Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T21:52:35.314Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  16 April 2019

Simo Särkkä
Affiliation:
Aalto University, Finland
Arno Solin
Affiliation:
Aalto University, Finland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aihara, S. I. and Bagchi, A. 1999. On the Mortensen equation for maximum likelihood state estimate. IEEE Transactions on Automatic Control, 44(10), 19551961. (Cited on page 205.)CrossRefGoogle Scholar
Aït-Sahalia, Y. 2002. Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach. Econometrica, 70(1), 223262. (Cited on pages 179, 183, 184, and 185.)CrossRefGoogle Scholar
Aït-Sahalia, Y. 2008. Closed-form likelihood expansions for multivariate diffusions. Annals of Statistics, 36(2), 906937. (Cited on pages 179, 183, and 184.)CrossRefGoogle Scholar
Akhiezer, N. I. and Glazman, I. M. 1993. Theory of Linear Operators in Hilbert Space. New York, NY: Dover. (Cited on page 253.)Google Scholar
Ala-Luhtala, J., Särkkä, S., and Piché, R. 2015. Gaussian filtering and variational approximations for Bayesian smoothing in continuous-discrete stochastic dynamic systems. Signal Processing, 111, 124136. (Cited on pages 166, 273, and 274.)CrossRefGoogle Scholar
Allen, M. P. and Tildesley, D. J. 1991. Computer Simulation of Liquids. New York, NY: Oxford University Press. (Cited on page 156.)Google Scholar
Álvarez, M., Luengo, D., and Lawrence, N. 2009. Latent force models. Pages 916 of: van Dyk, D. and Welling, M. (eds.), Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 5. Clearwater Beach, FL: PMLR. (Cited on pages 270 and 271.)Google Scholar
Álvarez, M. A., Rosasco, L., and Lawrence, N. D. 2012. Kernels for vector-valued functions: a review. Foundations and Trends® in Machine Learning, 4(3), 195266. (Cited on page 254.)CrossRefGoogle Scholar
Álvarez, M. A., Luengo, D., and Lawrence, N. D. 2013. Linear latent force models using Gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11), 26932705. (Cited on pages 270 and 271.)CrossRefGoogle ScholarPubMed
Anderson, B. D. O. 1972. Fixed interval smoothing for nonlinear continuous time systems. Information and Control, 20(3), 294300. (Cited on page 227.)CrossRefGoogle Scholar
Applebaum, D. 2009. Lévy Processes and Stochastic Calculus. Second edn. Cambridge: Cambridge University Press. (Cited on pages 35 and 279.)CrossRefGoogle Scholar
Arasaratnam, I. and Haykin, S. 2009. Cubature Kalman filters. IEEE Transactions on Automatic Control, 54(6), 12541269. (Cited on page 169.)CrossRefGoogle Scholar
Arasaratnam, I., Haykin, S., and Hurd, T. R. 2010. Cubature Kalman filtering for continuous-discrete systems: theory and simulations. IEEE Transactions on Signal Processing, 58(10), 49774993. (Cited on pages 135 and 169.)CrossRefGoogle Scholar
Archambeau, C. and Opper, M. 2011. Approximate inference for continuous-time Markov processes. Pages 125140 of: Bayesian Time Series Models. New York, NY: Cambridge University Press. (Cited on pages 166, 168, 245, and 249.)CrossRefGoogle Scholar
Archambeau, C., Cornford, D., Opper, M., and Shawe-Taylor, J. 2007. Gaussian process approximations of stochastic differential equations. Pages 116 of: Lawrence, N. D., Schwaighofer, A., and Quiñonero Candela, J. (eds.), Gaussian Processes in Practice. Proceedings of Machine Learning Research, vol. 1. Bletchley Park, UK: PMLR. (Cited on pages 272, 273, and 274.)Google Scholar
Åström, K. J. and Wittenmark, B. 1997. Computer-Controlled Systems: Theory and Design. Third edn. Upper Saddle River, NJ: Prentice Hall. (Cited on page 9.)Google Scholar
Axelsson, P. and Gustafsson, F. 2015. Discrete-time solutions to the continuous-time differential Lyapunov equation with applications to Kalman filtering. IEEE Transactions on Automatic Control, 60(3), 632643. (Cited on pages 81, 83, and 84.)CrossRefGoogle Scholar
Bar-Shalom, Y., Li, X.-R., and Kirubarajan, T. 2001. Estimation with Applications to Tracking and Navigation. New York, NY: Wiley. (Cited on pages 29 and 82.)Google Scholar
Bell, B. M. 1994. The iterated Kalman smoother as a Gauss–Newton method. SIAM Journal on Optimization, 4(3), 626636. (Cited on pages 221 and 229.)CrossRefGoogle Scholar
