Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T09:04:28.216Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2014

Mark C. Serreze
Affiliation:
University of Colorado Boulder
Roger G. Barry
Affiliation:
University of Colorado Boulder
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, K. and Carmack, E.C. [1989]. The role of sea ice and other fresh waters in the Arctic circulation. J. Geophys. Res. 94(C10), 14485–14498.CrossRefGoogle Scholar
Abdalati, W. and Steffen, K. [1995]. Passive microwave-derived snow melt regions on the Greenland Ice Sheet. Geophys. Res. Lett. 22, 787–790.CrossRefGoogle Scholar
Abdalati, W. and Steffen, K. [1997]. Snowmelt on the Greenland Ice Sheet as derived from passive microwave satellite data. J. Climate 10, 165–175.2.0.CO;2>CrossRefGoogle Scholar
Abdalati, W. and Steffen, K. [2001]. Greenland Ice Sheet melt extent: 1979–1999. J. Geophys. Res. 106(D24), 33983–33988.CrossRefGoogle Scholar
Arctic Climate Impact Assessments (ACIA) [2005]. Impacts of a Warming Climate: Arctic Climate Impact Assessment. Cambridge: Cambridge University Press.Google Scholar
Agnew, T.A., Le, H., and Hirose, T. [1997]. Estimation of aggregate-scale sea ice motion from SSM/I 85 Ghz imagery. Ann. Glaciol. 25, 305–311.CrossRefGoogle Scholar
Albright, M. [1980]. Geostrophic wind calculations for AIDJEX. In: Pritchard, R.S. (ed.), Sea Ice Processes and Models. Seattle: University of Washington Press, pp. 402–409.Google Scholar
Alexander, M.A., Bhatt, U.S., Walsh, J.E., Timlin, M.S., Miller, J.S., and Scott, J.P. [2004]. The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Climate 17, 890–905.2.0.CO;2>CrossRefGoogle Scholar
Alexandrova, V. [1970]. The vegetation of the tundra zones in the USSR and data about its productivity. In: Fuller, W.A. and Kevan, P.G. (eds.), Productivity and Conservation in Northern Circumpolar Lands. Morges, Switzerland: Int. Union Conserv. Nature Res., IUCN Publication No. 16, pp. 93–114.Google Scholar
Alexseev, V.A., Ivanov, V.V., Kwok, K., and Smedsrud, L.H. [2013]. North Atlantic warming and declining volume of Arctic sea ice. The Cryosphere Discussions 7, 245–265, doi:.CrossRefGoogle Scholar
Alley, R. B., Anandakrishnan, S., and Jung, P. [2001]. Stochastic resonance in the North Atlantic. Paleoceanography 16, 190–198.CrossRefGoogle Scholar
Alley, R.B., Dupont, T.K., Parizek, B.R. et al. [2006]. Ourburst flooding and the initiation of ice-stream surges in response to climatic cooling: A hypothesis. Geomorphology 75, 76–89, doi:.CrossRefGoogle Scholar
Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., and Clark, P.U. [1997]. Holocene climatic instability: A prominent widespread event 8200 years ago. Geology 25, 483–486.2.3.CO;2>CrossRefGoogle Scholar
Alley, R.B., Meese, D.A., Schuman, C.A. et al. [1993]. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, 527–529.CrossRefGoogle Scholar
Alt, B.T. [1975]. The Energy Balance Climate of Meighen Ice Cap, N.W.T. Polar Continental Shelf Project, Energy, Mines and Resources, Canada. Vol. 1.Google Scholar
Alt, B.T., Labine, C. L., Atkinson, D. E., and Wolfe, P.M. [2000]. Automatic weather station results from Fosheim Peninsula, Ellesmere Island, Nunavut. Geol. Surv. Canada Bull. 529, 37–97.Google Scholar
Ambaum, M.H.P. and Hoskins, B.J. [2002]. The NAO troposphere-stratosphere connection. J. Climate 15, 1969–1978.2.0.CO;2>CrossRefGoogle Scholar
Ambaum, M.H.P., Hoskins, B.J., and Stephenson, D.B. [2001]. Arctic Oscillation or North Atlantic Oscillation?J. Climate 14, 3495–3507.2.0.CO;2>CrossRefGoogle Scholar
Ananjeva, G.V. [2000]. Study of the distribution of lakes in Russian Arctic with the use of GIS technologies. Kriosfera Zemli 4, 67–73.Google Scholar
Anderson, D.L. [1961]. Growth rate of sea ice. J. Glaciol. 3, 1170–1172.CrossRefGoogle Scholar
Anderson, P.M. and Brubaker, L.B. [1994]. Vegetation history of North Central Alaska: A mapped summary of Late Quaternary pollen data. Quatern. Sci. Rev. 13, 71–92.CrossRefGoogle Scholar
Anderson, R., Boville, B., and McClellan, D.E. [1955]. An operational frontal contour analysis model. Quart. J. Roy. Met. Soc. 81, 588–599.CrossRefGoogle Scholar
Andreas, E. L., Miles, M. W., Barry, R.G., and Schnell, R. C. [1990]. Lidar-derived particle concentrations in plumes from Arctic leads. Ann. Glaciol. 14, 9–12.CrossRefGoogle Scholar
Andreas, E. L., Paulson, C.S., Williams, R.M., Lindsay, R.W., and Businger, J.A. [1979]. The turbulent heat flux from Arctic leads. Boundary Layer Meteorol. 17, 57–91.CrossRefGoogle Scholar
Andrews, D.G., Holton, J.R., and Leovy, C.B. [1987]. Middle Atmosphere Dynamics. Orlando, FL: Academic Press.Google Scholar
Arbatskaya, M.K. and Vaganov, E.A. [1997]. Long-term variation in fire frequency and radial increment in pine from the middle taiga subzone of central Siberia. Russian Journal of Ecology 28, 291–297.Google Scholar
Arctic Climatology Project [1997]. Environmental Working Group Joint U.S.-Russian Atlas of the Arctic Ocean – Winter Period. Timokhov, L. and Tanis, F. (eds). Ann Arbor, MI: Environmental Research Institute of Michigan with the National Snow and Ice Data Center, CD-ROM.Google Scholar
Arctic Climatology Project [1998]. Environmental Working Group Joint U.S.-Russian Atlas of the Arctic Ocean – Summer Period. Timokhov, L. and Tanis, F. (eds). Ann Arbor, MI: Environmental Research Institute of Michigan with the National Snow and Ice Data Center, CD-ROM.Google Scholar
Arctic Climatology Project [2000]. Environmental Working Group Arctic Meteorology and Climate Atlas. Fetterer, F. and Radionov, V. (eds.) National Snow and Ice Data Center, Boulder CO, CD-ROM.Google Scholar
Arctic Marine Shipping Assessment (AMSA) [2009]. Arctic Marine Shipping Assessment 2009 Report. Arctic Council, April 2009, second printing.
Armstrong, T.E. [1952]. The Northern Sea Route. Soviet Exploitation of the North-east Passage. Cambridge: Cambridge University Press.Google Scholar
Armstrong, T.E. [1984]. In search of a northern sea-route to Siberia, 1553–1619. Arctic 37, 429–440.CrossRefGoogle Scholar
Armstrong, T.E. [1995]. The Soviet Northern Sea Route. Geogr. Rev. 121, 136–148.Google Scholar
Arnell, N.W. [1995]. Grid mapping of river discharge. J. Hydrol. 167, 39–56.CrossRefGoogle Scholar
Badgley, R. I. [1966]. Heat budget at the surface of the Arctic Ocean. In: Fletcher, J.O. (ed.), Proceedings of the Symposium on the Arctic Heat Budget and Atmospheric Circulation, Memo. RM-5233-NSF. Santa Monica, CA: Rand Corp., pp. 267–277.Google Scholar
Baer, K.E. [1838]. On the ground ice or frozen soil of Siberia. J. Roy. Geog. Soc. 8, 210–213.Google Scholar
Baldwin, M.P. and Dunkerton, T.J. [1999]. Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res. 104, 30937–30946.CrossRefGoogle Scholar
Baldwin, M.P. and Dunkerton, T.J. [2001]. Stratospheric harbingers of anomalous weather regimes. Science 294, 581–584.CrossRefGoogle ScholarPubMed
Bales, R.C., McConnell, J.R., Mosley-Thompson, E., and Csatho, B. [2001]. Accumulation over the Greenland Ice Sheet from historical and recent records. J. Geophys. Res. 106(D24), 33813–33825.CrossRefGoogle Scholar
Ballinger, T.J., Schmidlin, T.W., and Steinhoff, D.F. [2013]. The polar marine climate revisited. Journal of Climate 26, 3935–3952.CrossRefGoogle Scholar
Bamber, J.L., Layberry, S.F., and Gogineni, S.P. [2001]. A new ice thickness and bed data set for the Greenland Ice Sheet. J. Geophys. Res. 106(D24), 33773–33780.CrossRefGoogle Scholar
Barker, S., Diz, P., Vautravers, M.J. et al. [2009]. Interhemispheric Atlantic seesaw response during the last glaciation. Nature 457, 1097–1103, doi:.CrossRefGoogle Scholar
Barnston, A.G. and Livezy, R.E. [1987]. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev. 115, 1083–1126.2.0.CO;2>CrossRefGoogle Scholar
Barr, W. [1978]. The voyage of the Sibiryakov, 1932. Polar Record 19, 253–266.CrossRefGoogle Scholar
Barr, W. [1985]. The Expeditions of the First International Polar Year. Tech. Paper No. 29. Calgary: Arctic Institute of North America.Google Scholar
Barr, W. [1991]. The Arctic Ocean in Russian History to 1945. In: Brigham, L.W. (ed.), The Soviet Maritime Arctic. Annapolis, MD: Naval Institute Press, pp. 11–32.Google Scholar
Barrie, L.A., Bottenheim, J.W., Schnell, R.C., Crutzen, R.C., and Rasmussen, R.A. [1988]. Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature 334, 138–141.CrossRefGoogle Scholar
Barrow, J. [1818]. A Chronological History of Voyages into the Arctic Regions (1818). London: John Murray (reprinted 1971, New York: Barnes and Noble).Google Scholar
Barry, R.G. [1966]. Meteorological aspects of the glacial history of Labrador-Ungava with special reference to vapor transport. Geogr. Bull. 8, 319–340.Google Scholar
Barry, R.G. [1967]. Seasonal location of the Arctic front over North America. Geogr. Bull. 9, 79–95.Google Scholar
Barry, R.G. [1996]. The parameterization of surface albedo for sea ice and its snow cover. Progress in Physical Geography 20, 63–79.CrossRefGoogle Scholar
Barry, R.G. [2008]. Mountain Weather and Climate. New York: Cambridge University Press.CrossRefGoogle Scholar
Barry, R.G. and Carleton, A.M. [2001]. Synoptic and Dynamic Climatology. London: Routledge.CrossRefGoogle Scholar
Barry, R.G. and Gan, T.Y. [2011]. The Global Cryosphere: Past, Present and Future. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Barry, R.G., Courtin, G.M., and Labine, C. [1981]. Tundra climates. In: Bliss, L.C., Heal, A.W., and Moore, J. (eds.), Tundra Ecosystems: A Comparative Analysis. Cambridge: Cambridge University Press, pp. 81–114.Google Scholar
Barry, R.G., Crane, R.G., Schweiger, A., and Newell, J. [1987]. Arctic cloudiness in spring from satellite imagery. Int. J. Climatol. 7, 428–451.Google Scholar
Barry, R.G. and Jackson, C.I. [1969]. Summer weather conditions at Tanquary Fiord, N.W.T. 1963–67. Arct. Alp. Res. 1, 169–180.CrossRefGoogle Scholar
Barry, R.G. and Kiladis, G.N. [1982]. Climatic characteristics of Greenland. In: Radok, U. (ed.), Climatic and Physical Characteristics of the Greenland Ice Sheet, Vol. 1. Boulder: Cooperative Institute for Research in Environmental Sciences, University of Colorado, pp. 7–33.Google Scholar
Barry, R.G., Moritz, R.E., and Rogers, J.C. [1979]. The fast ice regimes of the Beaufort and Chukchi Sea coasts, Alaska. Cold Regions Sci. Technol. 1, 129–152.CrossRefGoogle Scholar
Barry, R.G., Serreze, M.C., Maslanik, J.A., and Preller, R.H. [1993]. The Arctic sea-ice climate system: Observations and modeling. Rev. Geophys. 31, 397–422.CrossRefGoogle Scholar
Beesley, J.A. and Moritz, R.E. [1999]. Toward an explanation of the annual cycle of cloudiness over the Arctic Ocean. J. Climate 12, 395–415.2.0.CO;2>CrossRefGoogle Scholar
Belkin, I.M., Levitus, S., Antonov, J., and Malmberg, S.A. [1998]. The “Great Salinity BEDMAP 2.”
Belov, M.I. [1969]. Istoriya Otkrytiya Osvoyeniya Severnogo Morskogo Puti. IV. 1933–1945. (History of the Discovery and Exploitation of the Northern Sea Route. IV. 1933–1945). Leningrad: Gidrometeoizdat.Google Scholar
Bender, G. [1984]. The Distribution of Snow Accumulation on the Greenland Ice Sheet, M.S. Thesis. Fairbanks, AK: Geophysical Institute, University of Alaska. [Available from Geophysical Institute, University of Alaska, P.O. Box 7555780, Fairbanks, AK 99775–5780].Google Scholar
Bengtsson, L., Semenov, V.A., and Johannessen, O.M. [2004]. The early twentieth-century warming in the Arctic – a possible mechanism. J. Climate 17, 4045–4057.2.0.CO;2>CrossRefGoogle Scholar
Benn, D.I. and Evans, D.J.A. [1998]. Glaciers and Glaciation. London: Arnold.Google Scholar
Benson, C.S. [1969]. The Seasonal Snow Cover of Arctic Alaska. Arctic Institute of North America Technical Report No. 51. Calgary, Alberta: Arctic Institute of North America.Google Scholar
Benson, C.S. [1970]. Ice Fog. Low Temperature Air Pollution Defined with Fairbanks, Alaska as Type Locality. CRREL Research Report 121. US Army, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire.
Benson, C.S. and Bowling, S.A. [1975]. The sub-Arctic heat island as studied at Fairbanks, Alaska. In: Weller and Bowling, S.A. (eds.), Climate of the Arctic, Fairbanks, Alaska: Geophysical Institute, University of Alaska, pp. 309–311.Google Scholar
Beringer, J., Tapper, N.J., McHugh, I. et al. [2001]. Impact of Arctic treeline on synoptic climate. Geophys. Res. Lett. 28, 4247–4250.CrossRefGoogle Scholar
Betts, A.K. [2000]. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190.CrossRefGoogle ScholarPubMed
Bhatt, U.S., Walker, D.A., Raynolds, M.K. et al. [2010]. Circumpolar Arctic tundra vegetative change is linked to sea ice decline. Earth Interactions 14, 1–20.CrossRefGoogle Scholar
Bilello, M.A. [1957]. A survey of Arctic snow-cover properties as related to climatic conditions. Res. Rep. 39. Hanover, New Hampshire: U.S. Army CRREL.Google Scholar
Birks, H.H., Paus, A., Svendsen, J.I., Alm, T., Mangerud, J., and Landvik, J.Y. [1994]. Late Weichselian environmental change in Norway, including Svalbard. J. Quatern. Sci. 9, 133–145.CrossRefGoogle Scholar
Bitz, C.M., Batitisti, D.S., Moritz, R.E., and Beesley, J.A. [1996]. Low-frequency variability in the Arctic atmosphere, sea ice and upper-ocean climate system. J. Climate 9, 394–408.2.0.CO;2>CrossRefGoogle Scholar
Blanchet, J-P., and Girard, E. [1995]. Water vapour-temperature feedback in the formation of continental Arctic air: Implication for climate. Sci. Total. Environ. 160/161, 793–802.CrossRefGoogle Scholar
Bliss, L.C. [1997]. Arctic ecosystems of North America. In: Wielgolaski, F.E. (ed.), Polar and Alpine Tundra, Ecosystems of the World, Vol. 3. Amsterdam: Elsevier, pp. 551–683.Google Scholar
Blyth, J.D.M. [1951]. German meteorological activities in the Arctic, 1940–1945. Polar Record 6, 185–226.CrossRefGoogle Scholar
Bojkov, R.D. and Fiolotov, V.E. [1995]. Estimating the global ozone characteristics during the last 30 years. J. Geophys. Res. 100(D8), 16537–16551.CrossRefGoogle Scholar
Bonan, G.B. [1995]. Sensitivity of a GCM simulation to inclusion of inland water surfaces. J. Climate 8, 2691–27042.0.CO;2>CrossRefGoogle Scholar
Bonan, G.B. [2008]. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449, doi:.CrossRefGoogle ScholarPubMed
Bonan, G.B., Chapin, F.S., and Thompson, S.L. [1995]. Boreal forest and tundra ecosystems as components of the climate system. Climatic Change 29, 145–167.CrossRefGoogle Scholar
Bonan, G.B., Pollard, D., and Thompson, S.L. [1992]. Effects of boreal forest vegetation on global climate. Nature 359, 716–718.CrossRefGoogle Scholar
Bond, G., Broecker, W., Johnsen, S. et al. [1993]. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143–147.CrossRefGoogle Scholar
Bond, G.C., Kromer, B., Beer, J. et al. [2001]. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 2130–2136.CrossRefGoogle ScholarPubMed
Bond, G. C. and Lotti, R. [1995]. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267, 1005–1010.CrossRefGoogle ScholarPubMed
Bond, G.C., Showers, W., Cheseby, M. et al. [1997]. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 1257–1266.CrossRefGoogle Scholar
Borisov, A.A. [1975]. Klinaty SSSR v Proshlom, Nastoyashchemi i Budushchem. (Climates of the USSR, Past, Present and Future). Leningrad: Leningrad University.Google Scholar
Borodachev, B.E. and Shil’nikov, V. I. [2002]. Istoriya L’dovoi Aviatsinnoi Razvedki v Arktikei na Zamerzayushchikh Moryakh Rossii (1914–1993 gg). (The History of Aerial Ice Reconnaissance in the Arctic and Ice-covered Seas of Russia, 1914–1993). St. Petersburg: Gidrometeoizdat.Google Scholar
Bourgeois, Q. and Bey, I. [2011]. Pollution transport efficiency toward the Arctic: Sensitivity of aerosol scavenging and source regions. J. Geophys. Res. 116, D08213, doi: .CrossRefGoogle Scholar
Bourke, R.H. and Garrett, R.P. [1987]. Sea ice thickness distribution in the Arctic Ocean. Cold Reg. Sci. Technol. 13, 259–280.CrossRefGoogle Scholar
Bourke, R.H. and McLaren, A.S. [1992]. Contour mapping of Arctic Basin ice draft and roughness parameters. J. Geophys. Res. 97(C11), 17715–17728.CrossRefGoogle Scholar
Boville, B.W., MacFarlane, M.A. and Steiner, H.A. [1959]. An Atlas of Stratospheric Circulation, October 1958 – March 1959. In: Arctic Meteorology Research Group, Publication in Meteorology No. 37. Montreal, Canada: McGill University, Defense Research Board, Department of National Defense.Google Scholar
Bovis, M.J. and Barry, R.G. [1974]. A climatological analysis of north polar desert areas. In: Smiley, T.L. and Zumberge, J.H. (eds.), Polar Deserts and Modern Man. Tucson, AZ: University of Arizona Press, pp. 23–31.Google Scholar
Bowling, L.C., Lettenmaier, D.P., and Matheussen, B.V. [2000]. Hydroclimatology of the Arctic drainage basin. In: Lewis, E.L. et al. (eds.), The Freshwater Budget of the Arctic Ocean. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 57–90.CrossRefGoogle Scholar
Bowling, L.C., Letternmaier, D.P., Nijssen, B. et al. [2003]. Simulation of hydrologic responses in the Torne-Kalix basin: PILPS Phase 2(e) 1: Experiment description and summary intercomparisons. Global and Planetary Change 38, 1–30.CrossRefGoogle Scholar
Bowling, S.A. [1986]. Climatology of high-latitude air pollution as illustrated by Fairbanks and Anchorage, Alaska. J. Clim. Appl. Meteor. 25, 22–34.2.0.CO;2>CrossRefGoogle Scholar
Box, J.E. and Rinke, A. [2003]. Evaluation of Greenland Ice Sheet surface climate in the HIRHAM regional climate model using automatic weather station data. J. Climate 16, 1302–1319.CrossRefGoogle Scholar
Box, J.E. and Steffen, K. [2001]. Sublimation on the Greenland Ice Sheet from automated weather station observations. J. Geophys. Res. 106(D24), 33965–33981.CrossRefGoogle Scholar
Bradley, R.S. [1990]. Holocene paleoclimatology of the Queen Elizabeth Islands, Canadian High Arctic. Quatern. Sci. Rev. 9, 365–384.CrossRefGoogle Scholar
Bradley, R.S., [1999]. Paleoclimatology: Reconstructing Climates of the Quaternary. San Diego, CA: Academic Press.Google Scholar
Bradley, R.S. and Serreze, M.C. [1987]. Topoclimatic studies of a high Arctic plateau ice cap. J. Glaciol. 33, 149–158.CrossRefGoogle Scholar
Bridgman, H.A., Schnell, R.C., Kahl, J.D., Herbert, G.A., and Joranger, E. [1989]. A major haze event near Point Barrow, Alaska: Analysis of probable source regions and transport pathways. Atmos. Environ. 23, 2537–2549.CrossRefGoogle Scholar
Brinkman, W. and Barry, R.G. [1972]. Paleoclimatological aspects of the synoptic climatology of Keewatin, Northwest Territories, Canada. Paleogeogr., Paleoclimatol., Paleoecol. 11, 87–91.CrossRefGoogle Scholar
Broecker, W.D. [1990]. Salinity history of the northern Atlantic during the last glaciation. Peleoceanography 5, 459–457.CrossRefGoogle Scholar
Broecker, W.S. [2006]. Was the Younger Dryas triggered by a flood?Science 312, 1146–1148, doi:.CrossRefGoogle ScholarPubMed
Broecker, W.S., Bond, G., Klas, M.Bonani, G., and Wolfi, W. [1990]. A salt oscillator in the glacial North Atlantic? 1. The concept. Paleoceanography 5, 469–477.CrossRefGoogle Scholar
Broecker, W.S., Kennett, J.P., Flower, B.P. et al. [1989]. Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas episode. Nature 341, 318–321.CrossRefGoogle Scholar
Bromwich, D., Kuo, Y-H., Serreze, M. et al. [2010]. Arctic System Reanalysis: Call for community involvement. Eos Trans. Amer. Geophys. Union 91, 13, doi:.CrossRefGoogle Scholar
Bromwich, D.H., Chen, Q-S., Bai, L-S., Cassano, E.N., and Li, Y. [2001b]. Modeled precipitation variability over the Greenland Ice Sheet. J. Geophys. Res. 106(D24), 33891–33908.CrossRefGoogle Scholar
Bromwich, D. H., Keen, R.A., and Bolzan, J.F. [1993]. Modeled variations of precipitation over the Greenland Ice Sheet. J. Climate 6, 1253–1268.2.0.CO;2>CrossRefGoogle Scholar
Bromwich, D.H., Toracinta, E.R., Oglesby, R.J., Fastook, J.L., and Hughes, T.J. [2005]. LGM summer climate on the southern margin of the Laurentide Ice Sheet: Wet or dry?J. Climate. 18, 3317–3338, doi: .CrossRefGoogle Scholar
Bromwich, D.H., Toracinta, E.R., and Wang, S-H. [2002]. Meteorological perspectives on the initiation of the Laurentide Ice Sheet. Quaternary International95–96, 113–124.Google Scholar
Bromwich, D.H., Toracinta, E.R., Wei, H., Oglesby, R.J., Fastook, J.L., and Hughes, T.J. [2004]. Polar MM5 simulations of the winter climate of the Laurentide Ice Sheet at the LGM. J. Climate 17, 3415–3433, doi:.2.0.CO;2>CrossRefGoogle Scholar
Brooks, C.E.P. [1931]. The vertical temperature gradient in the Arctic. Meteorology Magazine 66, 267–268.Google Scholar
Brown, J., Ferrians, O.J. Jr., Heginbottom, A.J. and Melnikov, S.E. [1997]. Circum-Arctic Map of Permafrost and Ground-Ice Conditions. U.S. Geological Survey Circum-Pacific Map Series, CP-45.
