.J. (1993). Principal coordinates analysis with optimal transformation of the variables – minimising the sum of squares of the smallest eigenvalues. Br. J.Math. Stat. Psychol. 46, 287–300.CrossRefGoogle Scholar
Meulman, J.J. (1996). Fitting a distance model to homogeneous subsets of variables: Points of view analysis of categorical data. J. Classification 13, 249–266.CrossRefGoogle Scholar
Miller, A. (2002). Subset Selection in Regression (2nd ed.), Vol. 95 of Monographs on Statistics and Applied Probability. London: Chapman and Hall.Google Scholar
Milligan, G.W., and M.C., Cooper (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159–179.CrossRefGoogle Scholar
Minka, T.P. (2000). Automatic choice of dimensionality for PCA. Tech Report 514, MIT. Available at ftp://whitechapel.media.mit.edu/pub/tech-reports/.Google Scholar
Minotte, M.C. (1997). Nonparametric testing of the existence of modes. Ann. Stat. 25, 1646–1660.Google Scholar
Nadler, B. (2008). Finite sample approximation results for principal component analysis: A matrix perturbation approach. Ann. Stat. 36, 2791–2817.CrossRefGoogle Scholar
Nason, G. (1995). Three-dimensional projection pursuit. Appl. Stat. 44, 411–430.CrossRefGoogle Scholar
Ogasawara, H. (2000). Some relationships between factors and components. Psychometrika 65, 167–185.CrossRefGoogle Scholar
Oja, H., S., Sirkia and J., Eriksson (2006). Scatter matrices and independent component analysis. Aust. J.Stat. 35, 175–189.Google Scholar
Partridge, E. (1982). Origins, A Short Etymological Dictionary of Modern English (4th ed.). London: Routledge and Kegan Paul.Google Scholar
Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Stat. Sinica 17, 1617–1642.Google Scholar
Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philos. Mag. 2, 559–572.CrossRefGoogle Scholar
Prasad, M.N., A., Sowmya, and I., Koch (2008). Designing relevant features for continuous data sets using ICA. Int. J. Comput. Intell. Appl. (IJCIA) 7, 447–468.Google Scholar
Pryce, J.D. (1973). Basic Methods of Linear Functional Analysis. London: Hutchinson.Google Scholar
Qiu, X., and L., Wu (2006). Nearest neighbor discriminant analysis. Int. J.|Pattern Recog. Artif. Intell. 20, 1245–1259.Google Scholar
Quist, M., and G., Yona (2004). Distributional scaling: An algorithm for structure-preserving embedding of metric and nonmetric spaces. J. Machine Learning Res. 5, 399–420.Google Scholar
R Development Core Team (2005). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rai, C.S., and Y., Singh (2004). Source distribution models for blind source separation. Neurocomputing 57, 501–505.CrossRefGoogle Scholar
Ramaswamy, S., P., Tamayo, R., Rifkin, S., Mukheriee, C., Yeang, M., Angelo, C., Ladd, M., Reich, E., Latulippe, J., Mesirov, T., Poggio, W., Gerald, M., Loda, E., Lander and T., Golub (2001). Multiclass cancer diagnosis using tumor gene expression signature. Proc. Nat. Aca.Sci. 98, 15149–15154.CrossRefGoogle Scholar
Ramos, E., and D., Donoho (1983). Statlib datasets archive: Cars. Available at: http://lib.stat.cmu.edu/ datasets/.Google Scholar
Ramsay, J.O. (1982). Some statistical approaches to multidimensional scaling data. J.R. Stat. Soc. A (JRSS-A) 145, 285–312.Google Scholar
Rao, C. (1955). Estimation and tests of significance in factor analysis. Psychometrika 20, 93–111.CrossRefGoogle Scholar
Richardson, M.W. (1938). Multidimensional psychophysics. Psychol. Bull. 35, 650–660.Google Scholar
Ripley, B.D. (1996). Pattern Recognition and Neural Networks. Cambridge University Press.CrossRefGoogle Scholar