Bell, B. M. and Cathey, F. W. 1993. The iterated Kalman filter update as a Gauss–Newton method. IEEE Transactions on Automatic Control, 38(2), 294297. (Cited on page 221.)CrossRefGoogle Scholar
Beneš, V. E. 1981. Exact finite-dimensional filters for certain diffusions with nonlinear drift. Stochastics, 5(1–2), 6592. (Cited on page 207.)CrossRefGoogle Scholar
Beskos, A. and Roberts, G. O. 2005. Exact simulation of diffusions. Annals of Applied Probability, 15(4), 24222444. (Cited on pages 157 and 160.)CrossRefGoogle Scholar
Beskos, A., Papaspiliopoulos, O., Roberts, G., and Fearnhead, P. 2006a. Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3), 333382. (Cited on pages 111, 157, and 160.)CrossRefGoogle Scholar
Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. 2006b. Retrospective exact simulation of diffusion sample paths with applications. Bernoulli, 12(6), 10771098. (Cited on pages 157 and 160.)CrossRefGoogle Scholar
Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. 2008. A factorisation of diffusion measure and finite sample path. Methodology and Computing in Applied Probability, 10(1), 85104. (Cited on pages 157 and 160.)CrossRefGoogle Scholar
Bishop, C. M. 2006. Pattern Recognition and Machine Learning. New York, NY: Springer. (Cited on page 251.)Google Scholar
Brandt, M. W. and Santa-Clara, P. 2002. Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets. Journal of Financial Economics, 63(2), 161210. (Cited on page 192.)CrossRefGoogle Scholar
Brenner, S. and Scott, R. 2002. The Mathematical Theory of Finite Element Methods. Second edn. Texts in Applied Mathematics, vol. 15. New York, NY: Springer. (Cited on pages 185 and 189.)CrossRefGoogle Scholar
Brigo, D., Hanzon, B., and Le Gland, F. 1999. Approximate nonlinear filtering by projection on exponential manifolds of densities. Bernoulli, 5(3), 495534. (Cited on page 173.)CrossRefGoogle Scholar
Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-L. 2011. Handbook of Markov Chain Monte Carlo. Boca Raton, FL: Chapman & Hall/CRC. (Cited on pages 237, 238, and 242.)CrossRefGoogle Scholar
Bucy, R. S. 1965. Nonlinear filtering theory. IEEE Transactions on Automatic Control, 10(2), 198198. (Cited on page 206.)CrossRefGoogle Scholar
Burrage, K., Burrage, P., Higham, D. J., Kloeden, P. E., and Platen, E. 2006. Comment on “Numerical methods for stochastic differential equations”. Physical Review E, 74(6), 068701. (Cited on page 145.)CrossRefGoogle Scholar
Burrage, K., Lenane, I., and Lythe, G. 2007. Numerical methods for second-order stochastic differential equations. SIAM Journal on Scientific Computing, 29(1), 245264. (Cited on page 155.)CrossRefGoogle Scholar
Cameron, R. H. and Martin, W. T. 1947. The orthogonal development of non-linear functionals in series of Fourier–Hermite functionals. Annals of Mathematics, 48(2), 385392. (Cited on page 194.)CrossRefGoogle Scholar
Cappé, O., Moulines, E., and Rydén, T. 2005. Inference in Hidden Markov Models. Springer Series in Statistics. New York, NY: Springer-Verlag. (Cited on pages 234 and 247.)CrossRefGoogle Scholar
Chaichian, M. and Demichev, A. 2001a. Path Integrals in Physics, Volume 1: Stochastic Processes and Quantum Mechanics. Bristol, UK: IOP Publishing. (Cited on pages 101, 105, and 117.)CrossRefGoogle Scholar
Chaichian, M. and Demichev, A. 2001b. Path Integrals in Physics, Volume 2: Quantum Field Theory, Statistical Physics & Other Modern Applications. Bristol, UK: IOP Publishing. (Cited on page 105.)CrossRefGoogle Scholar
Chow, C. C. and Buice, M. A. 2015. Path integral methods for stochastic differential equations. Journal of Mathematical Neuroscience, 5(1), 8. (Cited on page 118.)CrossRefGoogle ScholarPubMed
Chow, P.-L. 2007. Stochastic Partial Differential Equations. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, vol. 11. Boca Raton, FL, and London: Chapman & Hall/CRC Press. (Cited on page 268.)CrossRefGoogle Scholar
Cover, T. M. and Thomas, J. A. 2006. Elements of Information Theory. Second edn. Hoboken, NJ: John Wiley & Sons. (Cited on pages 73 and 246.)Google Scholar
Crisan, D. and Rozovskiĭ, B. L. (eds.). 2011. The Oxford Handbook of Nonlinear Filtering. Oxford and New York, NY: Oxford University Press. (Cited on pages 111, 197, and 209.)Google Scholar