Brubaker, K.L., Entekhabi, D., and Eagleson, P.S. [1993]. Estimation of continental-scale precipitation recycling. J. Climate 6, 1077–1089.2.0.CO;2>CrossRefGoogle Scholar
Bryan, K. [1969]. Climate and the ocean circulation, III, The ocean model. Mon. Weather Rev. 97, 806–827.2.3.CO;2>CrossRefGoogle Scholar
Bryson, R.A. [1966]. Air masses, stream lines, and the boreal forest. Geogr. Bull. 8, 228–269.Google Scholar
Bulatov, V. and Popov, G. [1996]. Novaya Zemlya: Myfy I real’nost’. In: Tolkachev, V.F. (ed.), Terra Incognita Arktik. Archangelsk: Pomorskogo Mezhdunarodnogo Pedagogicheskii Universitet, pp. 5–68.Google Scholar
Busch, N., Ebel, U., Kraus, H., and Schaller, E. [1982]. The structure of the subpolar inversion-capped ABL. Arch. Met. Geophys. Bioklim. 31A, 1–18.Google Scholar
Businger, S. and Reed, R.J. [1989]. Cyclogenesis in cold air masses. Weather and Forecasting 4, 133–156.2.0.CO;2>CrossRefGoogle Scholar
Carleton, A.M. [1996]. Satellite climatological aspects of cold air mesocyclones in the Arctic and Antarctic. Global Atmos. Ocean. Syst. 5, 1–42.Google Scholar
Carmack, E.C. [1990]. Large-scale physical oceanography of polar oceans. In: Smith, W.O. Jr. (ed.), Polar Oceanography, Part A, Physical Science. San Diego, CA: Academic Publishers, pp. 171–222.CrossRefGoogle Scholar
Carroll, J.J. and Fitch, B.W. [1981]. Effects of solar elevation and cloudiness on snow albedo at the South Pole. J. Geophys. Res. 86, 5271–5276.CrossRefGoogle Scholar
Cassano, J. J., Higgins, M.E., and Seefeldt, M.W. [2011], Performance of the Weather Research and Forecasting (WRF) model for month-long pan-Arctic simulations. Mon. Wea. Rev. 139, 3469–3488, .CrossRefGoogle Scholar
Cassau, C. and Terray, L. [2001]. Dual role of Atlantic and Pacific SST anomalies on the North Atlantic/Europe winter climate. Geophys. Res. Lett. 30, 3195–3198.CrossRefGoogle Scholar
Catchpole, A.J.W. and Faurer, M.A. [1983]. Summer sea ice severity in Hudson Strait, 1751–1850. Climatic Change 5, 115–139.CrossRefGoogle Scholar
Central Intelligence Agency (CIA) [1978]. Polar Regions Atlas. Produced by National Foreign Assessment Center, Central Intelligence Agency.
Chapin, F.S., Matson, P.A., and Mooney, H.A. [2000]. Principles of Terrestrial Ecosystem Ecology. New York: Springer Verlag.Google Scholar
Charlier, R.H. [1969]. The geographic distribution of polor desert soils in the northern hemisphere. Geol. Soc. Amer. Bull. 80, 1985–1996.CrossRefGoogle Scholar
Charney, J., Halem, M., and Jastrow, R. [1969]. Use of incomplete historical data to infer the present state of the atmosphere. J. Atmos. Sci. 26, 1160–1163.2.0.CO;2>CrossRefGoogle Scholar
Chartrand, D.J., de Grandpere, J., and McConnell, J.C. [1999]. An introduction to stratospheric chemistry. Atmosphere-Ocean 37, 309–367.CrossRefGoogle Scholar
Chase, T.N., Herman, B., Peilke, R.S. Sr., Zeng, X., and Leuthold, M. [2002]. A proposed mechanism for the regulation of minimum midtropospheric temperatures in the Arctic. J. Geophys. Res. 107(D14), doi: .CrossRefGoogle Scholar
Chen, Q.S., Bromwich, D.H., and Bai, L. [1997]. Precipitation over Greenland retrieved by a dynamic method and its relation to cyclonic activity. J. Climate 10, 839–870.2.0.CO;2>CrossRefGoogle Scholar
Chernov, Y.I. and Matveyeva, N.V. [1997]. Arctic Ecosystems in Russia. In: Wielgolaski, F.E. (ed.), Polar and Alpine Tundra Ecosystems of the World, Vol. 3. Amsterdam: Elsevier, pp. 361–507.Google Scholar
Choudhury, B.J. and Chang, A.T.C. [1981]. The albedo of snow for partially cloudy skies. Boundary Layer Meteor. 20, 371–389.CrossRefGoogle Scholar
Christiansen, H.H. [1998]. ‘Little Ice Age’ nivation activity in northeast Greenland. The Holocene 8, 719–728.CrossRefGoogle Scholar
Chylek, P., Folland, C.K., Lesins, G., Dubey, M.K., and Wang, M-Y. [2009]. Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 36, L14801, doi:.CrossRefGoogle Scholar
Clark, C.D., Knight, J.K., and Gray, J.T. [2000]. Geomorphological reconstruction of the Labrador sector of the Laurentide Ice Sheet. Quatern. Sci. Rev. 19, 1343–1366.CrossRefGoogle Scholar
Clark, D. L. [1982]. Origin, nature and world climate effect of the Arctic Ocean ice cover. Nature 300, 321–325.CrossRefGoogle Scholar
Clark, D.L. and Grantz, A. [2002]. Piston cores improve understanding of deep Arctic Ocean. Eos Trans. Amer. Geophys. Union 83, 417, 422–423.CrossRefGoogle Scholar
Clark, P.U., Marshall, S.J., Clarke, G.K., Hostetler, S.W., Liccardi, J.M., and Teller, J.T. [2001]. Freshwater forcing of abrupt climate change during the last Glaciation. Science 293, 283–287.CrossRefGoogle ScholarPubMed
Clark, P.U., Pisias, N.G., Stocker, T.F., and Weaver, A.J. [2002]. The role of the thermohaline circulation in abrupt climate change. Nature 415, 863–869.CrossRefGoogle ScholarPubMed
Clein, J.S., Kwiatkowski, B.L., McGuire, A.D. et al. [2000]. Modeling carbon responses of tundra ecosystems to historical and projected climate: A comparison of a plot-and global-scale ecosystem model to identify process-based uncertainties. Global Change Biology 6 (Supplement 1), 127–140.CrossRefGoogle Scholar
Cohen, J. and Entekhabi, D. [1990]. Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett. 26, 345–348.CrossRefGoogle Scholar
Cohen, J., Saito, K. and Entekhabi, D. [2001]. The role of the Siberian High in Northern Hemisphere climate variability. Geophys. Res. Lett. 28, 299–302.CrossRefGoogle Scholar
Colony, R., Radionov, V., and Tanis, F.L. [1998]. Measurements of precipitation and snow pack at the Russian North Pole drifting stations. Polar Record 34, 3–14.CrossRefGoogle Scholar
Compo, G.P., Whitaker, J.S., Sardeshmukh, P.D. et al. [2011]. The Twentieth Century Reanalysis Project, Quart. J. Roy. Meteor. Soc., 137, 1–28, doi: .CrossRefGoogle Scholar
Cook, E.R., D’Arrigo, R.D., and Briffa, K.R. [1998]. A reconstruction of the North Atlantic Oscillation using tree-ring chronologies from North America and Europe. Holocene 8, 9–17.CrossRefGoogle Scholar
Courtin, G.H. and Labine, C.L. [1977]. Microclimatological studies of the Truelove Lowland, Devon Island, Northwest Territories. In: Bliss, L.C. (ed.), Truelove Lowland, Devon Island, Canada, a High Arctic Ecosystem. Edmonton: University of Alberta Press, pp. 73–106.Google Scholar
Crowley, T.J. [2000]. Causes of climate change over the past 1000 years. Science 289, 270–276.CrossRefGoogle ScholarPubMed
Cuffey, K.M. and Marshall, S.J. [2000]. Substantial contribution to sea-level rise during the last interglacial from the Greenland Ice Sheet. Nature 404, 591–594.CrossRefGoogle ScholarPubMed
Cullather, R.I., Bromwich, D.H., and Serreze, M.C. [2000]. The atmospheric hydrologic cycle over the Arctic basin from reanalyses. Part I: Comparison with observations and previous studies. J. Climate 13, 923–937.2.0.CO;2>CrossRefGoogle Scholar
Cullather, R.I. and Lynch, A.H. [2003]. The annual cycle and interannual variability of atmospheric pressure in the vicinity of the North Pole. Int. J. Climatol. 23, 1161–1183.CrossRefGoogle Scholar
Curry, J. [1983]. On the formation of polar continental air. J. Atmos. Sci. 40, 2278–2292.Google Scholar
Curry, J.A. and Ebert, E.E. [1992]. Annual cycle of radiation fluxes over the Arctic Ocean: Sensitivity to cloud optical properties. J. Climate 5, 1267–1280.2.0.CO;2>CrossRefGoogle Scholar
Curry, J.A., Ebert, E.E., and Herman, G.F. [1988]. Mean and turbulent structure on the summertime Arctic cloudy boundary layer. Quart. J. Roy. Met. Soc. 114, 715–746.CrossRefGoogle Scholar
Curry, J. A., Meyer, F.G., Radke, L.F., Brock, C.A., and Ebert, E.E. [1990]. Occurrence and characteristics of lower tropospheric ice crystal in the Arctic. Int. J. Climatol. 10, 749–764.CrossRefGoogle Scholar
Curry, J. A., Rossow, W.B., Randall, D., and Schramm, J.L. [1996]. Overview of Arctic cloud and radiative characteristics. J. Climate 9, 1731–1764.Google Scholar
Curry, J.A., Schramm, J.L., and Ebert, E.E. [1995]. On the ice albedo climate feedback mechanism. J. Climate 8, 240–247.2.0.CO;2>CrossRefGoogle Scholar
Cushman, S.A. and Wallin, D.O. [2002]. Separating the effects of environmental, spatial and disturbance factors on forest community structure in the Russian Far East. Forest Ecology and Management 168, 201–215.CrossRefGoogle Scholar
Danielsen, E.F. [1968]. Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity. J. Atmos. Sci. 25, 502–518.2.0.CO;2>CrossRefGoogle Scholar
Danilov, I.D. [1989]. Geological and paleoclimatic evolution of the Arctic during Late Cenozoic time. In: Herman, Y. (ed.), The Arctic Seas. Climatology, Oceanography, Geology, and Biology. New York: Van Nostrand, Reinhold, pp. 759–760.Google Scholar
Danilov, I.L. [2000]. Arkticheckii Okean kak faktor globalnykh klimaticheskikh izmenenuu. (The Arctic Ocean as a factor in global climate). In: Global Variations of the Environment (Climate and Water Regime) (in Russia). Moscow: Nauchny Mir, pp. 91–121.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., and Langway, C.C., Jr., [1971]. Climatic record revealed by the Camp Century ice core. In: Tuekian, K.K. (ed.), The Late Cenezoic Glacial Age. New Haven, CT: Yale University Press, pp. 37–56.Google Scholar
Dansgaard, W., White, J.W.C., and Johnsen, S.J. [1989]. The abrupt termination of the Younger Dryas event. Nature 339, 532–534.CrossRefGoogle Scholar
Dawson, H.P. [1886]. Observations of the International Polar Expedition, Fort Rae. London: Eyre and Spottiswoode.Google Scholar
Dee, D. P., Uppala, S.M., Simmons, A.J. et al. [2011]. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc. 137, 553–597, doi: .CrossRefGoogle Scholar
Defant, F. and Taba, H. [1957]. The threefold structure of the atmosphere and the characteristics of the tropopause. Tellus 9, 259–274.CrossRefGoogle Scholar
Delworth, T.L. and Knutson, T.R. [2000]. Simulation of early 20th century global warming. Science 287, 2246–2250.CrossRefGoogle ScholarPubMed
Denton, G.H. and Hughes, T. (eds.) [1981]. The Last Great Ice Sheets. New York: John Wiley and Sons.
Derksen, C. and Brown, R. [2012]. Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys. Res. Lett. 39, L19504, doi:.CrossRefGoogle Scholar
Dery, S.J. and Wood, E.F. [2005]. Decreasing river discharge in northern Canada. Geophys. Res. Lett. 32, L10401, doi: .CrossRefGoogle Scholar
Desborough, C.E. [1999]. Surface energy balance complexity in GCM land surface models. Clim. Dynam. 15, 389–403.CrossRefGoogle Scholar
Deser, C. [2000]. On the teleconnectivity of the “Arctic Oscillation.”Geophys. Rev. Lett. 27, 779–782.CrossRefGoogle Scholar
Deser, C., Magnusdottir, G., Saravanan, R., and Phillips, A. [2004]. The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate 17, 877–889.2.0.CO;2>CrossRefGoogle Scholar
Deser, C., Walsh, J.E., and Timlin, M.S. [2000]. Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate 13, 617–633.2.0.CO;2>CrossRefGoogle Scholar
DeVeer, G. [1876]. The Three Voyages of Willem Barents to the Arctic Regions. London: Hakluyt Society.Google Scholar
de Vernal, A. and Hillaire-Marcel, C. [2000]. Sea ice cover, sea surface salinity and halo-1 thermocline structure of the northwest North Atlantic: modern values versus full glacial conditions. Quatern. Sci. Rev. 19, 65–85.CrossRefGoogle Scholar
Dickson, R.R., Meincke, J., Malmberg, S.A., and Lee, A.J. [1988]. The “Great Salinity Anomaly” in the northern North Atlantic, 1968–1982. Progress in Oceanography 20, 103–151.CrossRefGoogle Scholar
Dickson, R.R., Osborn, T.J., Hurrell, J.W. et al. [2000]. The Arctic Ocean response to the North Atlantic Oscillation. J. Climate 13, 2671–2696.2.0.CO;2>CrossRefGoogle Scholar
Ding, Y-H. [1990]. Build-up, air mass transformation and propagation of the Siberian High and its relation to cold surges in East Asia. Met. Atmos. Phys. 44, 281–292.Google Scholar
Dingman, S.L., Barry, R.G., Weller, G., Benson, C., LeDrew, E., and Goodwin, C. [1980]. Climate, snow cover, microclimate and hydrology. In: Brown, J. et al. (eds.), An Arctic Ecosystem: the Coastal Tundra at Barrow, Alaska. Stroudsburg, PA: Dowden, Hutchinson and Ross, pp. 30–65.Google Scholar
Ditlevsen, P.D., Svensmark, H., and Johnsen, S. [1996]. Contrast in atmospheric and climate dynamics of the last-glacial and Holocene periods. Nature 379, 810–813.CrossRefGoogle Scholar
Dong, X., Baike, Xi, Crosby, K., Long, C.N., Stone, R.S., and Shupe, M.D. [2010]. A 10 year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska. J. Geophys. Res. 115, D17212, doi: .CrossRefGoogle Scholar
Dorsey, H.G. Jr., [1945]. Some meteorological aspects of the Greenland Ice Cap. J. Meteor. 2, 135–142.2.0.CO;2>CrossRefGoogle Scholar
Doyle, J.D. and Shapiro, M.A. [1999]. Flow response to large-scale topography: The Greenland tip jet. Tellus 51, 728–748.CrossRefGoogle Scholar
Duchkov, A.D. and Balobaev, V.T. [2001]. Geothermal studies of permafrost response to global natural changes. In: Paepe, R. and Melnikov, V. (eds.), Permafrost Response on Economic Development, Environmental Security and Natural Resources. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 317–332.CrossRefGoogle Scholar
Dukhovsky, D.S., Johnson, M.A., and Proshutinsky, A. [2004]. Arctic decadal variability: An auto-oscillatory system of heat and fresh water exchange. Geophys. Res. Lett. 31, L03302, doi: .Google Scholar
Dunbar, M. and Dunbar, M.J. [1972]. The history of the North Water. Proc. Roy. Soc. Edinburgh B72, 231–241.Google Scholar
Dyke, A.S., Dredge, L.A., and Vincent, J-S. [1982]. Configuration and dynamics of the Laurentide Ice Sheet during the late Wisconsin maximum. Geogr. Phys. Quaternaire 36, 5–14.CrossRefGoogle Scholar
Dymond, J. and Wales, W. [1770]. Observations on the state of the air, winds, weather, etc. made at Prince of Wales Fort, on the North-West coast of Hudson Bay. Phil. Trans. 60 (Royal Society, London) 137–177.CrossRefGoogle Scholar
Dyurgerov, M.B. and Meier, M.F. [1997]. Year-to-year fluctuation of global mass balance of small glaciers and their contribution to sea level changes. Arctic and Alpine Research 29, 392–402CrossRefGoogle Scholar
Dzerdzeevskii, B.L. [1945]. Tsirkulatsionnye skhemy v troposfere Tsentralnoi Arctike. (Circulation Schemes for the Central Arctic Troposphere) Izdat. Akad. Nauk SSSR (Transl. In Sci, Rep. No.3, Contract AF 19 (122)-128, Meteorology Dept., University of California, Los Angeles).
