Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T16:46:35.054Z Has data issue: false hasContentIssue false

10 - Investigating multiple regression by additive models

from PART III - Smoothing in high dimensions

Published online by Cambridge University Press:  05 January 2013

Wolfgang Härdle
Affiliation:
Rheinische Friedrich-Wilhelms-Universität Bonn
Get access

Summary

While it is possible to encode several more dimensions into pictures by using time (motion), color, and various symbols (glyphs), the human perceptual system is not really prepared to deal with more than three continuous dimensions simultaneously. Huber, P.J. (1985, p. 437)

Huber, P.J. (1985, p. 437)

The basic idea of scatter plot smoothing can be extended to higher dimensions in a straightforward way. Theoretically, the regression smoothing for a d -dimensional predictor can be performed as in the case of a one-dimensional predictor. The local averaging procedure will still give asymptotically consistent approximations to the regression surface. However, there are two major problems with this approach to multiple regression smoothing. First, the regression function m(x) is a high dimensional surface and since its form cannot be displayed for d > 2, it does not provide a geometrical description of the regression relationship between X and Y. Second, the basic element of nonparametric smoothing - averaging over neighborhoods - will often be applied to a relatively meager set of points since even samples of size n ≥ 1000 are surprisingly sparsely distributed in the higher dimensional Euclidean space. The following two examples by Werner Stuetzle exhibit this “curse of dimensionality.”

A possible procedure for estimating two-dimensional surfaces could be to find the smallest rectangle with axis-parallel sides containing all the predictor vectors and to lay down a regular grid on this rectangle. This gives a total of one hundred cells if one cuts each side of a twodimensional rectangle into ten pieces. Each inner cell will have eight neighboring cells. If one carried out this procedure in ten dimensions there would be a total of 1010 = 10,000,000,000 cells and each inner cell would have 310 — 1 = 59048 neighboring cells. In other words, it will be hard to find neighboring observations in ten dimensions!

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×