Da Prato, G. and Zabczyk, J. 2014. Stochastic Equations in Infinite Dimensions. Second edn. Encyclopedia of Mathematics and its Applications, vol. 152. Cambridge: Cambridge University Press. (Cited on pages 253, 267, and 279.)CrossRefGoogle Scholar
Daum, F. E. 1984. Exact finite-dimensional nonlinear filters for continuous time processes with discrete time measurements. Pages 1622 of: Proceedings of the 23rd Conference on Decision and Control. Piscataway, NJ: IEEE. (Cited on page 215.)Google Scholar
Doucet, A. 2010. A Note on Efficient Conditional Simulation of Gaussian Distributions. Technical note. Departments of Computer Science and Statistics, University of British Columbia, Canada. (Cited on page 266.)Google Scholar
Dutra, D. A., Teixeira, B. O. S., and Aguirre, L. A. 2014. Maximum a posteriori state path estimation: Discretization limits and their interpretation. Automatica, 50(5), 13601368. (Cited on pages 204 and 205.)CrossRefGoogle Scholar
Einstein, A. 1905. Über die von molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik, 17, 549560. (Cited on page 23.)CrossRefGoogle Scholar
Feynman, R. P. and Hibbs, A. R. 2010. Quantum Mechanics and Path Integrals. Emended by Styer, Daniel F. edn. New York, NY: Dover. (Cited on page 117.)Google Scholar
Frigola, R., Lindsten, F., Schön, T. B., and Rasmussen, C. E. 2013. Bayesian inference and learning in Gaussian process state-space models with particle MCMC. Pages 31563164 of: Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing Systems 26. Red Hook, NY: Curran Associates, Inc. (Cited on page 269.)Google Scholar
García-Fernández, Á. F., Svensson, L., Morelande, M. R., and Särkkä, S. 2015. Posterior linearization filter: principles and implementation using sigma points. IEEE Transactions on Signal Processing, 63(20), 55615573. (Cited on pages 174 and 221.)CrossRefGoogle Scholar
García-Fernández, Á. F., Svensson, L., and Särkkä, S. 2017. Iterated posterior linearization smoother. IEEE Transactions on Automatic Control, 62(4), 20562063. (Cited on pages 174, 221, 229, and 245.)CrossRefGoogle Scholar
Gardiner, C. W. 2004. Handbook of Stochastic Methods. Third edn. Berlin: Springer. (Cited on pages 51 and 64.)CrossRefGoogle Scholar
Gelb, A. (ed.). 1974. Applied Optimal Estimation. Cambridge, MA: MIT Press. (Cited on pages 167, 209, and 222.)Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. 2013. Bayesian Data Analysis. Third edn. Boca Raton, FL: Chapman and Hall/CRC. (Cited on pages 237 and 242.)CrossRefGoogle Scholar
Gilsing, H. and Shardlow, T. 2007. SDELab: A package for solving stochastic differential equations in MATLAB. Journal of Computational and Applied Mathematics, 205(2), 10021018. (Cited on page 148.)CrossRefGoogle Scholar
Girolami, M. and Calderhead, B. 2011. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2), 123214. (Cited on page 75.)CrossRefGoogle Scholar
Girsanov, I. V. 1960. On transforming a certain class of stochastic processes by absolutely continuous substitution of measures. Theory of Probability and Its Applications, 5(3), 285301. (Cited on pages 104 and 107.)CrossRefGoogle Scholar
Grewal, M. S. and Andrews, A. P. 2001. Kalman Filtering, Theory and Practice Using MATLAB. New York, NY: Wiley. (Cited on pages 29, 77, 79, 82, and 83.)Google Scholar
Hairer, E., Nørsett, S. P., and Wanner, G. 2008. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics, vol. 1. Berlin: Springer Science & Business. (Cited on page 4.)Google Scholar
Hartikainen, J. and Särkkä, S. 2010. Kalman filtering and smoothing solutions to temporal Gaussian process regression models. Pages 379384 of: Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing (MLSP). Piscataway, NJ: IEEE. (Cited on pages 251, 260, 261, and 266.)Google Scholar
Hartikainen, J. and Särkkä, S. 2011. Sequential inference for latent force models. Pages 311318 of: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI). Corvallis, OR: AUAI Press. (Cited on pages 251, 266, 270, and 271.)Google Scholar
Hartikainen, J., Seppänen, M., and Särkkä, S. 2012. State-space inference for non-linear latent force models with application to satellite orbit prediction. Pages 903910 of: Langford, J. and Pineau, J. (eds.), Proceedings of the 29th International Conference on Machine Learning (ICML). New York, NY: Omnipress. (Cited on pages 270 and 271.)Google Scholar