Eastman, R. and Warren, S.G. [2010a]. Interannual variations of Arctic cloud types in relations to sea ice. J. Climate 23, 4216–4232, doi:.CrossRefGoogle Scholar
Eastman, R. and Warren, S.G. [2010b]. Arctic cloud changes from surface and satellite observations. J. Climate 23, 4233–4241, doi: .CrossRefGoogle Scholar
Edwards, M.E., Mock, C.J., Finney, B.P., Barber, V.A., and Bartlein, P.J. [2001]. Potential analogues for paleoclimatic variations in eastern interior Alaska during the past 14,000 yr: Atmospheric-circulation controls of regional temperature and moisture responses. Quatern. Sci. Rev. 20, 189–202.CrossRefGoogle Scholar
Ehlers, J. and Gibbard, P.L. [2003]. Extent and chronology of glaciations. Quatern. Sci. Rev. 22, 1561–1568.CrossRefGoogle Scholar
Elias, S.A., Short, S.K., Nelson, C.H., and Birks, H.H. [1996]. Life and times of the Bering Land Bridge. Nature 382, 60–63.CrossRefGoogle Scholar
Elk, M.B., Mitchell, K.E., Lin, Y. et al. [2003]. Implementation of NOAH land surface model advances in CEP operational Eta model. J. Geophys. Res. 108, 8851, doi:.Google Scholar
Elliott-Fisk, D.L. [1983]. The stability of the northern Canadian tree limit. Ann. Assoc. Amer. Geogr. 73, 560–576.CrossRefGoogle Scholar
Eltahir, E.A.B. and Bras, R.L. [1996]. Precipitation recycling. Rev. Geophys. 34, 367–378.CrossRefGoogle Scholar
Emanuel, K.A. and Rotunno, R. [1989]. Polar lows as Arctic hurricanes. Tellus 41A, 1–17.CrossRefGoogle Scholar
Emery, W.J., Fowler, C.W., and Maslanik, J.A. [1997]. Satellite-derived maps of Arctic and Antarctic sea ice motion: A new multi-year record of ice transport. Geophys. Res. Lett. 24, 897–900.CrossRefGoogle Scholar
England, J. [1999]. Coalescent Greenland and Innuitian ice during the Last Glacial Maximum: Revising the Quaternary of the Canadian High Arctic. Quatern. Sci. Rev. 18, 421–456.CrossRefGoogle Scholar
England, J., Atkinson, N., Bernardsk, J., Dyke, A.S., Hodgson, D.A. and Cofaigh, C.O. [2006]. The Innuitian Ice Sheet: Configuration, dynamics and chronology. Quatern. Sci. Rev. 25, 689–703.CrossRefGoogle Scholar
European Project for Ice Coring in Antarctica (EPICA) Community Members [2004]. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628.CrossRefGoogle Scholar
Ettema, J., van den Broeke, M.R., van Meijgaard, E. et al. [2009]. Higher surface mass balance of the Greenland Ice Sheet revealed by high-resolution climate modeling. Geophys. Res. Lett. 36, L12501, doi:.CrossRefGoogle Scholar
Ezer, T., Mellor, G.L., and Greatbatch, R.G. [1995]. On the interpentadal variability of the North Atlantic Ocean: Model simulated changes in transport, meridional heat flux, and coastal sea level between 1955–1959 and 1970–1974. J. Geophys. Res. 100, 10559–10566.CrossRefGoogle Scholar
Fanning, A.F. and Weaver, A.J. [1997]. Temporal-geographical meltwater influences on the North Atlantic conveyor: implications for the Younger Dryas event. Paleoceanography 12, 307–320.CrossRefGoogle Scholar
Farmer, G.L., Barber, D.C., and Andrews, J.T. [2003]. Provenance of late Quaternary ice proximal sediments in the North Atlantic: Nd, Sr and Pd isotopic evidence. Earth Planet. Sci. Lett. 209, 227–243.CrossRefGoogle Scholar
Field, W.O. (ed.) [1975]. Mountain Glaciers of the Northern Hemisphere (2 Vols.). Hanover, NH: U.S. Army CRREL.
Fischer, H., Werner, M., Wagenbach, D. et al. [1998]. Little Ice Age clearly recorded in northern Greenland ice cores. Geophys. Res. Lett. 25, 1749–1752.CrossRefGoogle Scholar
Fisher, R.H. [1984]. The early cartography of the Bering Strait region. Arctic 37, 574–589.CrossRefGoogle Scholar
Fisheries and Environment Canada [1978]. Hydrological Atlas of Canada. Ottawa, Canada: Fisheries and Environment Canada, Minister of Supply and Services.Google Scholar
Flato, G. M. and Hibler, W.D. [1992]. Modeling pack ice as a cavitating fluid. J. Phys. Oceanogr. 22, 626–651.2.0.CO;2>CrossRefGoogle Scholar
Fleming, G. H. and Semtner, A.J. Jr. [1991]. A numerical study of interannual forcing on Arctic ice. J. Geophys. Res. 96(C3), 4589–4603.CrossRefGoogle Scholar
Fleming, J.A. (ed.) [1907]. The Ziegler Polar Expedition 1903–1905: Scientific Results Obtained Under the Direction of William J. Peters. Washington, DC: National Geographic Society (Section C, pp. 369–487).
Flint, R.F. [1943]. Growth and decay of the North American Ice Sheet during the Wisconsin age. Bull. Amer. Geol. Soc. 54, 325–362.CrossRefGoogle Scholar
Fluckinger, J., Knutti, R., and White, J.W.C. [2006]. Oceanic proceses as potential trigger and amplifying mechanisms for Heinrich events. Peleooceanography 21, PA2014, doi:.Google Scholar
Foley, J.A., Kutzbach, J.E., Coe, M.T., and Levis, S. [1994]. Feedbacks between climate and boreal forests during the Holocene Epoch. Nature 371, 52–54.CrossRefGoogle Scholar
Francis, J.A., Chan, W-H., Leathers, D.J., Miller, J.R., and Veron, D.E. [2009]. Winter Northern Hemisphere weather patterns remember summer. Geophys. Res. Lett. 36, L07503, doi:.CrossRefGoogle Scholar
Francis, J.A. and Hunter, E. [2006]. New insight into the disapearing Arctic sea ice. Eos Trans. Amer. Geophys. Union 87, 509–524.CrossRefGoogle Scholar
Francis, J.A. and Vavrus, S.J. [2012]. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 39, L06801, doi:.CrossRefGoogle Scholar
Franklin, J. [1828]. Narrative of a Second Expedition to the Shores of the Polar Sea in the Years 1825, 1826 and 1827. London: John Murray (reprinted Rutland, Vermont, 1971).Google Scholar
French, H.M. [2007]. The Periglacial Environment, 3rd edition. New York: J. Wiley.CrossRefGoogle Scholar
Frey, K.E., Perovich, D.K., and Light, B. [2011]. The spatial distribution of solar radiation under a melting Arctic sea ice cover. Geophys. Res. Lett. 38, L22501, doi:.CrossRefGoogle Scholar
Fyfe, J.C. [2003]. Separating extratropical zonal wind variability and mean change. J. Climate 16, 863–874.2.0.CO;2>CrossRefGoogle Scholar
Gadbois, P. and Laverdiere, C. [1954]. Esquisse geographique de la region de Floeberg Beach, nord de l’isle Ellesmere. Geogr. Bull. 6, 17–44.Google Scholar
Gaigerov, S.S. [1967]. Aerology of the Polar Regions (Moscow, 1964). Jerusalem: Israel Program of Scientific Translations.Google Scholar
Gakkel, Y.Y. and Chernenko, M.B. [1959]. Sovetskoye Arkitchekoye Moreplavaniye 1917–1932 gg. Istoriya Otkrytiya I. Osvoyeniya Severnogo Morskogo Puti, III. (Soviet Arctic Navigation 1917–1932. History of the Discovery and Exploitation of the Northern Sea Route, Vol. 3). Leningrad: Morsko Transport.Google Scholar
Galloway, J.L. [1958]. The three-front model: Its philosophy, nature, construction and use. Weather 13, 395–403.CrossRefGoogle Scholar
Ganopolski, A. and Rahmsdorf, S. [2001]. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158.CrossRefGoogle Scholar
Garrett, T.J. and Verzella, L.L. [2008]. Looking back: An evolving history of Arctic aerosols. Bull. Amer. Meteorol. Soc. 89, 299–302, doi:.CrossRefGoogle Scholar
Gavrilov, A.V. [2001]. Geocryological mapping of Arctic shelves. In: Paepe, R. and Melnikov, V. (eds.), Permafrost Response on Economic Development, Environmental Security and Natural Resources. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 69–86.CrossRefGoogle Scholar
Gerrard, A.J., Kane, T.L., Thayer, J.P., Duck, T.J., Whiteway, J.A., and Fielder, J. [2002]. Synoptic scale study of the Arctic polar vortex’s influence on the middle atmosphere. 1. Observations. J. Geophys. Res. 107(D16), doi:.CrossRefGoogle Scholar
Ghil, M. and Malanotte-Rizzoli, P. [1991]. Data assimilation in meteorology and oceanography. Adv. Geophys. 33, 141–266.CrossRefGoogle Scholar
Glazovsky, A.F. 2003. Glacier changes in the Russian Arctic. In: Papers and Recommendations: Snow Watch 2002 Workshop and Assessing Global Glacier Recession. Glaciol. Data Report GD-32. NSIDC/WDC for Glaciology, Boulder, pp. 78–82.
Golubchikov, Y.N. [1996]. Geografiya Gornykh i Polyarnikh Stran. (The Geography of Mountain and Polar Lands). Moscow: Moscow University Press.Google Scholar
Goodrich, L.E. [1982]. Efficient numerical technique for one-dimensional thermal problems with phase change. Int. J. of Heat and Mass Transfer 21, 615–621.CrossRefGoogle Scholar
Govorukha, L.S. [1988]. Sovremennoe Nazemnoe oledenenie Sovyetskoi Arktiki. (Modern Terrestrial Glaciation of the Soviet Arctic). Leningrad: Gidrometeoizdat.Google Scholar
Gow, A.J. and Tucker, W.B. [1987]. Physical properties of sea ice discharge from Fram Strait. Science 236, 236–439.CrossRefGoogle Scholar
Greatbatch, R.J., Fanning, A.F., Goulding, A.D., and Levitus, S. [1991]. A diagnosis of interpentadal circulation changes in the North Atlantic. J. Geophys. Res. 96, 22009–22023.CrossRefGoogle Scholar
Greely, A.W. [1896]. Three Years of Arctic Service. An Account of the Lady Franklin Bay Expedition of 1881–84 and the Attainment of the Farthest North vols. 1 and 2. New York: Charles Scribner’s Sons.Google Scholar
Groisman, P.Y., Koknaeva, V.V., Belokrylova, T.A., and Karl, T.R. [1991]. Overcoming biases of precipitation: A history of the USSR experience. Bull. Amer. Meteorol. Soc. 72, 1725–1733.2.0.CO;2>CrossRefGoogle Scholar
Grønas, S. and Kvamstø, N.G. [1995]. Numerical simulations of the synoptic conditions and development of Arctic outbreak polar lows. Tellus 47A, 797–814.CrossRefGoogle Scholar
Grootes, P.M. and Stuiver, M. [1997]. Oxygen 18/16 variability in Greenland snow and ice with 103-to-105 year time resolution. J. Geophys. Res. 102, 26455–26470.CrossRefGoogle Scholar
Grossvald, M.G. [1980]. Late Wiechselian Ice Sheet of northern Eurasia. Quatern. Res. 13, 1–32.CrossRefGoogle Scholar
Grossvald, M.G. [1999]. Evraziiskie Gidrosvernye Katastrofy I Oledenenie Arktiki (Eurasian Hydrospheric Catastrophes and the Glaciation of the Arctic). Moscow: Nauchnu Mir.Google Scholar
Grossvald, M.G. and Hughes, T.J. [1999]. The case for an ice shelf in the Pleistocene Arctic Ocean. Polar Geog. 23, 23–54.CrossRefGoogle Scholar
Grove, J.M. [2004]. The Little Ice Ages: Ancient and Modern. 2nd Edition. London/New York: Routledge.Google Scholar
Gyakum, J.R. [2000]. Moisture transports to Arctic drainage basins relating to significant precipitation events and cyclogenesis. In: Jones, E.P., Lemke, P., Prowse, T.D., and Wadhams, P. (eds.), The Freshwater Budget of the Arctic Ocean. NATO Science Series 2. Environmental Security – Vol. 70. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 1978–2008.Google Scholar
Hagglund, M.G. and Thompson, H.A. [1964]. A Study of Sub-zero Canadian Temperatures. Memoir No. 16, Meteorological Branch, Department of Transport, Canada.Google Scholar
Hahn, C.J., Warren, S.G., and London, J. [1995]. The effect of moonlight on observations of cloud cover at night and application to cloud climatology. J. Climate 8, 1429–1446.2.0.CO;2>CrossRefGoogle Scholar
Häkkinen, S. [1993]. An Arctic source for the Great Salinity Anomaly: A simulation of the Arctic ice-ocean system for 1955–1975. J. Geophys. Res. 98(C9), 16397–16410.CrossRefGoogle Scholar
Häkkinen, S. [1999]. A simulation of thermohaline effects of a Great Salinity Anomaly. J. Climate 12, 1781–1795.2.0.CO;2>CrossRefGoogle Scholar
Hansen, J. and Nazarenko, L. [2003]. Soot climate forcing via snow and ice albedo. Proc. Nat. Acad. Sci., .
Hammer, C., Mayewski, P. A., Peel, D., and Stuiver, M. [1997]. Preface. Greenland Summit ice cores. Greenland Ice Sheet Project 2/ Greenland Ice Core Project. J. Geophys. Res. 102 (C12), 26315–26316.CrossRefGoogle Scholar
Hare, F.K. [1958]. Weather and Climate. In: Kimble, G.H. and Good, D. (eds.), Geography of the Northlands. New York: The American Geographical Society and John Wiley and Sons, Inc., pp. 58–83.Google Scholar
Hare, F.K. [1960a]. The disturbed circulation of the Arctic stratosphere. J. Meteor. 17, 36–51.2.0.CO;2>CrossRefGoogle Scholar
Hare, F.K. [1960b]. The summer circulation of the Arctic stratosphere below 30 km. Quart. J. Roy. Met. Soc. 86, 127–146.CrossRefGoogle Scholar
Hare, F.K. [1961]. The Circulation of the Stratosphere. Publication in Meteorology No. 43. Montreal, Canada: Arctic Meteorology Research Group, McGill University.Google Scholar
Hare, F.K. [1968]. The Arctic. Quart. J. Roy. Met. Soc. 94, 439–459.CrossRefGoogle Scholar
Hare, F.K. and Orvig, S. [1958]. The Arctic Circulation: A Preliminary View. Arctic Meteorology Research Group, Publication in Meteorology, No. 12. Montreal, Canada: McGill University.Google Scholar
Hare, F.K. and Ritchie, J.C. [1972]. The boreal microclimates. Geog. Rev. 62, 333–365.CrossRefGoogle Scholar
Hare, S.R. and Mantua, N.J. [2000]. Empirical evidence for North Pacific regime shifts in 1979 and 1989. Progress in Oceanography 47, 103–145.CrossRefGoogle Scholar
Harris, J.M. and Kahl, J.D. [1994]. An analysis of ten-day isentropic flow patterns for Barrow, Alaska. J. Geophys. Res. 99, 25845–25856.CrossRefGoogle Scholar
Harris, S.A. [2001]. Sequence of glaciations and permafrost events. In: Paepe, R. and Melnikov, V. (eds.) Permafrost Response on Economic Development, Environmental Security and Natural Resources. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 227–252.CrossRefGoogle Scholar
Hartmann, B.H. and Wendler, G. [2003]. The significance of the 1976 Pacific climate shift on the climatology of Alaska. J. Climate 18, 4824–4839.CrossRefGoogle Scholar
Hartmann, D.L., Wallace, J.M., Limpasuvan, V., Thompson, D.W.J., and Holton, J.R. [2000]. Can ozone depletion and global warming interact to produce rapid climate change?Proc. Nat. Acad. Sci. 97, 1412–1417.CrossRefGoogle ScholarPubMed
Hastings, A.D. Jr. [1961]. Atlas of the Arctic Environment. Natick, MA: U.S. Army Rep. R-33, HQ Quartermaster Res. Eng. Command.Google Scholar
Hattersley-Smith, G. [1974]. North of Latitude Eighty. The Defense Research Board in Ellesmere Island. Ottawa, Canada: Defense Research Board.Google Scholar
Hattersley-Smith, G., Crary, A.P., and Christie, R.L. [1955]. Northern Ellesmere Island, 1953 and 1954. Arctic 8, 2–36.CrossRefGoogle Scholar
Hayes, J.D., Imbrie, J., and Shackleton, N.J. [1976]. Variations in the earth’s orbit: Pacemaker of the ice ages. Science 194, 1121–1132.CrossRefGoogle Scholar
Hebbeln, D., Dokken, T., Andersen, E.S., Hald, M., and Elverhoi, A. [1994]. Moisture supply for northern ice–sheet growth during the Last Glacial Maximum. Nature 370, 357–360.CrossRefGoogle Scholar
Hebbeln, D., Heinrich, R., and Baumann, K.H. [1998]. Paleoceanography of the last interglacial/glacial cycle in the polar North Atlantic. Quatern. Sci. Rev. 17, 125–153.CrossRefGoogle Scholar
Heinemann, G. and Klein, T. [2002]. Modeling and observations of the katabatic flow dynamics over Greenland. Tellus 54A, 542–554.CrossRefGoogle Scholar
Heinrich, H. [1988]. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quatern. Res. 29, 142–152.CrossRefGoogle Scholar
Herber, A., Thomason, L.W., Gernandt, H. et al. [2002]. Continuous day and night aerosol optical depth observations In the Arctic between 1991 and 1999. J. Geophys. Res. 107(D10), doi: .CrossRefGoogle Scholar
Herman, G. and Goody, R. [1976]. Formation and persistence of summertime Arctic stratus clouds. J. Atmos. Sci. 33, 1537–1553.2.0.CO;2>CrossRefGoogle Scholar
Herman, G.F. and Curry, J.A. [1984]. Observational and theoretical studies of solar radiation in Arctic stratus clouds. J. Climate Appl. Meteor. 23, 5–24.Google Scholar
Herman, Y. [1983]. Arctic Ocean paleoceanography in late Neogene time and its relationship to global climate. Oceanology 23, 81–87.Google Scholar
Herschel, J.F.W. (ed.) [1851]. Admiralty Manual of Scientific Enquiry: Prepared for the Use of Officers in Her Majesty’s Navy; and Travellers in General. London: 2nd edition (reprinted Dawson, Folkestone, 1974).