Rosipal, R., and L.J., Trejo (2001). Kernel partial least squares regression in reproducing kernel hilbert spaces. J. Machine Learning Res. 2, 97–123.Google Scholar
Rossini, A., J., Wan and Z., Moodie (2005). Rflowcyt: Statistical tools and data structures for analytic flow cytometry. R package, version 1. available at:: http://cran.r-project.org/web/packages/.Google Scholar
Rousson, V., and T., Gasser (2004). Simple component analysis. J.R. Stat. Soc. C (JRSS-C) 53, 539–555.Google Scholar
Roweis, S., and Z., Ghahramani (1999). A unifying review of linear gaussian models. Neural Comput. 11, 305–345.CrossRefGoogle ScholarPubMed
Roweis, S.T., and L.K., Saul (2000). Nonlinear dimensionality reduction by local linear embedding. Science 290, 2323–2326.CrossRefGoogle Scholar
Rudin, W. (1991). Functional Analysis (2nd ed.). New York: McGraw-Hill.Google Scholar
Sagae, M., D.W., Scott and N., Kusano (2006). A multivariate polynomial histogram by the method of local moments. In Proceedings ofthe 8th Workshopon Nonparametric Statistical Analysis and Related Area, Tokyo pp. 14–33 (in Japanese).Google Scholar
Samarov, A., and A., Tsybakov (2004). Nonparametric independent component analysis. Bernoulli 10, 565–582.CrossRefGoogle Scholar
Sammon, J.W. (1969). A nonlinear mapping for data structure analysis. IEEE Trans. Computers 18, 401–409.Google Scholar
Schneeweiss, H., and H., Mathes (1995). Factor analysis and principal components. J. Multivar. Anal. 55, 105–124.CrossRefGoogle Scholar
Schoenberg, I.J. (1935). ‘Remarks to Maurice Fréchet's article ‘Sur la définition axiomatique d'une classe d'espaces distanciés vectoriellement applicable sur l'espaces de Hilbert.’. Ann. Math. 38, 724–732.
Schölkopf, B., and A., Smola (2002). Learning with Kernels. Support Vector Machines, Regularization, Optimization and Beyond. Cambridge, MA: MIT Press.Google Scholar
Schölkopf, B., A., Smola and K.-R., Müller (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319.CrossRefGoogle Scholar
Schott, J.R. (1996). Matrix Analysis for Statistics. New York: Wiley.Google Scholar
Scott, D.W. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization. New York: Wiley.CrossRefGoogle Scholar
Searle, S.R. (1982). Matrix Algebra Useful for Statistics. New York: John Wiley.Google Scholar
Serfling, R.J. (1980). Approximation Theorems of Mathematical Statistics. New York: Wiley.CrossRefGoogle Scholar
Shen, D., H., Shen, and J.S., Marron (2012). A general framework for consistency of principal component analysis. arXiv:1211. 2671.Google Scholar
Shen, D., H., Shen, and J.S., Marron (2013). Consistency of sparse PCA in high dimension, low sample size. J. Multivar. Anal. 115, 317–333.CrossRefGoogle Scholar
Shen, D., H., Shen, H., Zhu, and J.S., Marron (2012). High dimensional principal component scores and data visualization. arXiv:1211. 2679.Google Scholar
Shen, H., and J., Huang (2008). Sparse principal component analysis via regularized low rank matrix approximation. J. Multivar. Anal. 99, 1015–1034.CrossRefGoogle Scholar
Shepard, R.N. (1962a). The analysis of proximities: Multidimensional scaling with an unknown distance function I. Psychometrika 27, 125–140.Google Scholar
Shepard, R.N. (1962b). The analysis of proximities: Multidimensional scaling with an unknown distance function II. Psychometrika 27, 219–246.Google Scholar
Short, R.D., and K., Fukunaga (1981). Optimal distance measure for nearest neighbour classification. IEEE Trans. Inform. Theory IT- 27, 622–627.CrossRefGoogle Scholar
Silverman, B.W. (1981). Using kernel density estimates to investigate multimodality. J.R. Stat. Soc. B (JRSS-B) 43, 97–99.Google Scholar
Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis, Vol. 26 of Monographs on Statistics and Applied Probability. London: Chapman and Hall.Google Scholar
Starck, J.-L., E.J., Candès and D.L., Donoho (2002). The curvelet transform for image denoising. IEEE Trans. Image Processing 11, 670–684.Google ScholarPubMed
Strang, G. (2005). Linear Algebra and Its Applications (4th ed.). New York: Academic Press.Google Scholar
Tamatani, M., I., Koch and K., Naito (2012). Pattern recognition based on canonical correlations in a high dimension low sample size context. J. Multivar. Anal. 111, 350–367.CrossRefGoogle Scholar
Tamatani, M., K., Naito, and I., Koch (2013). Multi-class discriminant function based on canonical correlation in high dimension low sample size. preprint.Google Scholar
Tenenbaum, J.B., V., de Silva and J.C., Langford (2000). A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323.CrossRefGoogle ScholarPubMed
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J.R. Stat. Soc. B (JRSS-B) 58, 267–288.Google Scholar
Tibshirani, R., and G., Walther (2005). Cluster validation by prediction strength. J. Comput. Graph. Stat. 14, 511–528.CrossRefGoogle Scholar
Tibshirani, R., G., Walther and T., Hastie (2001). Estimating the number of clusters in a dataset via the gap statistic. J.R.|Stat. Soc. B (JRSS-B) 63, 411–423.Google Scholar
Tipping, M.E., and C.M., Bishop (1999). Probabilistic principal component analysis. J.R. Stat. Soc. B (JRSS-B) 61, 611–622.Google Scholar
Torgerson, W.S. (1952). Multidimensional scaling: 1. Theory and method. Psychometrika 17, 401–419.CrossRefGoogle Scholar
Torgerson, W.S. (1958). Theory and Method of Scaling. New York: Wiley.Google Scholar
Torokhti, A., and S., Friedland (2009). Towards theory of generic principal component analysis. J. Multivar. Anal. 100, 661–669.CrossRefGoogle Scholar
Tracy, C.A., and H., Widom (1996). On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727–754.CrossRefGoogle Scholar
Tracy, C.A., and H., Widom (2000). The distribution of the largest eigenvalue in the Gaussian ensembles. In J., van Diejen and L., Vinet (eds.), Cologero-Moser-Sutherland Models, pp. 461–472. New York: Springer.Google Scholar
Trosset, M.W. (1997). Computing distances between convex sets and subsets of the positive semidefinite matrices. Technical Rep. 97-3, Rice University.Google Scholar
Trosset, M.W. (1998). A new formulation of the nonmetric strain problem in multidimensional scaling. J. Classification 15, 15–35.CrossRefGoogle Scholar
Tucker, L.R., and S., Messick (1963). An individual differences model for multidimensional scaling. Psychometrika 28, 333–367.CrossRefGoogle Scholar
Tyler, D.E., F., Critchley, L., Dumgen and H., Oja (2009). Invariant coordinate selection. J.R. Stat. Soc. B (JRSS-B) 71, 549–592.Google Scholar
van't Veer, L.J., H., Dai, M.J., van de Vijver, Y.D., He, A. A. M., Hart, M., Mao, H.L., Peterse, K., van der Kooy, M.J., Marton, A.T., Witteveen, G.J., Schreiber, R.M., Kerkhoven, C., Roberts, P.S., Linsley, R., Bernards and S.H., Friend (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536.CrossRefGoogle Scholar
Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York: Springer-Verlag.CrossRefGoogle Scholar
Vapnik, V. (1998). Statistical Learning Theory. New York: Wiley.Google Scholar
Vapnik, V., and A., Chervonenkis (1979). Theorie der Zeichenerkennung. Berlin: Akademie-Verlag (German translation from the original Russian, published in 1974).Google Scholar
Vasicek, O. (1976). A test for normality based on sample entropy. J.R. Stat. Soc. B (JRSS-B) 38, 54–59.Google Scholar