Henderson, D. and Plaschko, P. 2006. Stochastic Differential Equations in Science and Engineering. Singapore: World Scientific Publishing Company. (Cited on page 54.)CrossRefGoogle Scholar
Higham, N. J. 2008. Functions of Matrices: Theory and Computation. Philadelphia, PA: Society for Industrial and Applied Mathematics. (Cited on page 265.)CrossRefGoogle Scholar
Iacus, S. M. 2008. Simulation and Inference for Stochastic Differential Equations. New York, NY: Springer. (Cited on pages 54, 98, 157, 175, 181, 183, 192, 234, and 248.)CrossRefGoogle Scholar
Ikeda, N. and Watanabe, S. 1981. Stochastic Differential Equations and Diffusion Processes. Amsterdam: North-Holland Publishing Company. (Cited on pages 54 and 204.)Google Scholar
Itô, K. 1951. Multiple Wiener integral. Journal of the Mathematical Society of Japan, 3(1), 157169. (Cited on page 136.)CrossRefGoogle Scholar
Ito, K. and Xiong, K. 2000. Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control, 45(5), 910927. (Cited on page 169.)CrossRefGoogle Scholar
Jazwinski, A. H. 1970. Stochastic Processes and Filtering Theory. New York, NY: Academic Press. (Cited on pages 29, 69, 168, 170, 197, 205, 209, 219, 222, and 247.)Google Scholar
Jeisman, J. 2005. Estimation of the Parameters of Stochastic Differential Equations. Ph.D. thesis, Queensland University of Technology, Brisbane, Australia. (Cited on page 234.)Google Scholar
Julier, S. J. and Uhlmann, J. K. 2004. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3), 401422. (Cited on page 169.)CrossRefGoogle Scholar
Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. 1995. A new approach for filtering nonlinear systems. Pages 16281632 of: Proceedings of the 1995 American Control Conference. Piscataway, NJ: IEEE. (Cited on page 169.)CrossRefGoogle Scholar
Kalman, R. E. 1960. A new approach to linear filtering and prediction problems. Transactions of the ASME, Journal of Basic Engineering, 82(3), 3545. (Cited on page 216.)CrossRefGoogle Scholar
Kalman, R. E. and Bucy, R. S. 1961. New results in linear filtering and prediction theory. Transactions of the ASME, Journal of Basic Engineering, 83(3), 95108. (Cited on page 208.)CrossRefGoogle Scholar
Karatzas, I. and Shreve, S. E. 1991. Brownian Motion and Stochastic Calculus. New York, NY: Springer-Verlag. (Cited on pages ix, 42, 46, 47, 50, 60, 100, 101, and 104.)Google Scholar
Kessler, M. 1997. Estimation of an ergodic diffusion from discrete observations. Scandinavian Journal of Statistics, 24(2), 211229. (Cited on pages 179 and 181.)CrossRefGoogle Scholar
Kloeden, P. E. and Platen, E. 1999. Numerical Solution to Stochastic Differential Equations. Applications of mathematics, vol. 23. New York, NY: Springer. (Cited on pages 51, 52, 53, 54, 129, 132, 133, 137, 138, 145, 150, 151, and 153.)Google Scholar
Kloeden, P. E., Platen, E., and Schurz, H. 1994. Numerical Solution of SDE Through Computer Experiments. Berlin: Springer. (Cited on pages 129, 145, and 150.)CrossRefGoogle Scholar
Kokkala, J., Solin, A., and Särkkä, S. 2016. Sigma-point filtering and smoothing based parameter estimation in nonlinear dynamic systems. Journal of Advances in Information Fusion, 11(1), 1530. (Cited on page 249.)Google Scholar
Kreyszig, E. 1993. Advanced Engineering Mathematics. New York, NY: John Wiley & Sons, Inc. (Cited on pages 4, 13, and 185.)Google Scholar
Kushner, H. J. 1964. On the differential equations satisfied by conditional probability densities of Markov processes, with applications. Journal of the Society for Industrial and Applied Mathematics, Series A: Control, 2(1), 106119. (Cited on page 206.)CrossRefGoogle Scholar
Kushner, H. J. 1967. Approximations to optimal nonlinear filters. IEEE Transactions on Automatic Control, 12(5), 546556. (Cited on page 166.)CrossRefGoogle Scholar
Langevin, P. 1908. Sur la théorie du mouvement brownien (Engl. On the Theory of Brownian Motion). Comptes-rendus de l’Académie des sciences (Paris), 146, 530533. (Cited on page 26.)Google Scholar
Leondes, C. T., Peller, J. B., and Stear, E. B. 1970. Nonlinear smoothing theory. IEEE Transactions on Systems Science and Cybernetics, 6(1), 6371. (Cited on pages 225 and 229.)CrossRefGoogle Scholar
Liu, J. S. 2001. Monte Carlo Strategies in Scientific Computing. Springer Series in Statistics. New York, NY: Springer. (Cited on page 237.)Google Scholar