Hewson, T.D. [1998]. Objective fronts. Meteorological Applications 5, 37–63.CrossRefGoogle Scholar
Hibler, W.D. [1979]. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr. 9, 815–846.2.0.CO;2>CrossRefGoogle Scholar
Hibler, W.D. [1980]. Modeling a variable thickness sea ice cover. Mon. Wea. Rev. 108, 1943–1973.2.0.CO;2>CrossRefGoogle Scholar
Hibler, W.D. [1986]. Ice dynamics. In: N. Untersteiner (ed.), The Geophysics of Sea Ice, NATO ASI Ser., Ser. B Phys., vol. 146. New York: Plenum Press, pp. 577–640.CrossRefGoogle Scholar
Hibler, W.D. and Bryan, F. [1987]. A diagnostic ice-ocean model. J. Phys. Oceanogr. 17, 987–1015.2.0.CO;2>CrossRefGoogle Scholar
Hibler, W.D., Heil, P., and Lytle, V.I. [1998]. On simulating high-frequency variability in Antarctic sea-ice dynamics models. Ann. Glaciol. 27, 443–448.CrossRefGoogle Scholar
Hibler, W.D. and Schulson, E.M. [2000]. On modeling the anisotropic failure and flow of flawed sea ice. J. Geophys. Res. 105(C7), 17105–17120.CrossRefGoogle Scholar
Highwood, E.J., Hoskins, B.J., and Berrisford, P. [2000]. Properties of the Arctic tropopause. Quart. J. Roy. Met. Soc. 226, 1515–1532.CrossRefGoogle Scholar
Hinkel, K.M., Nelson, F.E., Klene, A.E., and Bett, J.H. [2003]. The urban heat island in winter at Barrow, Alaska. Int. J. Climatol. 23, 1889–1905.CrossRefGoogle Scholar
Hinzman, L.D., Kane, D.L., Bensen, C.S., and Everett, K.R. [1996]. Energy balance and hydrological processes in an Arctic watershed. Ecological Studies 120, 131–154.CrossRefGoogle Scholar
Hobbs, W.H. [1910]. Characteristics of the inland ice of the Arctic regions. Amer. Phil. Soc. 49, 57–129.Google Scholar
Hobbs, W.H. [1926]. The Glacial Anticyclones, the Poles for the Atmospheric Circulation. New York: MacMillan.Google Scholar
Hobbs, W.H. [1945]. The Greenland glacial anticyclone. J. Meteor. 2, 143–153.2.0.CO;2>CrossRefGoogle Scholar
Hobbs, W.H. [1948]. The climate of the Arctic as viewed by explorer and meteorologist. Science 108, 193–201.CrossRefGoogle ScholarPubMed
Hoerling, M.P., Hurrell, J.W., and Xu, T. [2001]. Tropical origins for recent North Atlantic climate change. Science 292, 90–92.CrossRefGoogle ScholarPubMed
Hoerling, M.P., Hurrell, J.W., Xu, T., Bates, G.T., and Phillips, A. [2004]. Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Clim. Dynam. 23, 395–405, doi: .CrossRefGoogle Scholar
Hoinka, K.P. [1998]. Statistics of the global tropopause pressure. Mon. Wea. Rev. 126, 3303–3325.2.0.CO;2>CrossRefGoogle Scholar
Holland, M.M. and Bitz, C.M. [2003]. Polar amplification of climate change in coupled models. Clim. Dynam. 21, 221–232.CrossRefGoogle Scholar
Holland, M.M., Bitz, C.M., Eby, M., and Weaver, A.J. [2001]. The role of ice-ocean interactions in the variability of the North Atlantic thermohaline circulation. J. Climate 14, 656–675.2.0.CO;2>CrossRefGoogle Scholar
Holloway, G. and Sou, T. [2002]. Has Arctic sea ice rapidly thinned?J. Climate 15, 1691–1701.2.0.CO;2>CrossRefGoogle Scholar
Holmgren, B. [1971]. Climate and energy exchange on a sub-polar ice cap in summer. Part E. Radiation Climate. Meteorologiska Institutionen, Uppsala Universitet, Meddelande Nr. 111.Google Scholar
Holton, J.R. [1992]. An Introduction to Dynamic Meteorology. Third Edition. San Diego, California: Academic Press.Google Scholar
Hopkins, D.M., Matthews, J.V. Jr., Schweger, C.L., and Young, S.B. [1982]. Paleoecology of Beringia. New York: Academic Press.Google Scholar
Hubberten, H-W. and Romanovskii, N.N. [2001]. Terrestrial and offshore permafrost evolution of the Laptev Sea region during the last Pleistocene-Holocene glacial – eustatic cycle. In: Paepe, R. and Melnikov, V. (eds.), Permafrost Response on Economic Development, Environmental Security and Natural Resources. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 43–60.CrossRefGoogle Scholar
Huffman, G.J., Alder, R.F., Arkin, P.A. et al. [1997]. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Data Set. Bull. Amer. Meteorol. Soc. 78, 5–20.2.0.CO;2>CrossRefGoogle Scholar
Huffman, G.J., Alder, R.F., Morrissey, M.M. et al. [2001]. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorology 2, 36–50.2.0.CO;2>CrossRefGoogle Scholar
Hughes, M.K. and Diaz, H.F. [1994]. Was there a “Medieval Warm Period”?Climatic Change 26, 109–142.CrossRefGoogle Scholar
Hurrell, J.W. [1995]. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 269, 676–679.CrossRefGoogle ScholarPubMed
Hurrell, J.W. [1996]. Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett. 23, 665–668.CrossRefGoogle Scholar
Hurrell, J.W., Hoerling, M.P., Phillips, A., and Xu, T. [2004]. Twentieth century North Atlantic climate change. Part I: Assessing determination. Clim. Dynam. 23, 371–389, doi: .CrossRefGoogle Scholar
Hurrell, J.W., Kushnir, Y., Ottersen, G., and Visbeck, M. [2003]. An overview of the North Atlantic Oscillation. In: The North Atlantic Oscillation: Climate Significance and Environmental Impact. Geophysical Monograph 134, American Geophysical Union, pp. 1–35.CrossRefGoogle Scholar
Hurrell, J.W. and van Loon, H. [1997]. Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change 36, 301–326.CrossRefGoogle Scholar
Huybrechts, P., Kuhn, M., Lambeck, K. et al. [2001]. Changes in Sea Level. In: Climate Change 2001, The Scientific Basis. Cambridge: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, pp. 639–693.Google Scholar
Intrieri, J.M., Fairall, C.W., Shupe, M.D. et al. [2002]. Annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res. 107(C10), doi: .Google Scholar
Intrieri, J.M. and Shupe, M.D. [2004]. Characteristics and radiative effect of diamond dust over the western Arctic Ocean region. J. Climate 17, 2953–2960.2.0.CO;2>CrossRefGoogle Scholar
Ives, J.D. [1957]. Glaciation in the Torngat Mountains, northern Labrador. Arctic 10, 67–87.Google Scholar
Ives, J.D. [1962]. Indications of recent extensive glacierization in north-central Baffin Island. J. Glaciol. 4, 197–205.Google Scholar
Ives, J.D. [1974]. Permafrost. In: Ives, J.D. and Barry, R.G. (eds.), Arctic and Alpine Environments. London: Methuen, pp. 159–194.Google Scholar
Ives, J.D., Andrews, J.T., and Barry, R.G. [1975]. Growth and decay of the Laurentide Ice Sheet and comparisons with Fenno-Scandinavia. Die Naturwissenschaften 62, 118–125.CrossRefGoogle Scholar
Jackson, C.I.J. [1959a]. Operation Hazen: The Meteorology of Lake Hazen, N.W.T., Based on Observations Made During the International Geophysical Year 1957–58. Montreal, Canada: Arctic Meteorology Research Group, McGill University, Publication in Meteorology No. 15–16. McGill University, Montral, Parts I-IV.Google Scholar
Ives, J.D. [1959b]. Coastal and inland weather contrasts in the Canadian Arctic. J. Geophys. Res. 64, 1451–1455.Google Scholar
Jackson, J.M., Carmack, E.C., McLaughlin, F.A., Allen, S.E., and Ingram, R.G. [2010]. Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993–2008. J. Geophys. Res. 115, C05021, doi:.CrossRefGoogle Scholar
Jacobs, J.D., Barry, R.G., and Weaver, R.L. [1975]. Fast ice characteristics with special reference to the eastern Canadian Arctic. Polar Record 17, 521–536.CrossRefGoogle Scholar
Jakobsson, M., Andreassen, K., Bjarnadottir, L.R, et al. [2013]. Arctic Ocean glacial history. Quatern. Sci. Rev. In press.
Jeffries, M.K. [1992]. Arctic ice shelves and ice islands: Origin, growth and disintegration, physical characteristics, structural stratigraphic variability, and dynamics. Rev. Geophys. 30, 245–267.CrossRefGoogle Scholar
Jiang, Y., Dixon, T.H., and Wdowinski, S. [2010]. Accelerating uplift in the North Atlantic region as an indicator of ice loss. Nature Geoscience 3, 404–407, doi:.CrossRefGoogle Scholar
Johnson, G.L., Pogrebisky, J., and Macnab, R. [1994]. Arctic structural evolution: Relationship to Paleoceanography. In: Johannessen, O.M., Muench, R.D., and Overland, J.E. (eds.), The Polar Ocean and their Role in Shaping the Global Environment. Geophys. Monogr. 85. Washington, DC: American Geophysical Union, pp. 285–294.Google Scholar
Jones, P.D. [1987]. The twentieth century Arctic high – fact or fiction?Clim. Dynam. 1, 63–75.CrossRefGoogle Scholar
Kageyama, M., Valdes, P.J., Ramstein, G., Hemitt, C., and Wyputta, U. [1999]. Northern Hemisphere storm tracks in present day and Last Glacial Maximum climate simulations: A comparison of the European PMIP models. J. Climate 12, 742–760.2.0.CO;2>CrossRefGoogle Scholar
Kahl, J.D. [1990]. Characteristics of the low-level temperature inversion along the Alaskan Arctic coast. Int. J. Climatol. 10, 537–548.CrossRefGoogle Scholar
Kalnay, E., Kanamitsu, M., Kistler, R. et al. [1996]. The NCEP/NCAR 40-year re-analysis project. Bull. Amer. Meteorol. Soc. 77, 437–471.2.0.CO;2>CrossRefGoogle Scholar
Kane, D.L., Hinzman, L.D., Bensen, C.S., and Liston, G.E. [1991]. Snow hydrology of a headwater Arctic basin, I. Water Resources Research 27, 1099–1109.CrossRefGoogle Scholar
Kane, D.L., Hinzman, L.D., Woo, M., and Everett, K. [1992]. Arctic Hydrology and Climate Change. In: Arctic Ecosystems in a Changing Climate. San Diego, CA: Academic Press, pp. 35–57.CrossRefGoogle Scholar
Kane, E.K. [1856]. Arctic Explorations: The Second Grinnell Expedition in Search of Sir John Franklin, 1853, ’54, ’55. Vol. 1 and Vol. 2. Philidelphia, PA: Childs and Peterson.CrossRefGoogle Scholar
Kaufman, D.S., Ager, T.A., Anderson, N.J. et al. [2004]. Holocene thermal maximum in the Western Arctic (0–180° W). Quatern. Sci. Rev. 23, 629–660, .Google Scholar
Kaufman, D.S., Schneider, D.P., McKay, N.P. et al. [2009]. Recent warming reverses long-term Arctic cooling. Science 325, 1236–1239, doi: .CrossRefGoogle ScholarPubMed
Kay, J.E. and Gettleman, A. [2009]. Claud influence and response to seasonal Arctic sea ice loss. J. Geophys. Res. 114, D128204, doi: .CrossRefGoogle Scholar
Keegan, T.J. [1958]. Arctic synoptic activity in winter. J. Meteor. 15, 513–521.2.0.CO;2>CrossRefGoogle Scholar
Kellogg, W.W. [1973]. Climatic feedback mechanisms involving the polar regions. In: Weller, G. and Bowling, S.A. (eds.), Climate of the Arctic. Fairbanks, AK: Geophysical Institute, University of Alaska, pp. 111–116.Google Scholar
Kerr, R.A. [2010]. “Arctic Armageddon” needs more science, less hype. Science 329, 620–621.CrossRefGoogle ScholarPubMed
Key, J.R. and Intrieri, J. [2000]. Cloud particle phase determination with AVHRR. J. Appl. Meteor. 36, 1797–1805.CrossRefGoogle Scholar
Kinnard, C., Zdanowicz, , Fisher, D.A., Isaksson, E., de Vernal, A., and Thompson, L.G. [2011]. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479, 509–512, doi: .CrossRefGoogle Scholar
Kirwan, L.P. [1962]. A History of Polar Exploration. London: Penguin Books.Google Scholar
Kistler, R., Kalnay, E., Collins, W. et al. [2001]. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and Documentation. Bull. Amer. Meteorol. Soc. 82, 247–267.2.3.CO;2>CrossRefGoogle Scholar
Kittel, T.G., Steffen, W.L., and Chapin, F.S. [2000]. Global and regional modeling of Arctic-boreal vegetation distribution and its sensitivity to altered forcing. Global Change Biology 6 (Supplement 1), 1–18.CrossRefGoogle Scholar
Klein, T. and Heinemann, G. [2002]. Interaction of katabatic winds and mesocyclones near the eastern coast of Greenland. Meteorological Applications 9, 407–422.CrossRefGoogle Scholar
Kleman, J., Hãtterstrand, C., Borgström, I., and Stroeven, A. [1997]. Fennoscandian paleoglaciology reconstructed using a glacial-geological inversion model. J. Glaciol. 43, 283–299.CrossRefGoogle Scholar
Knight, J.R., Allan, R.J., Folland, C.K., Vellinga, M., and Mann, M.E. [2005]. A signature of persistent natural thermohaline cycles in observed climate. Geophys. Res. Lett. 32, L20708, doi: .CrossRefGoogle Scholar
Kobashi, T., Severinghaus, J.P., Brook, E.J., Barnola, J-M., and Grachev, A.M. [2007]. Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice. Quatern. Sci. Rev. 26, 1212–1222, doi: .CrossRefGoogle Scholar
Koc, N., Jansen, E., and Haflidason, H. [1993]. Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian seas through the last 14ka based on diatoms. Quatern. Sci. Rev. 12, 115–140.CrossRefGoogle Scholar
Koch, D. and Hansen, J. [2005]. Distant origins of Arctic black carbon: A Goddard Institute for Space Sciences Model Experiment, J. Geophys. Res. 110, D04204, doi: .CrossRefGoogle Scholar
Koch, K.R. [1891]. History of the supplementary expedition under K.R. Koch to Labrador. In: von Neumayer, G. (ed.), Die Deutschen Expeditionen und ihre Ergebnisse. Band 1. Geschichtlicher Theil, Berlin: A. Asher, pp. 145–188.Google Scholar
Kodera, K. and Chiba, M. [1995]. Tropospheric circulation changes associated with stratospheric sudden warming: A case study. J. Geophys. Res. 100(D6), 11055–11068.CrossRefGoogle Scholar
Koenig, L.S., Greenaway, K.R., Dunbar, M., and Hattersley-Smith, G. [1952]. Arctic Ice Islands. Arctic 5, 62–102.Google Scholar
Koerner, R.M. [1970]. Weather and ice observations of the British Trans-Arctic Expedition 1968–69. Weather 25, 218–228.CrossRefGoogle Scholar
Koerner, R.M. [1989]. Ice core evidence for extensive melting of the Greenland Ice Sheet in the last interglacial. Science 244, 964–968.CrossRefGoogle ScholarPubMed
Kolfschoten, T. van., Gibbard, P.L. and Knudsen, K-L. [2003]. The Eemian Interglacial: a global perspective. Introduction. Global Planet. Change 36, 17–49.Google Scholar
Konzelmann, T. and Ohmura, A. [1995]. Radiative fluxes and their impact on the energy balance of the Greenland Ice Sheet. J. Glaciol. 41, 490–502.CrossRefGoogle Scholar
Korotkevich, E.S. [1972]. Polarnye pustyni (Polar Deserts). Leningrad: Gidrometeoizdat.Google Scholar
Koryakin, V.S. [1990]. Ledniki Novoi Zemli i klimat. (Glaciers of Novaya Zemlya and climate). Priroda (No. 1), 23–29.Google Scholar
Koster, R.D. and Suarez, M.J. [1992]. Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res. 97(D3), 2697–2715.CrossRefGoogle Scholar
Kotlyakov, V.M. (ed.) [1997]. World Atlas of Snow and Ice Resources. Moscow: Russian Academy of Sciences.
Kovaks, A. and Mellor, M. [1974]. Sea ice morphology and ice as a geological agent in the Southern Beaufort Sea. In: Reed, J.C. and Sater, J.E. (eds.), The Coast and Shelf of the Beaufort Sea. Arlington, Virginia: AINA, pp. 113–124.Google Scholar
Krebs, S.J. and Barry, R.G. [1970]. The Arctic front and the tundra-taiga boundary in Eurasia. Geogr. Rev. 60, 548–554.CrossRefGoogle Scholar
Krenke, A.N. [1961]. The ice dome with firn nourishment in Franz Josef Land (translated in 1997). In: Kotlyakov, V.M. (ed.), 34 Selected Papers on Main Ideas in Soviet Glaciology, 1940s-1980s. Moscow: Institute of Geography, R.A.S., pp. 132–144.Google Scholar
Kreutz, K.J., Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S.I., and Pittalwala, I.I. [1997]. Bipolar changes in atmospheric circulation during the Little Ice Age. Science 277, 1294–1296.CrossRefGoogle Scholar
Kriner, G., Mangerud, J., Jacomsson, M., Crucifix, M., Ritz, C., and Svendsen, S. [2004]. Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes. Nature 427, 429–432.CrossRefGoogle Scholar
Kristjánsson, J.E. and McInnes, H. [1999]. The impact of Greenland on cyclone evolution in the North Atlantic. Quart. J. Roy. Met. Soc. 125, 2819–2834.CrossRefGoogle Scholar
Kukla, G.J., Clement, A.C., Cane, M.A., Gavin, J.E., and Zebiak, S.E. [2002b]. Last Interglacial and early glacial ENSO. Quatern. Res. 58, 27–31.CrossRefGoogle Scholar
Kukla, G.J, Michael, L., Bender, J-L. de Beaulieu et al. [2002a]. Last Interglacial climates. Quatern. Res. 58, 2–13.CrossRefGoogle Scholar
Kurashima, A. [1968]. Studies on the summer and winter monsoons in east Asia based on dynamic concept. Geographical Magazine (Tokyo) 34, 145–236.Google Scholar
Kutzbach, J.E. [1970]. Large-scale features of monthly mean Northern Hemisphere anomaly maps of sea level pressure. Mon. Wea. Rev. 98, 708–716.2.3.CO;2>CrossRefGoogle Scholar
Kwok, R., Cunningham, G.F., and Pang, S.S. [2004]. Fram Strait sea ice outflow. J. Geophys. Res. 109, C01009, doi:.CrossRefGoogle Scholar
Kwok, R. and Rothrock, D.A. [1999]. Variability of Fram Strait ice flux and North Atlantic Oscillation. J. Geophys. Res. 104(C3), 5177–5189.CrossRefGoogle Scholar
Labitzke, K. [1968]. Midwinter warmings in the upper stratosphere in 1966. Quart. J. Roy. Met. Soc. 94, 279–291.CrossRefGoogle Scholar
Labitzke, K. [1981]. Stratospheric-mesospheric midwinter disturbances: A summary of observed characteristics. J. Geophys. Res. 86, 9665–9678.CrossRefGoogle Scholar
Lafleur, P.M. and Rouse, W.R. [1995]. Energy partitioning at treeline forest and tundra sites and its sensitivity to climate change. Atmosphere-Ocean 33, 121–133.CrossRefGoogle Scholar
Lammers, R.B., Shiklomonov, A.I., Vorosmarty, C.J., Fekete, B.M., and Peterson, B.J. [2001]. Assessment of contemporary Arctic river runoff based on observational records. J. Geophys. Res. 106 (D4), 3321–3334.CrossRefGoogle Scholar
Larsen, J.A. [1974]. Ecology of the northern forest border. In: Ives, J.D. and Barry, R.G. (eds.), Arctic and Alpine Environments. London: Methuen, pp. 341–368.Google Scholar
Laursen, V. [1959]. The Second International Polar Year. Annals Int. Geophys. Year (Pergamon) 1, 211–234.Google Scholar
Laursen, V. [1982]. The Second International Polar Year (1932/33). WMO Bull. 31, 214–226.Google Scholar
Lawrence, D.M. and Slater, A.G. [2005]. A projection of near-surface permafrost degradation during the 21st century. Geophys. Res. Lett. 32, L24401, doi:.CrossRefGoogle Scholar
Lazier, J.R.N. [1980]. Oceanographic conditions at weather station Bravo, 1960–1974. Atmosphere-Ocean 18, 18227–18238.Google Scholar
Lean, J. [2009]. Cycles and trends in solar irradiance and climate. Wiley Interdisciplinary Reviews: Climate Change 1, 111–122.Google Scholar
Lean, J., Beer, J., and Bradley, R.S. [1995]. Reconstructions of solar irradiance since 1610: Implications for climate change. Geophys. Res. Lett. 22, 3195–3198.CrossRefGoogle Scholar
Lebedev, V.V. [1938]. Rost l’do v arkticheskikh rekakh I moriakh v zavisimosti ot otritsatel’ nykh temperatur vozdukha. (Growth of ice in Arctic rivers and seas and its dependence on negative air temperature). Problemy Arktiki 5, 9–25.Google Scholar
LeDrew, E.F. [1984]. The role of local heat sources in synoptic activity in the Arctic Basin. Atmosphere-Ocean 22, 309–327.CrossRefGoogle Scholar
LeDrew, E.F. [1988]. Development processes for five depression systems within the Polar Basin. J. Climatol. 8, 125–153.CrossRefGoogle Scholar
LeDrew, E.F. [1989]. Modes of synoptic development within the Polar Basin. Geojournal 18 79–85.CrossRefGoogle Scholar
Legates, D.R. and Willmott, C.J. [1990]. Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol. 10, 111–127.CrossRefGoogle Scholar
Lehman, S.J. and Keigwin, L.D. [1992]. Sudden changes in North Atlantic circulation during the last deglaciation. Nature 356, 757–762.CrossRefGoogle Scholar
Levere, T.H. [1993]. Science and the Canadian Arctic. A Century of Exploration 1818–1918. Cambridge: Cambridge University Press.Google Scholar
Levi, B.G. [1992]. Arctic measurements indicate chilly prospect of ozone depletion. Physics Today 45, 17–19.Google Scholar
L’Heureux, M.L., Kumar, A., Bell, G.D., Halpert, M.S., and Higgins, R.W. [2008]. Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys. Res. Lett. 35, L20701, doi: .CrossRefGoogle Scholar
Liang, X., Lettenmaier, D.P., Wood, E.F., and Burges, S.J. [1994]. A simple hydrologically based model of land surface water and energy fluxes for GSMs. J. Geophys. Res. 99(D7), 14415–14428.CrossRefGoogle Scholar
Limpasuvan, V., Thompson, D.W.J., and Hartmann, D.L. [2004]. On the lifecycle of Northern Hemisphere sudden stratospheric warming. J. Climate 17, 2584–2596.2.0.CO;2>CrossRefGoogle Scholar
Lindstrom, D.R. and MacAyeal, D.R. [1986]. Paleoclimatic constraints on the maintenance of possible ice-shelf cover in the Norwegian and Greenland seas. Paleoceanography 1, 313–337.CrossRefGoogle Scholar
Liu, J., Song, M., Hortin, R.M., and Hu, Y. [2013]. Reducing spread in climate model projections of a Septmber ice-free Arctic. Proc. Nat. Acad. Sci., .