Venables, W.N., and B.D., Ripley (2002). Modern Applied Statistics with S (4th ed.). New York: Springer.CrossRefGoogle Scholar
Vines, S.K. (2000). Simple principal components. Appl. Stat. 49, 441–451.Google Scholar
Vlassis, N., and Y., Motomura (2001). Efficient source adaptivity in independent component analysis. IEEE Trans. on Neural Networks 12, 559–565.CrossRefGoogle ScholarPubMed
von Storch, H., and F.W., Zwiers (1999). Statistical Analysis of Climate Research. Cambridge University Press.CrossRefGoogle Scholar
Wand, M.P., and M.C., Jones (1995). Kernel Smoothing. London: Chapman and Hall.CrossRefGoogle Scholar
Wegman, E. (1992). The grand tour in k-dimensions. In Computing Science and Statistics. New York: Springer, pp. 127–136.Google Scholar
Williams, R.H., D. W., Zimmerman, B. D., Zumbo and D., Ross (2003). Charles Spearman: British behavioral scientist. Human Nature Rev. 3, 114–118.Google Scholar
Winther, O., and K.B., Petersen (2007). Bayesian independent component analysis: Variational methods and non-negative decompositions. Digital Signal Processing 17, 858–872.CrossRefGoogle Scholar
Witten, D.M., and R., Tibshirani (2010). A framework for feature selection in clustering. J. Am. Stat. Assoc. 105, 713–726.CrossRefGoogle ScholarPubMed
Witten, D.M., R., Tibshirani, and T., Hastie (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10, 515–534.CrossRefGoogle ScholarPubMed
Witten, I.H., and E., Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques (2nd ed.). San Francisco: Morgan Kaufmann.Google Scholar
Wold, H. (1966). Estimation of principal components and related models by iterative least squares. In P.R., Krishnaiah (ed.), Multivariate Analysis, pp. 391–420. New York: Academic Press.Google Scholar
Xu, R., and D., Wunsch II (2005). Survey of clustering algorithms. IEEE Trans. Neural Networks 16, 645–678.CrossRefGoogle ScholarPubMed
Yeredor, A. (2000). Blind source separation via the second characteristic function. Signal Processing 80, 897–902.CrossRefGoogle Scholar
Young, G., and A.S., Householder (1938). Discussion of a set of points in terms of their mutual distances. Psychometrika 3, 19–22.CrossRefGoogle Scholar
Zass, R., and A., Shashua (2007). Nonnegative sparse PCA. In Advances in Neural Information Processing Systems (NIPS-2006), Vol. 19, B., Scholkopf, J., Platt, and T., Hofmann, eds., p. 1561. Cambridge, MA: MIT Press.Google Scholar
Zaunders, J., J., Jing, A.D., Kelleher and I., Koch (2012). Computationally efficient analysis of complex flow cytometry data using second order polynomial histograms. Technical Rep., St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Australia Sydney.Google Scholar
Zou, H., and T., Hastie (2005). Regularization and variable selection with the elastic net. J.R. Stat. Soc. B (JRSS-B) 67, 301–320.Google Scholar
Zou, H., T., Hastie and R., Tibshirani (2006). Sparse principal component analysis. J. Comput. Graph. Stat. 15, 265–286.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Inge Koch, University of Adelaide
  • Book: Analysis of Multivariate and High-Dimensional Data
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139025805.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Inge Koch, University of Adelaide
  • Book: Analysis of Multivariate and High-Dimensional Data
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139025805.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Inge Koch, University of Adelaide
  • Book: Analysis of Multivariate and High-Dimensional Data
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139025805.018
Available formats
×