Loève, M. 1963. Probability Theory II. Springer-Verlag. (Cited on page 103.)Google Scholar
Luenberger, D. G. and Ye, Y. 2008. Linear and Nonlinear Programming. Third edn. New York, NY: Springer. (Cited on pages 237, 241, and 242.)CrossRefGoogle Scholar
Luo, W. 2006. Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial Differential Equations. Ph.D. thesis, California Institute of Technology, Pasadena, CA. (Cited on pages 104, 193, and 194.)Google Scholar
Lyons, S. M. J., Särkkä, S., and Storkey, A. J. 2014. Series expansion approximations of Brownian motion for non-linear Kalman filtering of diffusion processes. IEEE Transactions on Signal Processing, 62(6), 15141524. (Cited on page 194.)CrossRefGoogle Scholar
Lyons, S. M., Storkey, A. J., and Särkkä, S. 2012. The coloured noise expansion and parameter estimation of diffusion processes. Pages 19521960 of: Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing Systems 25. Red Hook, NY: Curran Associates, Inc. (Cited on page 194.)Google Scholar
MacKay, D. J. 1998. Introduction to Gaussian processes. Pages 133166 of: Bishop, C. M. (ed.), Neural Networks and Machine Learning. NATO ASI Series F Computer and Systems Sciences, vol. 168. Berlin: Springer. (Cited on page 251.)Google Scholar
Maybeck, P. S. 1979. Stochastic Models, Estimation and Control. Vol. 1. New York, NY: Academic Press. (Cited on page 197.)Google Scholar
Maybeck, P. S. 1982a. Stochastic Models, Estimation and Control. Vol. 2. New York, NY: Academic Press. (Cited on pages 168, 174, 197, 219, and 222.)Google Scholar
Maybeck, P. S. 1982b. Stochastic Models, Estimation and Control. Vol. 3. New York, NY: Academic Press. (Cited on page 279.)Google Scholar
Mbalawata, I. S. 2014. Adaptive Markov Chain Monte Carlo and Bayesian Filtering for State Space Models. Doctoral dissertation, Lappeenranta University of Technology, Lappeenranta, Finland. (Cited on page 234.)Google Scholar
Mbalawata, I. S., Särkkä, S., and Haario, H. 2013. Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering. Computational Statistics, 28(3), 11951223. (Cited on pages 241, 247, 248, and 250.)CrossRefGoogle Scholar
McNamee, J. and Stenger, F. 1967. Construction of fully symmetric numerical integration formulas. Numerische Mathematik, 10(4), 327344. (Cited on page 169.)CrossRefGoogle Scholar
Mercer, J. 1909. Functions of positive and negative type, and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 209(441–458), 415446. (Cited on page 103.)Google Scholar
Møller, J. K. and Madsen, H. 2010. From State Dependent Diffusion to Constant Diffusion in Stochastic Differential Equations by the Lamperti Transform. Tech. rept. Technical University of Denmark, Lyngby, Denmark. (Cited on pages 98 and 99.)Google Scholar
Nickisch, H., Solin, A., and Grigorevskiy, A. 2018. State space Gaussian processes with non-Gaussian likelihood. Pages 37893798 of: Dy, J. and Krause, A. (eds.), Proceedings of the 35th International Conference on Machine Learning (ICML). Proceedings of Machine Learning Research, vol. 80. Stockholm, Sweden: PMLR. (Cited on page 251.)Google Scholar
Nielsen, J. N., Madsen, H., and Young, P. C. 2000. Parameter estimation in stochastic differential equations: an overview. Annual Reviews in Control, 24, 8394. (Cited on page 234.)CrossRefGoogle Scholar
Nualart, D. 2006. The Malliavin Calculus and Related Topics. Probability and Its Applications. Berlin and New York, NY: Springer. (Cited on pages 42, 272, and 279.)Google Scholar
O’Hagan, A. 1978. Curve fitting and optimal design for prediction (with discussion). Journal of the Royal Statistical Society. Series B (Methodological), 40(1), 142. (Cited on page 251.)CrossRefGoogle Scholar
Øksendal, B. 2003. Stochastic Differential Equations: An Introduction with Applications. Sixth edn. New York, NY: Springer. (Cited on pages ix, 29, 42, 46, 47, 55, 56, 59, 60, 68, 104, 108, 118, 121, and 279.)CrossRefGoogle Scholar
Øksendal, B. and Sulem, A. 2007. Applied Stochastic Control of Jump Diffusions. Second edn. Berlin: Springer. (Cited on page 279.)CrossRefGoogle Scholar
Ozaki, T. 1992. A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: a local linearization approach. Statistica Sinica, 2(1), 113135. (Cited on pages 173, 175, and 177.)Google Scholar