Loewe, F. [1936]. The Greenland Ice Cap as seen by a meteorologist. Quart. J. Roy. Met. Soc. 62, 359–377.CrossRefGoogle Scholar
Loewe, F. [1963]. On the radiation economy. Particularly on ice and snow-covered regions. Beiträge F. Geophysik 72, 371–376.Google Scholar
Lorenz, E.N. [1951]. Seasonal and irregular variations of the northern hemisphere sea-level pressure profile. J. Meteor. 8, 52–59.2.0.CO;2>CrossRefGoogle Scholar
Lotz, J.R. and Sagar, R.B. [1963]. Northern Ellesmere Island – an Arctic desert. Geogr. Annal. A44, 366–377.Google Scholar
Lunardini, V. J. [1993]. Permafrost formation time. In: Permafrost, Sixth International Conference Proceedings, Vol. 1. South China University of Technology Press, pp. 420–425.Google Scholar
Lydolph, P.E. [1977]. World Survey of Climatology, Vol. 7, Climates of the Soviet Union (Landsberg, H.E., ed. in chief). Amsterdam: Elsevier.Google Scholar
Lynch, A.H., Bonan, G.B., ChapinIII, F.S., and Wu, W. [1999a]. Impact of tundra ecosystems on the surface energy budget and climate of Alaska. J. Geophys. Res. 106(D6), 6647–6660.CrossRefGoogle Scholar
Lynch, A.H., Chapin, F.S., Hinzman, L.D. et al. [1999b]. Surface energy balance on the Arctic tundra: Measurements and models. J. Climate 12, 2585–2606.2.0.CO;2>CrossRefGoogle Scholar
Lynch, A.H., Chapman, W.L., Walsh, J.E., and Weller, G. [1995]. Development of a regional climate model of the western Arctic. J. Climate 8, 1555–1570.2.0.CO;2>CrossRefGoogle Scholar
Lynch, A.H., Maslanik, J.A. and Wu, W. [2001a]. Mechanisms in the development of anomalous sea ice extent in the western Arctic: A case study. J. Geophys. Res. 106(D22), 28097–28105.CrossRefGoogle Scholar
Lynch, A.H., Slater, A.G., and Serreze, M. [2001b]. The Alaskan frontal zone: Forcing by orography, coastal contrast and the boreal forest. J. Climate 14, 4351–4362.2.0.CO;2>CrossRefGoogle Scholar
MacAyeal, D.R. [1993]. Binge/purge oscillation of the Laurentide Ice Sheet as a cause of the North Atlantic Heinrich events. Paleoceanography 8, 775–784.CrossRefGoogle Scholar
MacDougall, A.H., Avis, C.A., and Weaver, A.J. [2012]. Significant contribution to climate warming from the permafrost carbon feedback. Nature Geoscience 5, 719–721, doi: .CrossRefGoogle Scholar
Magee, N., Curtes, J., and Wendler, G. [1999]. The urban heat island effect at Fairbanks, Alaska. Theoretical and Applied Climatology 64, 39–47.CrossRefGoogle Scholar
Mahoney, , Eicken, H., Gaylord, A.G., and Shapiro, L. [2007]. Alaska landfast sea ice: Links with bathymetry and atmospheric circulation. J. Geophys. Res. 112, C02001, doi: .CrossRefGoogle Scholar
Mhover, Z.M. [1983]. Klimatologiya Tropopauzy (Climatology of the Tropopause). Leningrad: Gidrometeoizdat.Google Scholar
Makshtas, A.P. [1984]. The Heat Budget of Arctic Ice in Winter (in Russian). St. Petersburg, Russia: Gidrometeoizdat (English translation, E. L Andreas, International Glaciological Society, Cambridge, England, 1991).Google Scholar
Manabe, S. [1969]. Climate and the ocean circulation. 1. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Wea. Rev. 97, 739–774.2.3.CO;2>CrossRefGoogle Scholar
Manabe, S. and Stouffer, R.J. [1999]. The role of thermohaline circulation in climate. Tellus 51A-B, 91–109.Google Scholar
Manney, G.L., Santee, M.L., Rex, M. et al. [2011]. Unprecedented Arctic ozone loss in 2011. Nature 478, 469–475, doi:.CrossRefGoogle ScholarPubMed
Mansir, A.R. [1989]. Quest for the Northeast Passage. Montrose, CA: Kittiwake Publ.Google Scholar
Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., and Francis, R.C. [1997]. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteorol. Soc. 78, 1069–1079.2.0.CO;2>CrossRefGoogle Scholar
Marcott, S.A., Clark, P.U., Padman, L. et al. [2011]. Ice shelf collapse from subsurface warming as a trigger for Henrich events. Proc. Nat. Acad. Sci., .
Marincovitch, L. Jr. and Gladenkov, A. Yu. [1999]. Evidence for an early opening of the Bering Strait. Nature 397, 149–151.CrossRefGoogle Scholar
Marshall, S.J., Tarasov, I., Clarke, G.K.C., and Peltier, W.R. [2000]. Glaciological reconstruction of the Laurentide Ice Sheet: physical processes and modeling challenges. Can. J. Earth Sci. 37, 769–793.CrossRefGoogle Scholar
Martin, C. [1988]. William Scoresby Jr. (1789–1857) and the Open Polar Sea – myth and reality. Arctic 41, 39–47.CrossRefGoogle Scholar
Martinson, D.G., Pisias, N.G., Hayes, J.D., Imbrie, J., Moore, T.C., and Shackleton, N.J. [1987]. Age dating and the orbital theory of the ice ages: development of a high-resolution 0–300,000 year chronostratigraphy. Quatern. Res. 27, 1–29.CrossRefGoogle Scholar
Maslanik, J.A., Fowler, C., Key, J., Scambos, T., Hutchinson, T., and Emery, W. [1997]. AVHRR-based Polar Pathfinder products for modeling applications. Ann. Glaciol. 25, 388–392.CrossRefGoogle Scholar
Maslanik, J.A., and Maybee, H. [1994]. Assimilating remotely-sensed data into a dynamic-thermodynamic sea ice model. In: Proc. International Geosci. Remote Sens. Symp., Pasadena, CA, pp. 1306–1308.Google Scholar
Maslanik, J.A., Serreze, M.C., and Agnew, T. [1999]. On the record reduction in 1998 western Arctic sea-ice cover. Geophys. Res. Lett. 26, 1905–1908.CrossRefGoogle Scholar
Maslowski, W., Marble, D.C., Walczowski, W., and Semtner, A.J. [2001]. On large-scale shifts in Arctic Ocean and sea ice conditions. Ann. Glaciol. 33, 545–550.CrossRefGoogle Scholar
Maslowski, W., Newton, B., Schlosser, P., Semtner, A., and Martinson, D. [2000]. Modeling recent climate variability in the Arctic Ocean. Geophys. Res. Lett. 27, 3743–3746.CrossRefGoogle Scholar
Matthes, F.E. [1946]. The glacial anticyclone theory examined in light of recent meteorological data from Greenland. Part I. Trans. Amer. Geophys. Union 27, 324–341.CrossRefGoogle Scholar
Matthes, F.E. and Belmont, A.D. [1946]. The glacial anticyclone theory examined in light of recent meteorological data from Greenland. Part II. Trans. Amer. Geophys. Union 27, 324–341.CrossRefGoogle Scholar
Mauritzen, C., Sedlar, J., Tjernstrom, M. et al. [2011]. An Arctic CNN-limited cloud aerosol regime. Atmos. Chem. Phys. 11, 165–173, doi:.CrossRefGoogle Scholar
Mayewski, P.A., Meeker, L.D., Whitlow, S. et al. [1993]. The atmosphere during the Younger Dryas. Science 261, 195–198.CrossRefGoogle ScholarPubMed
Maykut, G.A. [1978]. Energy exchange over young sea ice in the central Arctic. J. Geophys. Res. 83(C7), 3646–3658.CrossRefGoogle Scholar
Maykut, G.A. [1982]. Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res. 87, 7971–7984.CrossRefGoogle Scholar
Maykut, G.A. [1985]. An Introduction to Ice in the Polar Oceans. Seattle, WA: Applied Physics Laboratory, University of Washington, APL-UW 8510, September 1985.Google Scholar
Maykut, G.A. [1986]. The surface heat and mass balance. In: Untersteiner, N. (ed.), The Geophysics of Sea Ice. NATO ASI Ser., Ser. B Phys., Vol. 146. New York: Plenum, pp. 395–464.CrossRefGoogle Scholar
Maykut, G.A. and Untersteiner, N. [1971]. Some results from a time dependent, thermodynamic model of sea ice. J. Geophys. Res. 76, 1550–1575.CrossRefGoogle Scholar
McClelland, J.W., Dery, S.J., Peterson, B.J., Holmes, R.M., and Wood, E.F. [2006]. A pan-arctic evaluation of river discharge during the latter half on the 20th century. Geophys. Res. Lett. 33, L06715, doi:.CrossRefGoogle Scholar
McClelland, J.W., Holmes, R.M., Peterson, B.J., and Stieglitz, M. [2004]. Increasing river discharge in the Eurasian Arctic: consideration of dams, permafrost thaw, and fires as potential agents of change. J. Geophys. Res. 109, D18102, doi:.Google Scholar
McClintock, F.L. [1862]. Meteorological Observations in the Arctic Seas by Sir Francis Leopold McClintock, R.N., Made on Board the Arctic Searching Yacht “Fox” in Baffin Bay and Prince Regent’s Inlet in 1857, 1858, and 1859. Reduced and Discussed by Charles A Schott. Smithsonian Contrib. to Knowledge, 13, art. 2.
McConnell, A. [1986]. The scientific life of William Scoresby Jr. with a catalogue of his instruments and apparatus in the Whitby Museum. Annals of Science 43, 257–286.CrossRefGoogle Scholar
McDonald, G. and Gajewski, K [1992]. The northern treeline of Canada. In: Janelle, D.G., (ed.), Geographical Snapshots of North America. New York: Guilford Press, pp. 34–37.Google Scholar
McGuire, A.D., Hayes, D.J., Kicklighter, D.W. et al. [2010]. An analysis of the carbon balance of the Arctic Basin from 1997 to 2006. Tellus 62B, 455–474, doi:.CrossRefGoogle Scholar
McIntyre, D.P. [1958]. The Canadian three-front, three jetstream model. Geophysica (Helsinki) 6, 309–324.Google Scholar
McKenna, M.C. [1980]. Eocene paleolatitude, climate and mammals of Ellesmere Island. Paleogeog., Paleoclimatol., Paleoecol. 30, 349–362.CrossRefGoogle Scholar
McLaren, A.S. [1989]. The under-ice thickness distribution of the Arctic Basin as recorded in 1958 and 1970. J. Geophys. Res. 94(C4), 4971–4983.CrossRefGoogle Scholar
McPhee, M.G. [1980]. An analysis of pack ice drift in summer. In: Pritchard, R.S. (ed.), Sea Ice Processes and Models. Seattle, WA: University of Washington Press, pp. 339–394.Google Scholar
McPhee, M.G., Stanton, T.P., Morison, J.H., and Martinson, D.G. [1998]. Freshening of the upper ocean in the central Arctic: Is perennial ice disappearing?Geophys. Res. Lett. 25, 1729–1732.CrossRefGoogle Scholar
Meier, W.N. and Maslanik, J.A. [2003]. Effect of environmental conditions on observed, modeled, and assimilated sea ice motion errors. J. Geophys. Res. 108(C5), 3152, doi: .CrossRefGoogle Scholar
Meier, W.N., Maslanik, J.A., and Fowler, C.W. [2000]. Error analysis and assimilation of remotely sensed ice motion within an Arctic sea ice model. J. Geophys. Res., 105(C2), 3339–3356.CrossRefGoogle Scholar
Mekis, E. and Hogg, W.D. [1999]. Rehabilitation and analysis of Canadian daily precipitation time series. Atmosphere-Ocean 37, 53–85.CrossRefGoogle Scholar
Melles, M., Brigham-Grette, J., Minyuk, P.S. et al. [2012]. 2.8 millions years of Arctic climate change from Lake El’gygytgyn, NE Russia. Science 337, 315–320, doi: .CrossRefGoogle Scholar
Mercer, J.H. [1970]. A former ice sheet in the Arctic Ocean. Palaeogeogr., Paleoclimatol., Palaeoecol. 8, 19–27.CrossRefGoogle Scholar
Meteorological Council [1879–1888]. Contributions to our Knowledge of the Meteorology of the Arctic Regions. London: Meteorological Council, Official, No. 34. Her Majesty’s Stationery Office, Part 1, (1879), pp. 1–39. Part 2, (1880), pp. 40–254. Part 3 (1882), pp. 255–414. Part 4 (1885), pp. 413–495. Part 5 (1888), pp. 1–37.Google Scholar
Milankovitch, M. [1941]. Kanon der Erdbestrahlung und seine Abwendung auf das Eiszeitproblem (Canon of Insolation and the Ice-Age Problem), Royal Serbian Academy, Special Publication, Vol. 132, Translation [1969], Israel Program for Scientific Translation, Jerusalem.Google Scholar
Miles, M.W. and Barry, R.G. [1989]. Large-scale characteristics of fractures in multi-year Arctic pack ice. In: Axelsson, K.B.E. and Fransson, L.A. (eds.), Proceedings, 10th International Conference on Port and Ocean Engineering Under Arctic Conditions (POAC 89), Vol 1. Lulea, Sweden: Department of Engineering, Lulea University of Technology, 103–112 pp.Google Scholar
Miller, G.H., Geirsdottir, A., Zhong, Y. et al. [2012]. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 39, L02708, doi:.CrossRefGoogle Scholar
Mirny, J. [1934]. To the North. The Story of Arctic Exploration from Earliest Times to the Present. New York: Viking Press.Google Scholar
Mirrless, S.T.A. [1934]. Meteorological Results of the British Arctic Air Route Expedition, 1930–31. Geophysical Memoirs 7. London: Meteorological Office.Google Scholar
Mitchell, J.M., Jr. [1957]. Visual range in the polar regions with special reference to the Alaskan Arctic. J. Atmos. Terr. Phys. Spec. Suppl., 195–211.Google Scholar
Mohn, H. [1905]. Meteorology, XVII. In: Nansen, F. (ed.), The Norwegian North Polar Expedition, 1893–1896. Scientific Results, Vol. 6. New York: Greenwood Press (reprinted 1969).Google Scholar
Mohn, H. [1907]. Meteorology. In: Report of the Second Norwegian Expedition in the “Fram”1898–1902. Vol. 1 (4). Kristiana: A.W. Brøgger, Videnskabs., pp. 1–399.Google Scholar
Montgomery, M.R. [1952]. Further notes on ice islands in the Canadian Arctic. Arctic 5, 183–187.CrossRefGoogle Scholar
Moore, G.W.K., [2003]. Gale force winds over the Irminger Sea to the east of Cape Farewell, Greenland. Geophys. Res. Lett. 30, 1894, doi:.CrossRefGoogle Scholar
Moore, G.W.K. [2012]. A new look at Greenland flow distortion and its impacts on barrier flow, tip jets and coastal oeanograpy. Geophys. Res. Lett. 39, L22806, doi:.CrossRefGoogle Scholar
Moore, G.W.K. and Pickart, R.S. [2012]. Northern Bering Sea tip jets. Geophys. Res. Lett. 39, L08807, doi:.CrossRefGoogle Scholar
Moritz, R.E. [1979]. Synoptic climatology of the Beaufort Sea coast. Occasional Paper No. 30. Boulder, CO: Institute of Arctic and Alpine Research, University of Colorado.Google Scholar
Moritz, R.E. [1988]. The ice budget of the Greenland Sea. Tech. Rep. APL-UW TR 8812. Seattle, WA: Appl. Phys. Lab., University of Washington.