Ozaki, T. 1993. A local linearization approach to nonlinear filtering. International Journal of Control, 57(1), 7596. (Cited on pages 173, 175, and 177.)CrossRefGoogle Scholar
Papoulis, A. 1984. Probability, Random Variables, and Stochastic Processes. Singapore: McGraw-Hill. (Cited on page 167.)Google Scholar
Pardoux, E. and Răşcanu, A. 2014. Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Stochastic Modelling and Applied Probability, vol. 69. Berlin: Springer. (Cited on pages 118, 120, 121, and 122.)CrossRefGoogle Scholar
Pedersen, A. R. 1995. New approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scandinavian Journal of Statistics, 22(1), 5571. (Cited on page 192.)Google Scholar
Piiroinen, P. and Simon, M. 2016. From Feynman–Kac formulae to numerical stochastic homogenization in electrical impedance tomography. Annals of Applied Probability, 26(5), 30013043. (Cited on pages 118, 120, and 121.)CrossRefGoogle Scholar
Platen, E. and Bruti-Liberati, N. 2010. Numerical Solution of Stochastic Differential Equations with Jumps in Finance. Stochastic Modelling and Applied Probability, vol. 64. Berlin: Springer. (Cited on page 279.)CrossRefGoogle Scholar
Protter, P. E. 2013. Stochastic Integration and Differential Equations. Second edn. Berlin: Springer. (Cited on pages 55 and 56.)Google Scholar
Rao, B. L. S. P. 1999. Statistical Inference for Diffusion Type Processes. Kendall’s Library of Statistics, vol. 8. Chichester: Wiley. (Cited on pages 175, 181, 183, 234, 248, and 249.)Google Scholar
Rasmussen, C. E. and Williams, C. K. 2006. Gaussian Processes for Machine Learning. Cambridge, MA: MIT Press. (Cited on pages 251, 252, 254, 259, 264, and 265.)Google Scholar
Rogers, L. C. G. and Williams, D. 2000a. Diffusions, Markov Processes and Martingales, Volume 1: Foundations. Cambridge Mathematical Library. Cambridge: Cambridge University Press. (Cited on pages 59, 60, 101, 104, and 113.)Google Scholar
Rogers, L. C. G. and Williams, D. 2000b. Diffusions, Markov Processes and Martingales, Volume 2: Itô Calculus. Cambridge Mathematical Library. Cambridge: Cambridge University Press. (Cited on pages 59, 60, 113, and 116.)Google Scholar
Rößler, A. 2006. Runge–Kutta methods for Itô stochastic differential equations with scalar noise. BIT Numerical Mathematics, 46(1), 97110. (Cited on page 150.)CrossRefGoogle Scholar
Rößler, A. 2009. Second order Runge–Kutta methods for Itô stochastic differential equations. SIAM Journal on Numerical Analysis, 47(3), 17131738. (Cited on pages 151 and 153.)CrossRefGoogle Scholar
Rößler, A. 2010. Runge–Kutta methods for the strong approximation of solutions of stochastic differential equations. SIAM Journal on Numerical Analysis, 48(3), 922952. (Cited on pages 146 and 148.)CrossRefGoogle Scholar
Ruttor, A., Batz, P., and Opper, M. 2013. Approximate Gaussian process inference for the drift function in stochastic differential equations. Pages 20402048 of: Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing Systems 26. Red Hook, NY: Curran Associates, Inc. (Cited on pages 249, 268, and 269.)Google Scholar
Särkkä, S. 2006. Recursive Bayesian Inference on Stochastic Differential Equations. Doctoral dissertation, Helsinki University of Technology, Espoo, Finland. (Cited on pages 79, 82, 83, 84, 197, 219, 222, and 224.)Google Scholar
Särkkä, S. 2007. On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Transactions on Automatic Control, 52(9), 16311641. (Cited on pages 209, 211, and 222.)CrossRefGoogle Scholar
Särkkä, S. 2011. Linear operators and stochastic partial differential equations in Gaussian process regression. Pages 151158 of: Honkela, T., Duch, W., Girolami, M., and Kaski, S. (eds.), Artificial Neural Networks and Machine Learning – ICANN 2011. Lecture Notes in Computer Science, vol. 6792. Berlin and Heidelberg: Springer. (Cited on page 256.)CrossRefGoogle Scholar
Särkkä, S. 2013. Bayesian Filtering and Smoothing. Institute of Mathematical Statistics Textbooks, vol. 3. Cambridge: Cambridge University Press. (Cited on pages 68, 79, 82, 83, 168, 169, 197, 202, 203, 206, 212, 213, 216, 219, 221, 222, 224, 228, 229, 232, 234, 237, 247, 248, and 249.)CrossRefGoogle Scholar
Särkkä, S. and Hartikainen, J. 2012. Infinite-dimensional Kalman filtering approach to spatio-temporal Gaussian process regression. Pages 9931001 of: Lawrence, N. D. and Girolami, M. (eds.), Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 22. La Palma, Canary Islands: PMLR. (Cited on pages 251 and 266.)Google Scholar
Särkkä, S. and Piché, R. 2014. On convergence and accuracy of state-space approximations of squared exponential covariance functions. Pages 16 of: Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing (MLSP). Piscataway, NJ: IEEE. (Cited on page 261.)Google Scholar
Särkkä, S. and Sarmavuori, J. 2013. Gaussian filtering and smoothing for continuousdiscrete dynamic systems. Signal Processing, 93(2), 500510. (Cited on pages 166, 167, 168, 170, 209, 210, 221, 222, and 229.)CrossRefGoogle Scholar
Särkkä, S. and Solin, A. 2012. On continuous-discrete cubature Kalman filtering. Pages 12211226 of: 16th IFAC Symposium on System Identification (SYSID). IFAC Proceedings Volumes, vol. 45. Elsevier. (Cited on pages 135, 169, and 175.)Google Scholar
Särkkä, S. and Sottinen, T. 2008. Application of Girsanov theorem to particle filtering of discretely observed continuous-time non-linear systems. Bayesian Analysis, 3(3), 555584. (Cited on pages 104, 105, 106, 111, and 222.)Google Scholar
Särkkä, S., Solin, A., Nummenmaa, A., Vehtari, A., Auranen, T., Vanni, S., and Lin, F.-H. 2012. Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER. NeuroImage, 60(2), 15171527. (Cited on page 32.)CrossRefGoogle ScholarPubMed
Särkkä, S., Solin, A., and Hartikainen, J. 2013. Spatiotemporal learning via infinitedimensional Bayesian filtering and smoothing. IEEE Signal Processing Magazine, 30(4), 5161. (Cited on pages 251, 256, 261, 266, 267, 268, and 275.)CrossRefGoogle Scholar
Särkkä, S., Tolvanen, V., Kannala, J., and Rahtu, E. 2015a. Adaptive Kalman filtering and smoothing for gravitation tracking in mobile systems. Pages 17 of: Proceedings of Indoor Positioning and Indoor Navigation (IPIN). Piscataway, NJ: IEEE. (Cited on page 31.)Google Scholar
Särkkä, S., Hartikainen, J., Mbalawata, I. S., and Haario, H. 2015b. Posterior inference on parameters of stochastic differential equations via non-linear Gaussian filtering and adaptive MCMC. Statistics and Computing, 25(2), 427437. (Cited on pages 234, 247, 248, and 266.)CrossRefGoogle Scholar
Schweppe, F. 1965. Evaluation of likelihood functions for Gaussian signals. IEEE Transactions on Information Theory, 11(1), 6170. (Cited on page 247.)CrossRefGoogle Scholar
Shoji, I. and Ozaki, T. 1998. Estimation for nonlinear stochastic differential equations by a local linearization method. Stochastic Analysis and Applications, 16(4), 733752. (Cited on pages 173, 175, and 177.)CrossRefGoogle Scholar
Shubin, M. A. 1987. Pseudodifferential Operators and Spectral Theory. Springer Series in Soviet Mathematics. Berlin: Springer. (Cited on page 268.)CrossRefGoogle Scholar
Shumway, R. H. and Stoffer, D. S. 1982. An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 3(4), 253264. (Cited on page 249.)CrossRefGoogle Scholar
Simon, M. 2015. Anomaly Detection in Random Heterogeneous Media. Wiesbaden: Springer Spektrum. (Cited on pages 118, 120, and 121.)CrossRefGoogle Scholar
Singer, H. 2002. Parameter estimation of nonlinear stochastic differential equations: simulated maximum likelihood versus extended Kalman filter and Itô-Taylor expansion. Journal of Computational and Graphical Statistics, 11(4), 972995. (Cited on page 247.)CrossRefGoogle Scholar
Šmídl, V. and Quinn, A. 2006. The Variational Bayes Method in Signal Processing. Berlin: Springer. (Cited on page 249.)Google Scholar
Socha, L. 2008. Linearization Methods for Stochastic Dynamic Systems. Lecture Notes in Physics, vol. 730. Berlin: Springer. (Cited on pages 72, 73, and 167.)CrossRefGoogle Scholar
Solin, A. 2016. Stochastic Differential Equation Methods for Spatio-Temporal Gaussian Process Regression. Doctoral dissertation, Aalto University, Helsinki, Finland. (Cited on pages 251, 259, 266, and 268.)Google Scholar
Solin, A. and Särkkä, S. 2014a. Explicit link between periodic covariance functions and state space models. Pages 904912 of: Kaski, S. and Corander, J. (eds.), Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 33. Reykjavik, Iceland: PMLR. (Cited on pages 262, 263, and 265.)Google Scholar