Mote, T.L. [2007]. Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007. Geophys. Res. Lett. 34, L22507, doi: .CrossRefGoogle Scholar
Mueller, D.R., Vincent, W.F., and Jeffries, M.O. [2003]. Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophys. Res. Lett. 30, doi: .CrossRefGoogle Scholar
Müller, F. and Roskin-Sharlin, N. [1967]. A High Arctic Climate Study on Axel Heiburg Island, Canadian Archipelago, Summer 1961. Part I, General Meteorology. Axel Heiburg Island Reports on Meteorology 3. Montreal, Canada: McGill University.Google Scholar
Murgatroyd, R.J. [1969]. The structure and dynamics of the stratosphere. In: Corby, G. A. (ed.), The Global Circulation of the Atmosphere. London: Royal Meteorological Society, pp. 159–195.Google Scholar
Murton, J.B., Bateman, M.D., Dallimore, S.R., Teller, J.T. and Yang, Z. [2010]. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464, 740–743, doi: .CrossRefGoogle ScholarPubMed
Mynemi, R.B., Keeling, C.D., Tucker, C.J., Asrar, G., and Nemani, R.R. [1997]. Increased plant growth in the northern high latitudes from 1981–1991. Nature 386, 698–702.CrossRefGoogle Scholar
Mysak, L.A. and Huang, F.I. [1992]. A latent- and sensible-heat polynya model for the North Water, northern Baffin Bay. J. Phys. Oceanogr. 22, 596–608.2.0.CO;2>CrossRefGoogle Scholar
Nagurny, A.P. [1998]. Climatic characteristics of the tropopause over the Arctic Basin. Annal. Geophysicae 16, 110–115.CrossRefGoogle Scholar
Nakamura, N. and Oort, A.H. [1988]. Atmospheric heat budgets of the polar regions. J. Geophys. Res. 93(D8), 9510–9524.CrossRefGoogle Scholar
Nansen, F. [1898]. Farthest North. London: George Newnes, vols. 1 and 2.Google Scholar
Nansen, F. [1902]. The Norwegian Polar Expedition, 1893–1896, Scientific Results. Oslo: Jacob Dybwad, 6 vols.Google Scholar
Nemani, R.R., Keeling, C.D., Hashimoto, H. et al. [2003]. Climate-driven increases in global terrestrial net primary production from 1982–1999. Science 300, 1560–1562.CrossRefGoogle Scholar
Nghiem, S.V., Hall, D.K., Mote, T.L. et al. [2012]. The extreme melt across the Greenland Ice Sheet in 2012. Geophys. Res. Lett. 39, L20502, doi:.CrossRefGoogle Scholar
Nichols, H. [1976]. Historical aspects of the Canadian forest tundra-ecotone. Arctic 29, 38–47.CrossRefGoogle Scholar
Nolin, A.W. and Liang, S. [2000]. Progress in bidirectional reflectance modeling and applications for surface particulate media: snow and soils. Remote Sensing Review 18, 307–342.CrossRefGoogle Scholar
North Greenland Eemian Ice Drilling (NEEM) Community Members [2013], Eemian interglacial reconstructed from a Greenland folded ice core, Nature 493, 489–494, doi:.CrossRefGoogle Scholar
NSIDC (National Snow and Ice Data Center) [1996]. Arctic Ocean Snow and Meteorological Observations from the North Pole Drifting Stations: 1937, 1950–1991. Boulder, CO: National Snow and Ice Data Center, CD-ROM.Google Scholar
O’Cofaigh, C., Lemmen, D.S., Evans, D.J.A., and Benarski, J. [1999]. Glacial landform-sediment assemblages in the Canadian High Arctic and their implications for late Quaternary Glaciation. Ann. Glaciol. 28, 195–201.CrossRefGoogle Scholar
Oelke, C., Zhang, T., Serreze, M., and Armstrong, R. [2003]. Regional-scale modeling of soil freeze/thaw over the Arctic drainage basin. J. Geophys. Res. 108(D10), doi:.CrossRefGoogle Scholar
Ogi, M. and Wallace, J.M. [2007]. Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation, Geophys. Res. Lett. 34 L12705, doi: .CrossRefGoogle Scholar
Ogi, M., Yamazaki, K., and Tachibana, Y. [2004]. The summertime annular mode in the Northern Hemisphere and its linkage to the winter mode. J. Geophys. Res. 109, D20114, doi: .CrossRefGoogle Scholar
Ohmura, A. [1984]. Comparative energy balance study for Arctic tundra, sea surface, glaciers and boreal forest. Geojournal 8, 221–228.CrossRefGoogle Scholar
Ohmura, A., Calanca, P., Wild, M., and Anklin, M.A. [1999]. Precipitation, accumulation and mass balance of the Greenland Ice Sheet. Zeitschr. Gletscherk. Glazialgeol. 35, 1–20.Google Scholar
Oke, T.R. [1987]. Boundary Layer Climates. Second Edition. New York: Routledge.Google Scholar
Okhuizen, E. [1995]. The cartography of the Northern Sea Route, 15th–19th centuries. In: Kitagama, H. (ed.), Northern Sea Route; Future and Perspective. (The Proceedings of INSROP Symposium, Tokyo ‘95). Tokyo: Ship and Ocean Foundation, pp. 567–576.Google Scholar
Oleson, K. W., Lawrence, D.M., Bonan, G.B. et al. [2010]. Technical Description of Version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478 +STR. Boulder, CO: National Center for Atmospheric Research.Google Scholar
Oltmans, S.J., Schnell, R.C., Sheridan, P.J. et al. [1989]. Seasonal surface ozone and filterable bromine relationship in the high Arctic. Atmos. Environ. 23 2431–2441.CrossRefGoogle Scholar
Orvig, S. [1954]. Glacial meteorological observations on ice-caps in Baffin Island. Geogr. Annal. 36, 193–318.CrossRefGoogle Scholar
Outten, S.D., Renfrew, I.A., and Petersen, G.N. [2009]. An easterly tip jet off Cape Farewell, Greenland, II: Simulations and dynamics. Quart. J. Roy. Met. Soc. 135, 1934–1949.CrossRefGoogle Scholar
Overland, J.E., Francis, J.A., Hanna, E., and Wang, M. [2012]. The recent shift in early summer atmospheric circulation. Geophys. Res. Lett. 39, L19804, doi:.CrossRefGoogle Scholar
Overland, J.E. and Guest, P.S. [1991]. The snow and air temperature budget over sea ice during winter. J. Geophys. Res. 96(C3), 4651–4662.CrossRefGoogle Scholar
Overland, J.E., McNutt, S.L., Groves, J., Saio, S., Andreas, E.L., Persson, P., and Ola G. [2000]. Regional sensible and radiative heat flux estimates for the winter Arctic during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. J. Geophys. Res. 105(C6), 14093–14102.CrossRefGoogle Scholar
Overland, J.E., Miletta Adams, J., and Bond, N.A. [1997]. Regional variation of winter temperatures in the Arctic. J. Climate 10, 821–837.2.0.CO;2>CrossRefGoogle Scholar
Overland, J.E., Spillane, M.C., Percival, D.B., Wang, M., and Mofjeld, H.O. [2004]. Seasonal and regional variation of pan-Arctic surface air temperature over the instrumental record. J. Climate 15, 3263–3282.2.0.CO;2>CrossRefGoogle Scholar
Overland, J.E. and Turet, P. [1994]. Variability of the atmospheric energy flux across 70°N computed from the GFDL data set. In: Johannessen, O.M., Muench, R.D. and Overland, J.E. (eds.), The Polar Oceans and Their Role in Shaping the Global Environment, The Nansen Centennial Volume. Geophys. Monogr. 85, American Geophysical Union, pp. 313–325.Google Scholar
Overland, J.E., Turet, P., and Oort, A.H. [1996]. Regional variations of moist static energy flux into the Arctic. J. Climate 9, 54–65.2.0.CO;2>CrossRefGoogle Scholar
Overland, J.E. and Wang, M-Y. [2010]. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus 62A, 1–9.Google Scholar
Palmén, E. [1951]. The role of atmospheric disturbances in the general circulation. Quart. J. Roy. Met. Soc. 77, 337–354.CrossRefGoogle Scholar
Palmén, E. and Newton, C.W. [1969]. Atmospheric Circulation Systems. Their Structure and Physical Interpretation. San Diego, CA: Academic Press.Google Scholar
Parish, T.R. and Cassano, J.J. [2003]. Diagnosis of the katabatic wind influence on the wintertime Antarctic surface wind field from numerical simulations. Mon. Wea. Rev. 131, 1128–1139.2.0.CO;2>CrossRefGoogle Scholar
Parkinson, C.L, Comiso, J.O., Zwally, H.J., Cavalieri, D.J., Gloersen, P., and Campbell, W.J. [1987]. Arctic Sea Ice, 1973–1976: Satellite Passive Microwave Observations. Washington, DC: NASA SP-489, NASA Scientific and Technical Information Branch.Google Scholar
Parkinson, C.L. and Washington, W.M. [1979]. A large-scale numerical model of sea ice. J. Geophys. Res. 84(C1), 311–337.CrossRefGoogle Scholar
Parry, W.E. [1821]. Journal of a Voyage for the Discovery of a Northwest Passage from the Atlantic to the Pacific: Performed in the Years 1819–1820, in Her Majesty’s Ships Hecla and Griper, With an Appendix, Containing the Scientific and Other Observations. London: John Murray (reprinted New York, 1968).Google Scholar
Passarge, S. [1920]. Die Grundlagen der Landschaftskunde. Hamburg: L. Friedericken and Company.Google Scholar
Pawson, S. and Kubitz, T. [1996]. Climatology of planetary waves in the northern stratosphere. J. Geophys. Res. 101 (D12), 16987–16996.CrossRefGoogle Scholar
Peltier, W.R. [1994]. Ice age paleotopography. Science 265, 195–201.CrossRefGoogle ScholarPubMed
Thomas, D.R. and Rothrock, D.A. [2004]. Global glacial isostacy and the surface of the Ice Age earth: The ICE-5G(VM2) model and GRACE. Ann. Rev. Earth. Planet. Sci. 32, 111–150.Google Scholar
Penner, C.M. [1955]. A three-front model for synoptic analyses. Quart. J. Roy. Met. Soc. 81, 89–91.CrossRefGoogle Scholar
Perlwitz, J. and Harnik, N. [2003]. Observational evidence of a stratospheric influence on the troposphere by planetary wave refraction. J. Climate 16, 3011–3026.2.0.CO;2>CrossRefGoogle Scholar
Perovich, D.K., Light, B., Eicken, H., Jones, K.F., Runciman, K., and Nghiem, S.V. [2007]. Increasing solar heating of theArctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophys. Res. Lett. 34, L19505, doi:.CrossRefGoogle Scholar
Persson, P., Ola, G., Fairall, C.W., Andreas, E.L., Guest, P.S., and Perovich, D.K. [2002]. Measurements near the Atmospheric Surface Flux group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res. 107(C10), doi: .CrossRefGoogle Scholar
Peterson, B.J., Holmes, R.M., McClelland, J.W. et al. [2002]. Increasing river discharge to the Arctic Ocean. Science 298, 2171–2173.CrossRefGoogle ScholarPubMed
Petit, J.R., Jouzel, J., Raynaud, D. et al. [1999]. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436.CrossRefGoogle Scholar
Pettersen, S. [1950]. Some aspect of the general circulation of the atmosphere. Centenary Proc. of the Royal Meteorological Society, London, 120–155.Google Scholar
Petzold, D.E. [1977]. An estimation technique for snow surface albedo. Climatological Bulletin 26, 1–11.Google Scholar
Pickart, R.S., Spall, M.A., Ribergaard, M.H., Moore, G.W.K., and Miliff, R.F. [2003]. Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature 424, 152–156, doi:.CrossRefGoogle ScholarPubMed
Pielke, R.A. and Vidale, P.L. [1996]. The boreal forest and the polar front. J. Geophys. Res. 100(D12), 25755–25758.CrossRefGoogle Scholar
Polyak, L., Edwards, M.H., Coakley, B.J., and Jaobsson, M. [2001]. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature 410, 453–457.CrossRefGoogle ScholarPubMed
Polyakov, I.V., Alekseev, G.V., Bekryaev, R.V. et al. [2002]. Observationally based assessment of polar amplification of global warming. Geophys. Res. Lett. 29, doi: .CrossRefGoogle Scholar
Polyakov, I.V., Alexeev, V.A., Bhatt, U.S., Polyakova, E.I., and Zhang, X. [2009]. North Atlantic warming: patterns of long-term trend and multidecadal variability. Climate Dynamics 34, 439–457, doi: .CrossRefGoogle Scholar
Polyakov, I.V., Beszczynska, A., Carmack, E.C. et al. [2005]. One more step toward a warmer Arctic. Geophys. Res. Lett. 32, L17605, doi:.CrossRefGoogle Scholar
Polyakov, I.V. and Johnson, M.A. [2000]. Arctic decadal and interdecadal variability. Geophys. Res. Lett. 27, 4097–4100.CrossRefGoogle Scholar
Polyakov, I.V., Timokhov, L.A., Alexeev, V.A. et al. [2010], Arctic Ocean warming contributes to reduced polar ice cap. J. Phys. Oceanogr., 40, 2743–2756, doi: .CrossRefGoogle Scholar
Pomeroy, J.W. and Essery, R.L.H. [1999]. Turbulent fluxes during blowing snow: field tests of model sublimation predictions. Hydrological Processes 13, 2963–2975.3.0.CO;2-9>CrossRefGoogle Scholar
Pomeroy, J.W., Gray, D.M., and Landine, P.G. [1993]. The Prairie Blowing Snow Model: Characteristics, validation, operation. J. Hydrol. 144, 165–192.CrossRefGoogle Scholar
Porter, D.F., Cassano, J.J., Serreze, M.C., and Kindig, D.N. [2010]. New estimates of the large-scale Arctic energy budget. J. Geophys. Res. 115, D08108, doi: .CrossRefGoogle Scholar
Portis, D.H., Walsh, J.E., El Hambly, M., and Lamb, P. [2001]. Seasonality of the North Atlantic Oscillation. J. Climate 14, 2069–2078.2.0.CO;2>CrossRefGoogle Scholar
Post, A. and Mayo, L.R. [1971]. Glacier dammed lakes and outburst floods in Alaska. Hydrological Investigations Atlas HA-455. Washington, DC: U.S. Geological Survey.Google Scholar
Proshutinsky, A., Aksenov, Y., Clement Kinney, J. et al. [2011]. Recent advances in Arctic Ocean studies employing models from the Arctic Ocean Intercomparison Project. Oceanography 24, 102–113, .CrossRefGoogle Scholar
Pryzbylak, R. [2003]. The Climate of the Arctic. Dordrecht, the Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Putnins, P. [1969]. The climate of Greenland. In: Orvig, S. (ed.), Climates of the Polar Regions, World Survey of Climatology, Vol. 14. Amsterdam: H.E. Landsberg, (ed. in chief), Elsevier, pp. 3–128.Google Scholar
Raatz, W.E., Schnell, R.C., Shapiro, M.A., Oltmans, S.J., and Bodhaine, B.A. [1985]. Intrusions of stratospheric air into Alaska’s troposphere. March 1983, Proc. Third Symp. Arctic Air Chemistry, Downsview, 2153–2158.Google Scholar
Radok, U. [1968]. Deposition and erosion of snow by the wind. Res. Rep. 230. Hanover, NH: U.S. Army CRREL.
Rahmsdorf, S. and Alley, R. [2002]. Stochastic resonance in glacier climate. EOS, Transactions, American Geophysical Union, 83, 129, 135.CrossRefGoogle Scholar
Ramanathan, V., Cess, R.D., Harrison, E.F. et al. [1989]. Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science 243, 57–63.CrossRefGoogle ScholarPubMed
Rampal, P., Weiss, J., Dubois, C., and Campin, J-M. [2011]. IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline. J. Geophys. Res. 116, C00D07, doi:.CrossRefGoogle Scholar
Rasmussen, E. [1979]. The polar low as an extratropical CISK disturbance. Quart. J. Roy. Met. Soc. 105, 531–549.CrossRefGoogle Scholar
Rasmussen, E. and Turner, J. [2002]. Polar Lows. Mesoscale Weather Systems in the Polar Regions. Cambridge: Cambridge University Press.Google Scholar
Rawlins, M.S., Serreze, M.C., Schroeder, R., Zhang, X., and McDonald, K.C. [2009]. Diagnosis of the record discharge of Arctic-draining Eurasian river in 2007. Env. Res. Lett. 4, doi:.CrossRefGoogle Scholar
Ray, P.H. [1885]. Report of the International Polar Expedition to Point Barrow, Alaska. Washington, DC: Arctic Publications, U.S. Signals Office, Govt. Printing Office.Google Scholar
Raynaud, D., Barmola, J-M, Chappellaz, J., Blunier, T., Indermuhle, A., and Stauffer, B. [2000]. The ice record of greenhouse gases; a view in the context of future changes. Quatern. Sci. Rev. 19, 9–18.CrossRefGoogle Scholar
Reagan, M.T. and Moridis, G.J. [2009]. Large scale simulation of methane hydrate disassociation along the West Spitzbergen Margin. Geophys. Res. Lett. 36, L23612, doi:.CrossRefGoogle Scholar
Reed, R.J. [1960]. Principal frontal zones of the Northern Hemisphere in winter and summer. Bull. Amer. Meteorol. Soc. 41, 591–598.Google Scholar
Reed, R.J. [1962]. Arctic Forecast Guide. Norfolk, VA: U.S. Navy Weather Research Facility 16–0462–058.Google Scholar
Reed, R.J. and Kunkel, B.A. [1960]. The Arctic circulation in summer. J. Meteorol. 17, 489–506.2.0.CO;2>CrossRefGoogle Scholar
Reiter, E.R. [1975]. The Natural Stratosphere of 1974. CIAP Monograph 1. Washington, DC: Dept. of Transportation DOT-TST-75–51.Google Scholar
Renfrew, I.A. [2003]. Polar Lows. In: Holton, J.R., Curry, J.A. and Pyle, J.A. (eds.), Encyclopedia of Atmospheric Sciences. London and San Diego, CA: Academic Press, pp. 1761–1768.CrossRefGoogle Scholar
Riedlinger, S.H. and Preller, R.H. [1991]. The development of a coupled ice-ocean model for forecasting ice conditions in the Arctic. J. Geophys. Res. 96(C9), 16955–16978.Google Scholar
Rienecker, M.M., Suarez, M.J., Gelaro, R. et al. [2011]. MERRA – NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 3624–3648, doi:.CrossRefGoogle Scholar
Rignot, E., Box, J.E., Burgess, E., and Hanna, E. [2008], Mass balance of the Greenland Ice Sheet from 1958–2007. Geophys. Res. Lett., 35, L20502, doi: .CrossRefGoogle Scholar
Rignot, E. and Kanagaratnam, P. [2006]. Changes in the velocity structure of the Greenland Ice Sheet. Science, 311, 986–990.CrossRefGoogle ScholarPubMed
Rigor, I.G., Colony, R.L., and Martin, S. [2000]. Variations in surface air temperature in the Arctic, 1979–97. J. Climate 13, 896–914.2.0.CO;2>CrossRefGoogle Scholar
Rigor, I.G. and Wallace, J.M. [2004]. Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophy. Res. Lett. 31, L09401, doi:.CrossRefGoogle Scholar
Rigor, I.G., Wallace, J.M., and Colony, R.L. [2002]. Response of sea ice to the Arctic Oscillation. J. Climate 15, 2648–2663.2.0.CO;2>CrossRefGoogle Scholar
Rind, D., Shindell, D., Perlwitz, J. et al. [2004]. The relative importance of solar and anthropogenic forcing of climate change between the Maunder Minimum and the present. J. Climate 17, 906–929.2.0.CO;2>CrossRefGoogle Scholar
Rinke, A., Dethloff, K., Cassano, J. et al. [2005]. Ensemble performance in ARCMIP1 experiments: Spatial patterns and height profiles. Clim. Dynam. 26, doi:.Google Scholar
Rochon, A., de Vernal, A., Sejrup, H.P., and Haflidason, H. [1998]. Palynological evidence of climate and oceanographic changes in the North Sea during the last deglaciation. Quatern. Res. 49, 197–207.CrossRefGoogle Scholar
Rodewell, M.J., Rowell, D.P., and Folland, C.K. [1999]. Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398, 320–323.CrossRefGoogle Scholar
Roe, G.H. and Lindzen, R.S. [2001]. The mutual interaction between continental-scale ice sheets and atmospheric stationary waves. J. Climate 14, 1450–1465.2.0.CO;2>CrossRefGoogle Scholar
Rogers, A.N., Bromwich, D.H., Sinclair, E.N., and Cullather, R.I. [2001]. The atmospheric hydrologic cycle over the Arctic Basin fron reanalyses Part 2. Interannual variability. J. Climate 14, 2414–2429.2.0.CO;2>CrossRefGoogle Scholar
Rogers, J.C. [1978]. Meteorological factors affecting interannual variability of summertime ice extent in the Beaufort Sea. Mon. Wea. Rev. 106, 890–897.2.0.CO;2>CrossRefGoogle Scholar
Rogers, J.C. [1984]. Association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon. Wea. Rev. 112, 1999–2015.2.0.CO;2>CrossRefGoogle Scholar
Romanov, I.P. [1991]. Ledyanoi Pokrov Arkticheskogo Basseina (Ice Cover of the Arctic Basin, in Russian). St. Petersburg, Russia: Arctic and Antarctic Research Institute.Google Scholar
Romanov, I.P. [1995]. Atlas of ice and snow of the Arctic Basin and Siberian Shelf Seas (Second edition of atlas and monograph). New York: Backbon Publishing Company.Google Scholar
Romanov, I.P., Konstantinov, Yu. B., and Kornilov, N.A. [2000]. North Pole Drifting Stations (1937–1991). The Arctic Climatology Project Arctic Meteorology and Climate Atlas. Boulder, CO: National Snow and Ice Data Center, CD-ROM.Google Scholar
Romanovsky, V.E., Drozdov, D.S., Oberman, N.G. et al. [2010a], Thermal state of permafrost in Russia. Permafrost and Periglacial Processes 21, 136–155.CrossRefGoogle Scholar
Romanovsky, V.E., Smith, S.L., and Christiansen, H.H. [2010b]. Permafrost thermal state in the polar Northern Hemisphere during the International Polar Year 2007–2009 – a synthesis. Permafrost and Periglacial Processes 21, 106–116.CrossRefGoogle Scholar
Rooth, C. [1982]. Hydrology and ocean circulation. Progress in Oceanography 11, 131–149.CrossRefGoogle Scholar
Ross, Sir John. [1835]. Narrative of a Second Voyage in Search of a North-West Passage: And of a Residence in the Arctic Regions during the Years 1829, 1830, 1831, 1832, 1833. London: A.W. Webster.CrossRefGoogle Scholar
Rossow, W. and Schiffer, R.A. [1991]. ISCCP cloud data products. Bull Amer. Meteorol. Soc. 72, 2–20.2.0.CO;2>CrossRefGoogle Scholar
Rothrock, D.A. and Thomas, D.R. [1990]. The Arctic Ocean multiyear ice balance. Ann. Glaciol. 14, 252–255.CrossRefGoogle Scholar
Rothrock, D.A., Yu, Y., and Maykut, G.A. [1999]. Thinning of the Arctic sea ice cover. Geophys. Res. Lett. 26, 3469–3472.CrossRefGoogle Scholar
Rothrock, D.A., Zhang, J., and Yu, Y. [2003]. Arctic ice thickness anomaly of the 1990s: A consistent view from observations and models. J. Geophys. Res. 108(C3), 3083, doi:.CrossRefGoogle Scholar
Rozenbaum, G.E. and Shpolyanskaya, N.A. [2000]. Pozdnekainozoiskaya Istoriya Kriolitozony Arktiki I Tendentsii ee Budushchego Razvitiya. (Late Cainozoic History of the Cryolithozones of the Arctic and Tendencies of their future Development). Moscow: Nauchnyi Mir.Google Scholar
Ryder, C. [1896]. Isforholdene I Nordhavet, 1877–1892. Kobenhaven: Tidsskr. f. Sovaesen.Google Scholar
Saha, S., Moorthi, S., Pan, H-L. et al. [2010]. The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteorol. Soc., 91, 1015–1057, doi: .CrossRefGoogle Scholar
Sahsamanoglou, H.S., Makrogiannis, T.J., and Kallimopolous, P.P. [1991]. Some aspects of the basic characteristics of the Siberian antiyclone. Int. J. Climatol. 11, 827–839.CrossRefGoogle Scholar
Saladin d’Anglure, B. [1984]. The route to China: Northern Europe’s Arctic delusions. Arctic 37, 446–452.Google Scholar
Sampe, T. and Xie, S.P. [2007]. Mapping high sea winds from space: A global climatology. Bull. Amer. Meteorol. Soc. 88, 1965–1978, doi:.CrossRefGoogle Scholar
Sater, J.E. (Coordinator) [1968]. Arctic Drifting Stations. A Report on Activities Supported by the Office of Naval Research: Proceedings of the Symposium. Washington, DC: Arctic Institute of North America.Google Scholar
Savours, S.A. [1984]. “A very interesting point in geography”: The 1773 Phipps expedition towards the North Pole. Arctic 37, 402–428.CrossRefGoogle Scholar
Schaefer, K., Zhang, T., Bruhwiler, L., and Barrett, A.P. [2011]. Amount and timing of permafrost carbon release in response to climate warming. Tellus 63B, 165–180, doi: .CrossRefGoogle Scholar