Solin, A. and Särkkä, S. 2014b. Gaussian quadratures for state space approximation of scale mixtures of squared exponential covariance functions. Pages 16 of: Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing (MLSP). Piscataway, NJ: IEEE. (Cited on page 262.)Google Scholar
Sørensen, H. 2004. Parametric inference for diffusion processes observed at discrete points in time: a survey. International Statistical Review, 72(3), 337354. (Cited on page 234.)CrossRefGoogle Scholar
Stengel, R. F. 1994. Optimal Control and Estimation. New York, NY: Dover. (Cited on pages 83 and 279.)Google Scholar
Stratonovich, R. L. 1968. Conditional Markov Processes and Their Application to the Theory of Optimal Control. New York, NY: American Elsevier. (Cited on pages 55, 56, 197, and 206.)Google Scholar
Svensson, A., Solin, A., Särkkä, S., and Schön, T. 2016. Computationally efficient Bayesian learning of Gaussian process state space models. Pages 213221 of: Gretton, A. and Robert, C. C. (eds.), Proceedings of the 19th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 51. Cadiz, Spain: PMLR. (Cited on page 269.)Google Scholar
Tenenbaum, M. and Pollard, H. 1985. Ordinary Differential Equations. New York, NY: Dover. (Cited on pages 4 and 19.)Google Scholar
Tronarp, F., García-Fernández, Á. F., and Särkkä, S. 2018. Iterative filtering and smoothing in nonlinear and non-Gaussian systems using conditional moments. IEEE Signal Processing Letters, 25(3), 408412. (Cited on pages 221, 229, and 245.)CrossRefGoogle Scholar
Turner, R., Deisenroth, M., and Rasmussen, C. 2010. State-space inference and learning with Gaussian processes. Pages 868875 of: Teh, Y. W. and Titterington, M. (eds.), Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9. Sardinia, Italy: PMLR. (Cited on page 269.)Google Scholar
Van Trees, H. L. 1968. Detection, Estimation, and Modulation Theory, Part I: Detection, Estimation, and Linear Modulation Theory. New York, NY: John Wiley & Sons. (Cited on page 95.)Google Scholar
Wan, E. A. and van der Merwe, R. 2001. The unscented Kalman filter. Chapter 7 of: Haykin, S. (ed.), Kalman Filtering and Neural Networks. New York, NY: Wiley. (Cited on page 169.)Google Scholar
Wiener, N. 1923. Differential-space. Journal of Mathematics and Physics, 2(1–4), 131174. (Cited on page 101.)CrossRefGoogle Scholar
Wiktorsson, M. 2001. Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions. Annals of Applied Probability, 11(2), 470487. (Cited on page 148.)CrossRefGoogle Scholar
Wilkie, J. 2004. Numerical methods for stochastic differential equations. Physical Review E, 70(1), 017701. (Cited on page 145.)CrossRefGoogle ScholarPubMed
Wong, E. and Zakai, M. 1965. On the convergence of ordinary integrals to stochastic integrals. Annals of Mathematical Statistics, 36(5), 15601564. (Cited on pages 55 and 193.)CrossRefGoogle Scholar
Wu, Y., Hu, D., Wu, M., and Hu, X. 2006. A numerical-integration perspective on Gaussian filters. IEEE Transactions on Signal Processing, 54(8), 29102921. (Cited on pages 169 and 170.)CrossRefGoogle Scholar
Zakai, M. 1969. On the optimal filtering of diffusion processes. Probability Theory and Related Fields, 11(3), 230243. (Cited on page 207.)Google Scholar
Zeitouni, O. 1989. On the Onsager–Machlup functional of diffusion processes around non C2 curves. Annals of Probability, 17(3), 10371054. (Cited on page 205.)CrossRefGoogle Scholar
Zinn-Justin, J. 2002. Quantum Field Theory and Critical Phenomena. Fourth edn. International Series of Monographs on Physics, vol. 113. Oxford: Clarendon Press. (Cited on page 117.)CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Simo Särkkä, Aalto University, Finland, Arno Solin, Aalto University, Finland
  • Book: Applied Stochastic Differential Equations
  • Online publication: 16 April 2019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Simo Särkkä, Aalto University, Finland, Arno Solin, Aalto University, Finland
  • Book: Applied Stochastic Differential Equations
  • Online publication: 16 April 2019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Simo Särkkä, Aalto University, Finland, Arno Solin, Aalto University, Finland
  • Book: Applied Stochastic Differential Equations
  • Online publication: 16 April 2019
Available formats
×