Scherhag, R. [1960]. Stratospheric temperature changes and the associated changes in pressure distribution. J. Meteorol. 17, 575–582.2.0.CO;2>CrossRefGoogle Scholar
Schlesinger, M.E. [1985]. Analysis of results from energy balance and radiative-convective models. In: MacCracken, M.C. and Luther, F.M. (eds.), Projecting the Climatic Effects of Increasing Carbon Dioxide. Washington, DC: U.S. Dept. Energy, DOE/ER-0237, pp. 81–147.Google Scholar
Schnell, R.C., Barry, R.G., Miles, M.W., Abndreas, E.L., Radke, L.F., Brock, C.A., McCormick, P.J., and Moore, J.L. [1989]. Lidar studies of leads in Arctic sea ice. Nature 339, 530–532.CrossRefGoogle Scholar
Schweiger, A.J. and Key, J.R. [1992]. Arctic cloudiness comparison of ISCCP-C2 and Nimbus –7 satellite derived cloud products with a surface-based cloud climatology. J. Climate 5, 1514–1527.2.0.CO;2>CrossRefGoogle Scholar
Schweiger, A.J., Lindsay, R.W., Key, J.R., and Francis, J.A. [1999]. Arctic clouds in multiyear satellite data sets. Geophys. Res. Lett. 26, 1845–1848.CrossRefGoogle Scholar
Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R. [2011]. Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res. 116, C00D06, doi:.CrossRefGoogle Scholar
Scoresby, W. [1811–1816]. On the Greenland or Polar ice. Mem. Wererian Soc. Natural History (Edinburgh) 2, 261–338.Google Scholar
Scoresby, W. [1820]. An Account of the Arctic Regions with a History and Description of the Northern Whale-Fishery. Vol. The Arctic. New York: A.M. Kelley Publishers.CrossRefGoogle Scholar
Selinger, F. and Glen, A. [1983]. Arctic meteorological operations and counter-operations during World War II. Polar Record 21, 559–567.CrossRefGoogle Scholar
Semenov, V.A. and Bengtsson, L. [2003]. Modes of wintertime Arctic temperature variability. Geophys. Res. Lett. 30, 1781, doi: .CrossRefGoogle Scholar
Semtner, A.J. [1987]. A numerical study of sea ice and ocean circulations in the Arctic. J. Phys. Oceanogr. 17, 1077–1099.Google Scholar
Serreze, M.C. [1995]. Climatological aspects of cyclone development and decay in the Arctic. Atmosphere- Ocean 33, 1–23.CrossRefGoogle Scholar
Serreze, M.C. and Barrett, A.P. [2008]. The summer cyclone maximum over the central Arctic Ocean. J. Climate 21, 1048–1065, doi:.CrossRefGoogle Scholar
Serreze, M.C. and Barrett, A.P. [2011]. Characteristics of the Beaufort Sea High. J. Climate 24, 159–182, doi:.CrossRefGoogle Scholar
Serreze, M.C., Barrett, A.P., Slater, A.G. et al. [2006]. The large-scale freshwater cycle of the Arctic. J. Geophys. Res. 111, C11010, doi:.CrossRefGoogle Scholar
Serreze, M.C., Barrett, A.P., Slater, A.G., Steele, M., Zhang, J., and Trenberth, K.E. [2007]. The large-scale energy budget of the Arctic. J. Geophys. Res. 112, D11122, doi:.CrossRefGoogle Scholar
Serreze, M.C., Barrett, A.P., and Stroeve, J. [2012]. Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses. J. Geophys. Res. 117, D10104, doi: .CrossRefGoogle Scholar
Serreze, M.C. and Barry, R.G. [2011], Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change 77, 85–96.CrossRefGoogle Scholar
Serreze, M.C., Barry, R.G., and McLaren, A.S. [1989]. Seasonal variations in sea ice motion and effects on sea ice concentration in the Canada Basin. J. Geophys. Res. 94(C8), 10955–10970.CrossRefGoogle Scholar
Serreze, M.C., Barry, R.G., and Walsh, J.E. [1995a]. Atmospheric water vapor characteristics at 70°N. J. Climate 8, 719–731.2.0.CO;2>CrossRefGoogle Scholar
Serreze, M.C. and Bradley, R.S. [1987]. Radiation and cloud observations on a high Arctic plateau ice cap. J. Glaciol. 33, 162–168.CrossRefGoogle Scholar
Serreze, M.C., Bromwich, D.H., Clark, M.P., Etringer, A.J., Zhang, T., and Lammers, R. [2003a]. The large-scale hydro-climatology of the Arctic drainage. J. Geophys. Res 108(D2), doi: .Google Scholar
Serreze, M.C., Carse, F., Barry, R.G., and Rogers, J.C. [1997]. Icelandic Low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate 10, 453–464.2.0.CO;2>CrossRefGoogle Scholar
Serreze, M.C., Clark, M.P., and Bromwich, D.H. [2003b]. Monitoring precipitation over the Arctic terrestrial drainage system: Data requirements, shortcomings and applications of atmospheric reanalysis. J. Hydrometeorology 4, 387–407.2.0.CO;2>CrossRefGoogle Scholar
Serreze, M.C. and Etringer, A.J. [2003]. Precipitation characteristics of the Eurasian Arctic drainage system. Int. J. Climatol. 23, 1267–1291.CrossRefGoogle Scholar
Serreze, M.C. and Francis, J. [2006]. The Arctic amplification debate. Climatic Change 76, 241–264, doi: .CrossRefGoogle Scholar
Serreze, M.C., Kahl, J.D., Andreas, E. L., Maslanik, J. A., Rehder, M.C., and Schnell, R.C. [1992a]. Theoretical heights of buoyant convection above open leads in the winter Arctic pack ice cover. J. Geophys. Res. 97(C6), 9411–9422.CrossRefGoogle Scholar
Serreze, M.C., Kahl, J.D., and Schnell, R.C. [1992b]. Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J. Climate 5, 615–629.2.0.CO;2>CrossRefGoogle Scholar
Serreze, M.C., Lynch, A.H., and Clark, M.P. [2001]. The Arctic frontal zone as seen in the NCEP-NCAR reanalysis. J. Climate 14, 1550–1567.2.0.CO;2>CrossRefGoogle Scholar
Serreze, M.C., Maslanik, J.A., and Key, J.R. [1997]. Atmospheric and Sea Ice Characteristics of the Arctic Ocean and the SHEBA Field Region in the Beaufort Sea. Special Report – 4, National Snow and Ice Data Center. Boulder, CO: National Snow and Ice Data Center.Google Scholar
Serreze, M.C., Maslanik, J.A., Key, J.R.Kokaly, R.F., and Robinson, D.A. [1995b]. Diagnosis of the record minimum in Arctic sea ice area during 1990 and associated snow cover extremes. Geophys. Res. Lett. 22, 2183–2186.CrossRefGoogle Scholar
Serreze, M.C., Walsh, J.E., Chapin, F.S. et al. [2000]. Observational evidence of recent change in the northern high latitude environment. Climatic Change 46, 159–207.CrossRefGoogle Scholar
Severinghaus, J.P., Sowers, T., Brook, E.J., Alley, R.B., and Bender, M.L. [1998]. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146.CrossRefGoogle Scholar
Shackleton, N.J., Fernanda Sanchez- Goni, M., Pailler, D., and Lancelot, Y. [2003]. Marine isotope substage 5e and the Eemian Interglacial. Global Planet. Change 36, 151–155.CrossRefGoogle Scholar
Shahgedanova, M. (ed.) [2002]. The Physical Geography of Northern Eurasia. Oxford: Oxford University Press.
Shahgedanova, M., Perov, V., and Mudrow, Y. [2002]. The mountains of northern Russia. In: Shahgedanova, M. (ed.), The Physical Geography of Northern Russia. Oxford: Oxford University Press, pp. 284–313.Google Scholar
Shakhova, N., Semiletov, I., Salkuk, A., Yusuprov, V., Kosmach, D., and Gustavson, O. [2010]. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 327, 1246–1250, doi: .CrossRefGoogle ScholarPubMed
Shakhova, N., Semiletov, I., Leifer, I., Sergienko, V., Salyuk, A., Kosmach, D. et al. [2013]. Ebullition and storm-indiced methane release from the East Siberian Arctic shelf. Nature Geoscience, doi: .
Shapiro, M.A. [1985]. Dropwinsonde observations of an Icelandic low and a Greenland mountain-lee wave. Mon. Wea. Rev. 113, 680–683.2.0.CO;2>CrossRefGoogle Scholar
Shapiro, M.A., Fedor, L.S., and Hampel, T. [1987a]. Research aircraft measurements of a polar low over the Norwegian Sea. Tellus 39A, 272–306.CrossRefGoogle Scholar
Shapiro, M.A., Hampel, T., and Krueger, A.J. [1987b]. The Arctic tropopause fold. Mon. Wea. Rev. 115, 444–454.2.0.CO;2>CrossRefGoogle Scholar
Shapiro, M.A., Schnell, R.C., Parungo, F.P., Oltmans, S.J., and Bodhaine, B.A.[1984]. El Chichon volcanic debris in an Arctic tropopause fold. Geophys. Res. Lett. 11, 421–424.CrossRefGoogle Scholar
Shepherd, A., Ivins, E.R., Valentina, G.A. et al. [2012]. A reconciled estimate of ice-sheet mass balance. Science 338, doi: .CrossRefGoogle ScholarPubMed
Shiklomanov, I.A., Shiklomanov, A.I., Lammers, R.B., Peterson, B.J., and Vorosmarty, C.J. [2000]. The dynamics of river water inflow to the Arctic Ocean. In: Lewis, E.L., Jones, E.P., Lemke, P., Prowse, T.D., and Wadhams, P. (eds.), The Freshwater Budget of the Arctic Ocean. NATO Science Series 2. Environmental Security – Vol. 70. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 281–296.CrossRefGoogle Scholar
Shimada, K., Kamoshida, T., Itoh, M. et al. [2006]. Pacific inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett. 33, L08605, doi:.CrossRefGoogle Scholar
Shindell, D. and Faluvegi, G. [2009]. Climate response to regional radiative forcing during the twentieth century. Nature Geoscience 2, 294–300, doi: .CrossRefGoogle Scholar
Shine, K.P. [1984]. Parameterization of shortwave flux over high albedo surfaces as a function of cloud thickness and surface albedo. Quart. J. Roy. Met. Soc. 110, 747–764.CrossRefGoogle Scholar
Shulski, M. and Wendler, G. [2007]. The Climate of Alaska. Fairbanks, AK: University of Alaska Press.Google Scholar
Siegert, M.J. [2001]. Ice Sheets and Late Quaternary Environmental Change. Chichester, England: John Wiley and Sons.Google Scholar
Siegert, M.J., Dowdeswell, J.A., and Melles, M. [1999]. Late Weichselian glaciaiton of the Eurasian High Arctic. Quatern. Res. 52, 273–285.CrossRefGoogle Scholar
Sigman, D.M., Hain, M.P., and Haug, G.H. [2010]. The polar ocean and glacial cycles in atmospheric CO2 concentration, Nature 466, doi: .CrossRefGoogle Scholar
Slater, A.G., Bohn, T.J., McCreight, J.L., Serreze, M.C., and Lettenmaier, D.P. [2007]. A multimodel simulation of pan-Arctic hydrology. J. Geophys. Res. 112, G04S45, doi:.CrossRefGoogle Scholar
Slater, A.G. and Lawrence, D.M. [2012]. Diagnosing present and future permafrost in climate models. J. Climate 26, 5608–5622, doi:.CrossRefGoogle Scholar
Slater, A.G., Schlosser, C.A., Desborough, C.E. et al. [2001]. The representation of snow in land surface schemes; results from PILPS 2(d). J. Hydrometeorology 2, 7–25.2.0.CO;2>CrossRefGoogle Scholar
Smith, E.H., Soule, F.M., and Mosby, O. [1937]. The “Marion” and “General Green” Expeditions to Davis Strait and Labrador Sea, Under Direction of the United States Coast Guard, 1928–1931–1933–1934–1935: Part 2: Scientific Results. Washington, DC: Bulletin U.S. Coast Guard.Google Scholar
Smith, S. D., Anderson, R.O., den Hartog, G., Topham, D.R., and Perkin, R.G. [1983]. An investigation of a polynya in the Canadian Archipelago, 2, Structure of turbulence and sensible heat flux. J. Geophys. Res. 88(C5), 2900–2910.CrossRefGoogle Scholar
Solomon, S. [1999]. Stratospheric ozone depletion: A review of concept and history. Rev. Geophys. 37, 275–316.CrossRefGoogle Scholar
Souchez, R. [1997]. The buildup of the ice sheet in central Greenland. J. Geophys. Res. 102(C12), 26317–26323.CrossRefGoogle Scholar
Spielhagen, R.F., Werner, K., Sorensen, S.A. et al. [2011]. Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331, 450–453, doi:.CrossRefGoogle ScholarPubMed
Srokosz, M., Baringer, M., Bryden, H. et al. [2012]. Past, present, and future changes in the Atlantic Meridional Overturning Circulation. Bull. Am. Meteorol. Soc. 93, 1663–1676, doi: .CrossRefGoogle Scholar
Stamnes, K.H., Tsay, S-C., Wiscombe, W., and Jayaweera, K. [1988]. Numerical stable algorithm for discreet-ordinate radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27, 2502–2509.CrossRefGoogle ScholarPubMed
Steele, M. and Boyd, T. [1998]. Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res. 103, 10419–10435.CrossRefGoogle Scholar
Steele, M., Ermold, W., Hakkinen, S. et al. [2001]. Adrift in the Beaufort Gyre: A model comparison. Geophys. Res. Lett. 28, 2935–2938.CrossRefGoogle Scholar
Steele, M, Thomas, D., and Rothrock, D. [1996]. A simple model study of the Arctic Ocean freshwater balance, 1979–1985. J. Geophys. Res. 101(C9), 20833–20848.CrossRefGoogle Scholar
Steffen, K. [1985]. Warm water cells in the North Water, northern Baffin Bay during winter. J. Geophys. Res. 90(5), 9129–9136.CrossRefGoogle Scholar
Steffen, K. and Box, J.E. [2001]. Surface climatology of the Greenland Ice Sheet: Greenland Climate Network 1995–1999. J. Geophys. Res. 106(D24), 33951–33964.CrossRefGoogle Scholar
Steffen, K., Box, J.E., and Abdalati, W. [1996]. Greenland Climate Network: GC-Net. In: Colbeck, S.C. (ed.), CRREL 96–27 Special Report on Glaciers, Ice Sheets and Volcanoes (tribute to M. Meier). Hanover, NH: US Army, pp. 98–103.Google Scholar
Stern, H.L. and Moritz, R.E. [2002]. Sea ice kinematics and surface properties from RADARSAT synthetic aperature radar during the SHEBA drift. J. Geophys. Res. 107(C10), 8028, DOI: .CrossRefGoogle Scholar
Stigebrandt, A. [2000]. Oceanic freshwater fluxes in the climate system. In: Lewis, E.L., Jones, E.P., Lemke, P., Prowse, T., and Wadhams, P. (eds.), The Freshwater Budget of the Arctic Ocean. NATO Science Series 2. Environmental Security – Vol. 70. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 1–20.Google Scholar
Stone, R.S., Herber, A., Mazzola, M. et al. [2010]. A three-dimensional characterization of Arctic aerosols from airborne sun photometer observations: PAM-ARCMIP, April 2009. J. Geophs. Res. 115, D13203, doi: .CrossRefGoogle Scholar
Stoner, A.M.K., Hayoe, K., and Wuebbles, D.J. [2009]. Assessing general circulation model simulations of atmospheric teleconection patterns. J. Climate 22, 4348–4372, doi:.CrossRefGoogle Scholar
Stroeve, J., Holland, M.M., Meier, W., Scambos, T., and Serreze, M. [2007]. Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett. 34, doi: .CrossRefGoogle Scholar
Stroeve, J.C., Kattsov, V.K., Barrett, A., Serreze, M., Pavlova, T., Holland, M., and Meier, W.M. [2012]. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39, L16502, doi:.CrossRefGoogle Scholar
Stroeve, J.C., Maslanik, J., Serreze, M.C., Rigor, I., Meier, W.M., and Fowler, C. [2011a]. Sea ice response to an extreme negative phase of the Arctic Oscillation during winter 2009/2010. Geophys. Res. Lett. 38, L02502, doi:.CrossRefGoogle Scholar
Stroeve, J.C., Serreze, M.C., Holland, M.M., Kay, J.E., Maslanik, J. and Barrett, A.P. [2011b]. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, doi:.Google Scholar
Sturm, M., Racine, C., and Tape, K. [2001]. Climatic change: Increasing shrub abundance in the Arctic. Nature 411, 546–547.CrossRefGoogle Scholar
Sturm, M.M.Holmgren, J., and Liston, G. E. [1995]. A seasonal snow cover classification system for local to global application. J. Climate 8, 1261–1283.2.0.CO;2>CrossRefGoogle Scholar
Su, F., Adam, J.C., Trenberth, K.E., and Lettenmaier, D.P. [2006]. Evaluation of surface water fluxes of the pan-Arctic land region with a land surface model and ERA-40 reanalysis. J. Geophys. Res. 111, D05110, doi:.CrossRefGoogle Scholar
Subetto, D.A., Wohlfarth, B., Davydona, N.N. et al. [2002]. Climate and environment on the Karelian Isthmus, northwestern Russia, 13000–9000 cal. yrs BP. Boreas 31, 1–19.CrossRefGoogle Scholar
Svendsen, J.I., Astakhov, V.I., Bolshiyanov, D.Y. et al. [1999]. Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Late Weichselian. Boreas 28, 234–242.CrossRefGoogle Scholar
Sverdrup, H.U. [1933]. The Norwegian North Polar Expedition with the “Maud”, 1918–1925, Volume II: Meteorology. Bergen: John Griegs, Boktrykkeri.Google Scholar
Tape, K.Sturm, M., and Racine, C. [2006]. The evidence for shrub expansion on northern Alaska and the Pan-Arctic. Global Change Biol. 12, 686–702.CrossRefGoogle Scholar
Tarnocai, C.Canadell, J.G., Schuur, E.A.G, Kuhry, P., Mazhitova, G., and Zimov, S. [2009], Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochmical Cycles 23, GB2023, doi: .Google Scholar
Tedesco, M., Fettweis, X., van den Broeke, M.R. et al. [2010]. The role of albedo and accumulation in the 2010 melting record in Greenland. Environmental Research Letters 6, 014005, doi: .CrossRefGoogle Scholar
Thomas, D.R., Martin, S., Rothrock, D.A., and Steele, M. [1996]. Assimilating satellite concentrations into an Arctic mass balance model: 1979–1985. J. Geophys. Res. 101(C9), 20849–20868.CrossRefGoogle Scholar
Thomas, D.R. and Rothrock, D.A. [1989]. Blending sequential Scanning Multichannel Microwave Radiometer and buoy data into a sea ice model. J. Geophys. Res. 94(C8), 10907–10920.CrossRefGoogle Scholar
Wadhams, P."Thomas, D.R. and Rothrock, D.A. [1993]. The Arctic Ocean ice balance: A Kalman smoother estimate. J. Geophys. Res. 98(C6), 10053–10067.Google Scholar
Thomas, R.H. [2004]. Force-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbrae, Greenland. J. Glaciol. 50, 57–66, doi:.CrossRefGoogle Scholar
Thomas, R.N. [2001]. Program for Arctic Regional Climate Assessment (PARCA): Goals, key findings, and future directions. J. Geophys. Res. 106(D24), 33691–33705.CrossRefGoogle Scholar
Thompson, D.W.J. and Wallace, J.M. [1998]. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25, 1297–1300.CrossRefGoogle Scholar
Thompson, D.W.J. and Wallace, J.M. [2000]. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate 13, 1000–1016.2.0.CO;2>CrossRefGoogle Scholar
Thompson, D.W.J., Wallace, J.M., and Hegerl, G. [2000]. Annular modes in the extratropical circulation. Part II: Trends. J. Climate 13, 1018–1036.2.0.CO;2>CrossRefGoogle Scholar
Thorndike, A.S. [1986]. Kinematics of sea ice. In: Untersteiner, N. (ed.), The Geophysics of Sea Ice, NATO ASI Ser., Ser. B Phys., Vol. 146. New York: Plenum Press, pp. 489–549.CrossRefGoogle Scholar
Thorndike, A.S. and Colony, R. [1982]. Sea ice motion in response to geostrophic winds. J. Geophys. Res. 87(C8), 5845–5852.CrossRefGoogle Scholar
Tietche, S., Notz, D., Jungclaus, J.H., and Marotzke, J. [2011]. Recovery mechanisms of Arctic summer sea ice. Geophys. Res. Lett. 38, L02707, doi:.Google Scholar
Trenberth, K.E. [1998]. Atmospheric moisture residence times and cycling: implications for rainfall rates and climatic change. Climatic Change 39, 667–694.CrossRefGoogle Scholar
Trenberth, K.E. and Caron, J.M. [2001]. Estimates of meridional atmosphere and ocean heat transports. J. Climate 15, 3433–3443.2.0.CO;2>CrossRefGoogle Scholar
Trenberth, K.E., Caron, J.M., and Stepaniak, D.P. [2001]. The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Clim. Dynam. 17, 259–276.CrossRefGoogle Scholar
Trenberth, K.E. and Paolino, D.A. [1980]. The Northern Hemisphere sea-level pressure data set: Trends, errors and discontinuities. Mon. Wea. Rev. 108, 855–872.2.0.CO;2>CrossRefGoogle Scholar
Trenberth, K.E. and Stepaniak, D.P. [2003]. Co-variability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Climate 16, 3706–3722.2.0.CO;2>CrossRefGoogle Scholar
Tsukernik, M., Chase, T.N., Serreze, M.C. et al. [2004]. On the regulation of minimum mid-tropospheric temperatures in the Arctic. Geophys. Res. Lett. 31, L06112, doi: .CrossRefGoogle Scholar
Tsukernik, M., Kindig, D.N., and Serreze, M.C. [2007]. Characteristics of winter cyclone activity in the northern North Atlantic: Insights from observations and regional modeling. J. Geophys. Res. 112, D03101, doi: .CrossRefGoogle Scholar
Tumel, N. [2002]. Permafrost. In: Shahgedanova, M. (ed.), The Physical Geography of Northern Eurasia. Oxford: Oxforf University Press, pp. 149–168.Google Scholar
Tyndall, J. [1872]. The Forms of Water in Clouds and Rivers, Ice and Glacier. Akron, OH: The Werner Co.Google Scholar
Uttal, T., Curry, J.A., McPhee, M.G. et al. [2002]. Surface heat budget of the Arctic Ocean. Bull. Amer. Meteorol. Soc. 83, 255–275.2.3.CO;2>CrossRefGoogle Scholar
Vage, K., Spengler, T., Davies, H., and Pickart, R. [2009]. Multi-event analysis of the westerly Greenland tip jet based upon 45 winters in ERA-40, Quart. J. Roy. Met. Soc., 135, 1999–2011.CrossRefGoogle Scholar
van den Berg, W.J., van den Broeke, M., Etteme, J., van Meijgard, E., and Kaspar, F. [2011]. Significant contribution of insolation to Eemian melting of the Greenland Ice Sheet. Nature Geoscience 4, 679–683, doi:.CrossRefGoogle Scholar
van den Broeke, M., Bamber, J., Ettema, J. et al. [2009]. Partioning recent Greenland mass loss. Science 326, 984–986, doi:.CrossRefGoogle Scholar
van der Veen, C.J., Bromwich, D.H., and Castho, C.K. [2001]. Trend surface analysis of Greenland accumulation. J. Geophys. Res. 106(D24), 33909–33918.CrossRefGoogle Scholar
van Kolfschoten, T., Gibbard, P.L., and Knudsen, K-L. [2003]. The Eemian Interglacial: A global perspective. Introduction. Global Planet. Change 36, 17–49.CrossRefGoogle Scholar
van Loon, H. [1967]. The half −yearly oscillation in middle and high southern latitudes and the coreless winter. J. Atmos. Sci. 24, 472–486.2.0.CO;2>CrossRefGoogle Scholar
van Loon, H. and Rogers, J.C. [1978]. Seesaw in winter temperatures between Greenland and Northern Europe. Part I: General description. Mon. Wea. Rev. 106, 296–310.2.0.CO;2>CrossRefGoogle Scholar
Vasil’chuk, Yu. K. and Kotlyakov, V.M. [2000]. Osnovy Izotopnoi Geokriologii I Glatsiologii (Principles of Isotope Geocryology and Glaciology). Moscow: Moscow University Press.Google Scholar
Vaughan, R. [1999]. The Arctic: A History. Stroud, England: Sutton Publishing.Google Scholar
Velitchko, A.A. and Spasskaya, I. [2002]. Climate change and the development of landscapes. In: Shahgedanova, M. (ed.), The Physical Geography of Northern Eurasia. Oxford University Press, pp. 36–69.Google Scholar
Verseghy, D.L. [1991]. CLASS: A Canadian Land Surface Scheme for GCMs. I. Soil model. Int. J. Climatology 11, 111–133.CrossRefGoogle Scholar
Verseghy, D.L., McFarlane, K.A., and Lazar, M. [1993]. CLASS: A Canadian Land Surface Scheme for GCMs. II. Vegetation model and coupled runs. Int. J. Climatology 13, 347–370.CrossRefGoogle Scholar
Vinje, T. [2001]. Fram Strait ice fluxes and atmospheric circulation: 1950–2000. J. Climate 14, 3508–3517.2.0.CO;2>CrossRefGoogle Scholar
Vinje, T., and Finnekasa, O. [1986]. The ice transport through Fram Strait. Rep. NR 186. Oslo: Norsk Polarinstitut.
Vinje, T., Nordlund, N., and Kvarnbekk, A. [1998]. Monitoring ice thickness in Fram Strait, J. Geophys. Res. 103, 10437–10449.CrossRefGoogle Scholar
Viterbo, P. and Beljaars, A.C.M. [1995]. An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate 8, 2716–2748.2.0.CO;2>CrossRefGoogle Scholar
Vogt, P.R. [1986]. Seafloor topography, sediments and paleoenvironments. In: Hurdle, B.G. (ed.), The Nordic Seas. New York: Springer Verlag, pp. 237–410.CrossRefGoogle Scholar
von Helmhotz, H. [1888]. Ueber Atmosphaerische Bewegungen. Meteor. Zeit. 5, 329–340.Google Scholar
von Neumayer, G. and Boergen, C.N.J. (eds.) [1886]. Die Internationale Polarforschung 1882–1883. Die Beobachtungs Ergebnisse der Deutschen Stationen, Vol. 1, Kingua-Fjord und die meteorologischen Stationen. Vol. 2, Ordnung in Labrador, Hebron, Okak, Nain, Zoar, Hoffenthal, Rama, sowie die magnetischen Observatorien in Breslau und Goettingn. Berlin.
Vorosmarty, C.J., Fekete, B., Meybeck, M., and Lammers, R.B. [2000]. The global system of rivers: Its role on organizing continental landmass and defining land-to-ocean linkages. Global Biogeochemical Cycles 14, 599–621.CrossRefGoogle Scholar
Vowinkel, E., and Orvig, S. [1967]. The inversion layer over the polar ocean. World Meteorological Organization Tech. Note No. 87. Geneva: Polar Meteorology: Proc. of the WMO/SCAR/ICPM Symp. on Polar Meteorology.Google Scholar
Vowinkel, E. and Orvig, S. [1970]. The climate of the North Polar Basin. In: Orvig, S. (ed.), World Survey of Climatology, Vol. 14: Climates of the Polar Regions. Amsterdam: Elsevier, pp. 129–226.Google Scholar
Wadhams, P. [1980]. Ice characteristics in the seasonal ice zone. Cold Reg. Sci. Technol. 2, 37–87.CrossRefGoogle Scholar
Wadhams, P. [1983]. Sea ice thickness distribution in Fram Strait. Nature 305, 108–111.CrossRefGoogle Scholar
Wadhams, P. [2000]. Ice in the Ocean. London: Taylor and Francis.Google Scholar
Walker, D.A., Gould, W.A., Maier, H.A., and Raynolds, M.K. [2002]. The Circumpolar Arctic Vegetation Map. AVHRR-derived base maps, environmental conditions, and integrated mapping procedures. Int. J. Rem. Sensing 23, 4551–4570.CrossRefGoogle Scholar
Walker, G.T. and Bliss, E.W. [1932]. World weather. V. Mem. Roy. Meteor. Soc. 103, 29–64.CrossRefGoogle Scholar
Walker, J.M. [1967]. Subterranean isobars. Weather 22, 296–297.CrossRefGoogle Scholar
Wallace, J.M. [1983]. The climatological mean stationary waves: Observational evidence. In: Hoskins, B. and Pearce, R. (eds.), Large Scale Dynamical Processes in the Atmosphere. San Diego, CA: Academic Press, pp. 27–53.Google Scholar
Wallace, J.M. [2000]. North Atlantic Oscillation/annular mode: Two paradigms – one phenomenon. Quart. J. Roy. Met. Soc. 126, 791–805.CrossRefGoogle Scholar
Wallace, J.M. and Gutzler, D.S. [1981]. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev. 109, 784–812.2.0.CO;2>CrossRefGoogle Scholar
Walland, D.J. and Simmonds, I. [1997]. Modeled atmospheric response to change in Northern Hemisphere snow-cover. Clim. Dynam. 13, 25–34.CrossRefGoogle Scholar
Wallis, H. [1984]. England’s search for the Northern Passages in the sixteenth and early seventeenth centuries. Arctic 37, 453–472.CrossRefGoogle Scholar
Walsh, J.E. and Chapman, W.L. [1990]. Arctic contribution to upper-ocean variability in the North Atlantic. J. Climate 3, 1462–1473.2.0.CO;2>CrossRefGoogle Scholar
Walsh, J.E., Hibler, W.D., and Ross, B. [1985]. Numerical simulation of northern hemisphere sea ice variability, 1951–1980. J. Geophys. Res. 90(C3), 4847–4865.CrossRefGoogle Scholar
Walsh, J.E., Zhou, X, Portis, D., and Serreze, M.C. [1994]. Atmospheric contributions to hydrologic variations in the Arctic. Atmosphere-Ocean 32, 733–755.CrossRefGoogle Scholar
Wang, J., Zhang, J., Watanabe, E. et al. [2009]. Is the dipole anomaly a major drier to record lows in Arctic summer sea ice extent?Geophys. Res. Lett. 36, L05706, doi:.CrossRefGoogle Scholar
Warneke, C., Froyd, K.D., Brioude, J. et al. [2010]. An important contribution to springtime Arctic aerosol from biomass burning in Russia. Geophys. Res. Lett 37, L01801, doi:.CrossRefGoogle Scholar
Warren, B.A. [1983]. Why is no deep water formed in the North Pacific?J. Mar. Res. 41, 327–347.CrossRefGoogle Scholar
Warren, S.G. [1982]. Optical properties of snow. Rev. Geophys. Space Phys. 2, 67–89.CrossRefGoogle Scholar
Warren, S.G., Hahn, C.J., London, J., Chervin, R.M., and Jenne, R. [1988]. Global distribution of total cloud cover and cloud type amounts over the ocean. NCAR Tech. Note, TN – 317+STR. Boulder, CO: NCAR.Google Scholar
Watkins, H.G. [1932]. The British Arctic Air Route Expedition. Geogr. J. 79, 353–367; 466–501.CrossRefGoogle Scholar
Weaver, A.J., Bitz, C.M., Fanning, A.F., and Holland, M.M. [1999]. Thermohaline circulation: High-latitude phenomena and the difference between the Pacific and Atlantic. Ann. Rev. Earth Planet. Sci. 27, 231–285.CrossRefGoogle Scholar
Webber, P.J. [1974]. Tundra primary productivity. In: Ives, J.D. and Barry, R.G. (eds.), Arctic and Alpine Environments. London: Methuen, pp. 445–473.Google Scholar
Weeks, W.F. and Ackley, S.F. [1986]. The growth, structure and properties of sea ice. In: Untersteiner, N. (ed.), The Geophysics of Sea Ice, NATO ASI Ser., Ser. B Phys., Vol. 146. New York: Plenum Press, pp. 9–164.CrossRefGoogle Scholar
Weller, G., Cubley, S., Parker, S., Trabant, D., and Benson, C. [1972]. The tundra microclimate during snow melt at Barrow, Alaska. Arctic 24, 291–300.Google Scholar
Weller, G. and Holmgren, B. [1974]. The microclimates of the Arctic Tundra. J. Appl. Meteor. 11, 854–862.2.0.CO;2>CrossRefGoogle Scholar
Welsh, J.P., Ketchum, R.D. Jr., Lohanick, A.W., Farmer, L.D., Eppler, D.T., Burge, R.E., and Radl, C.J. [1986]. A Compendium of Arctic Environmental Information. Naval Ocean Res. Dev. Activity Report 138. Michigan: NSTL.Google Scholar
Wendler, G.W., Easton, F.D., and Ohtake, T. [1981]. Multiple reflection effects on irradiance in the presence of Arctic stratus clouds. J. Geophys. Res. 86(C3), 2049–2057.CrossRefGoogle Scholar
Westbrook, G.K., Thatcher, K.E., Rohling, E.J. et al. [2009]. Escape of methane gas from the seabed along the West Spitzbergen continental margin. Geophys. Res. Lett. 36, L15608, doi:.CrossRefGoogle Scholar
Wexler, H. [1936]. Cooling in the lower atmosphere and the structure of polar continental air. Mon. Wea. Rev. 64, 122–136.2.0.CO;2>CrossRefGoogle Scholar
Weyl, P.K. [1968]. The role of the oceans in climatic change: A theory of the ice ages. Meteorological Monographs 8, 38–62.Google Scholar
Wielicki, B. A., Barkstrom, B.R., Harrison, E.F., LeeIII, R.B., Louis Smith, G., and Cooper, J.E. [1996]. Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment, Bull. Am. Meteorol. Soc., 77, 853–868.2.0.CO;2>CrossRefGoogle Scholar
Williams, R. S. and Ferrigno, J.G. (eds.) [2002]. Satellite Image Atlas of Glaciers of the World. North America, Washington DC: U.S. Geol. Survey, Professional paper, 1386-J.
Wilson, C.V. [1958]. Synoptic regimes of the lower Arctic troposphere during 1955. Arctic Meteorology Research Group, Publication in Meteorology No. 8. Montreal, Canada: McGill University.Google Scholar
Wilson, C.V. and Godson, W.L. [1962]. The stratospheric temperature field at high latitudes. Arctic Meteorology Research Group Publication in Meteorology No. 46. Montreal, Canada: McGill University.Google Scholar
Wilson, C.V. and Godson, W.L. [1963]. The structure of the Arctic winter stratosphere over a 10-year period. Quart. J. Roy. Met. Soc. 89, 205–224.CrossRefGoogle Scholar
Wilson, L.D., Curry, J.A., and Ackerman, T.P. [1993]. Satellite retrieval of lower-tropospheric ice crystal clouds in the polar regions. J. Climate 6, 1467–1472.2.0.CO;2>CrossRefGoogle Scholar
Wiscombe, W.J. and Warren, S.G. [1980]. A model for the spectral albedo of snow. I. Pure snow. J. Atmos. Sci. 37, 2712–2733.2.0.CO;2>CrossRefGoogle Scholar
Wohlleben, T.M.H. and Weaver, A.J. [1995]. Interdecadal climate variability in the subpolar North Atlantic. Clim. Dynam. 11, 459–467.CrossRefGoogle Scholar
Wolfe, A.P. and King, R.H. [1999]. A paloclimatological constraint to the extent of the last glaciation on northern Devon Island, Canadian high Arctic. Quatern. Sci. Rev. 18, 1563–1568.CrossRefGoogle Scholar
Woo, M-K., Heron, R., Marsh, P., and Steer, P. [1983]. Comparison of weather station snowfall with winter snow accumulation in high Arctic basins. Atmosphere-Ocean 21, 312–325.CrossRefGoogle Scholar
World Meteorological Organization [1989]. WMO Sea-Ice Nomenclature, Terminology, Codes and Illustrated Glossary. Geneva: WMO/OMM/BMO259, TP 145, Secretariat WMO, Vol. 1.Google Scholar
Wright, J.K. [1953]. The open polar sea. Geogr. Rev. 63, 338–365.CrossRefGoogle Scholar
Wunsch, C. [2004]. Quantitative estimate of the Milankovitch-forced contribution to observed Quaternary climate change. Quatern. Sci. Rev. 23, 1001–1012, .CrossRefGoogle Scholar
Xie, P. and Arkin, P.A. [1997]. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull. Amer. Meteorol. Soc. 78, 2539–2558.2.0.CO;2>CrossRefGoogle Scholar
Yang, D. [1999]. An improved precipitation climatology for the Arctic Ocean. Geophys. Res. Lett. 26, 1525–1528.CrossRefGoogle Scholar
Yang, D., Goodison, B., Metcalfe, J. et al. [2001]. Compatibility evaluation of national precipitation gauge measurements. J. Geophys. Res. 106(D2), 1481–1491.CrossRefGoogle Scholar
Yang, D., Kane, D.L., Hinzman, L.D., Zhang, X., Zhang, T., and Ye, H. [2002]. Siberian Lena river hydrologic regime and recent change. J. Geophys. Res. 107(D23), doi: .CrossRefGoogle Scholar
Ye, B., Yang, D., and Kane, D. [2003]. Changes in Lena River streamflow hydrology: Human impacts versus natural variations. Water Resources Research 39, doi: .CrossRefGoogle Scholar
Yi, S., McGuire, A.D., Harden, J. et al. [2009]. Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance. J Geophys. Res. 114, G02015, doi: .CrossRefGoogle Scholar
Zangl, G. and Hoinka, K.P. [2001]. The tropopause in the polar regions. J. Climate 14, 3117–3139.2.0.CO;2>CrossRefGoogle Scholar
Zazula, G.D., Froese, D.G., Telka, A.M., Mathewes, R.W., and Westgate, J.A. [2002]. Plants, bugs and giant mammoth tusk: Paleoecology of Last Chance Creek, Yukon Territory. In: Yukon Exploration and Geology, 2002, Government of Canada Publications, pp. 251–258.Google Scholar
Zhang, J.L. and Rothrock, D.A. [2003]. Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev. 131, 845–861.2.0.CO;2>CrossRefGoogle Scholar
Zhang, J., Rothrock, D.A., and Steele, M. [2000]. Recent changes in Arctic sea ice: The interplay between ice dynamics and thermodynamics. J. Climate 13, 3099–3114.2.0.CO;2>CrossRefGoogle Scholar
Zhang, T., Stamnes, K., and Bowling, S.A. [2001]. Impact of atmospheric thickness on the atmospheric downwelling longwave radiation and snowmelt under clear-sky conditions in the Arctic and subarctic. J. Climate 14, 920–939.2.0.CO;2>CrossRefGoogle Scholar
Zhang, T-J., Barry, R.G., Knowles, K., Heginbottom, J.A., and Brown, J. [1999]. Statistics and characteristics of permafrost and frozen ground ice distribution in the Northern Hemisphere. Polar Geog. 23, 147–169.Google Scholar
Zhang, T-J., Heginbottom, J.A., Barry, R.G., and Brown, J. [2001]. Further statistics on the distribution of permafrost and frozen ground in the Northern Hemisphere. Polar Geog. 24, 14–19.Google Scholar
Zhang, X., He, J., Zhang, J. et al. [2012]. Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nature Climate Change, doi:.Google Scholar
Zhang, X., Walsh, J.E., Zhang, J., Bhatt, U.S., and Ikeda, M. [2004]. Climatology and interannual variability of Arctic cyclone activity, 1948–2002. J Climate 15, 2300–2317.2.0.CO;2>CrossRefGoogle Scholar
Zhou, L., Tucker, C.J., Kaufmann, R.K., Slayback, D., Shabanov, N.V., and Myneni, R.B. [2001]. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. 106(D17) 20069–20083.CrossRefGoogle Scholar
Zhu, Y. and Newell, R.E. [1998]. A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev. 126, 725–735.2.0.CO;2>CrossRefGoogle Scholar
Zubenok, Z.T. [1976]. Isparenie s sushi vodosbornogo basseina Severnogo Ledovitogo Okeana. (Evaporation from the basins draining into the Arctic). Trudy Arkt. Antarkt. Nauchno.-issled. Inst. 323, 87–100.Google Scholar
Zubov, N. N. [1945]. L’dy Arktiki. Moscow: Glavsevmorputi. English translation: [1963]. Arctic Sea Ice. Suitland, MD: U.S. Nav. Hydrogr. Office. Available as AD426972 from Natl. Tech. Inf. Serv., Springfield, VA.Google Scholar
Zwally, J., Abdalati, W., Herring, T. et al. [2002]. Surface melt-induced acceleration of Greenland Ice-Sheet flow. Science 297, 218–222, doi:.CrossRefGoogle ScholarPubMed
Zwally, J. and Giovinetto, M.B. [2001]. Balance mass flux and ice velocity across the equilibrium line in drainage systems of Greenland. J. Geophys. Res. 106(D24), 33717–33728.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Mark C. Serreze, University of Colorado Boulder, Roger G. Barry, University of Colorado Boulder
  • Book: The Arctic Climate System
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139583817.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Mark C. Serreze, University of Colorado Boulder, Roger G. Barry, University of Colorado Boulder
  • Book: The Arctic Climate System
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139583817.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Mark C. Serreze, University of Colorado Boulder, Roger G. Barry, University of Colorado Boulder
  • Book: The Arctic Climate System
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139583817.015
Available formats
×