Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T12:35:45.440Z Has data issue: false hasContentIssue false

6 - Common (Broadband) Lidar Types and Associated Applications

Published online by Cambridge University Press:  24 February 2022

Chiao-Yao She
Affiliation:
Colorado State University
Jonathan S. Friedman
Affiliation:
Universidad Ana G. Mendez
Get access

Summary

In Chapter 6, we concentrate on the broadband lidars, from the point of view of the lidar equation as described in Chapter 5. Here, we describe in detail Rayleigh–Mie (elastic backscattering) lidars in regions with and without the presence of aerosols. Next, we move to polarization lidars for the study of aerosols and cloud particles. Here, we use Stokes vectors to describe the transmitting beam and Mueller matrices for optical elements and the individual scatterers in the atmosphere. We move from polarization lidar to Raman and DIAL lidar for monitoring minor species, carrying out a detailed comparison of the two techniques, including analysis of their relative uncertainties. We close with a brief overview of lidars not presented in this book, but which are nevertheless important and worth mentioning. These include airborne and spaceborne systems, particulate and air pollution monitoring systems, and those used for 3–D mapping and profiling, archeology, and other hard–target applications.

Type
Chapter
Information
Atmospheric Lidar Fundamentals
Laser Light Scattering from Atoms and Linear Molecules
, pp. 103 - 137
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Klett, J. D. (1981). Stable analytical inversion solution for processing lidar returns. Appl. Opt. 20(2), 211220.CrossRefGoogle ScholarPubMed
Klett, J. D. (1985). Lidar inversion with variable backscatter/extinction ratios. Appl. Opt. 24(11), 16381643.CrossRefGoogle ScholarPubMed
Ansmann, A. and Müller, D.. (2005). Lidar and atmospheric aerosol particles. Chapter 4 in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, Weitkamp, C., ed., Springer Science+Business Media, Inc., vol. 102.Google Scholar
She, C.-Y. (2001). Spectral structure of laser light scattering revisited: Bandwidths of nonresonant scattering lidar. Appl. Opt. 40(27), 48754884.Google Scholar
Krueger, D. A., She, C.-Y., and Yuan, T.. (2015). Retrieving mesopause temperature and line-of-sight wind from full-diurnal-cycle Na lidar observations. Appl. Opt. 54(32), 94699489.CrossRefGoogle ScholarPubMed
Liu, Z.-Y. et al. (2006). Estimating random errors due to shot noise in backscatter lidar observations. Appl. Opt. 45(18), 44374447.CrossRefGoogle ScholarPubMed
Hair, J. W. et al. (2008). Airborne high spectral resolution lidar for profiling aerosol optical properties. Appl. Opt. 47(36), 67346753.Google Scholar
Schotland, R. M., Sassen, K., and Stone, R.. (1971). Observations by lidar of linear depolarization ratios for hydrometeors. J. Appl. Meteorol. 10(5), 10111017.2.0.CO;2>CrossRefGoogle Scholar
Murayama, T. (2001). Ground-based network observation of Asian dust events of April 1988 in east Asia. J. Geophys. Res. 106(D16), 1834518359.CrossRefGoogle Scholar
Poole, L. R., Kent, G. S., McCormick, M. P. et al. (1990). Dual-polarization airborne lidar for observations of polar stratospheric cloud evolution. Geophys. Res. Lett. 17(4), 389392.CrossRefGoogle Scholar
Hu, Y., Winker, D., Yang, P et al. (2001). Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study. J. Quant. Spectrosc. Radiat. Transfer 70(4–6), 569579.Google Scholar
Alvarez, R. J., Eberhard, W. L., Intrieri, J. M. et al. (1998). A depolarization and backscatter lidar for unattended operation in varied meteorological conditions. Proc. 10th Symp. on Meteorological Observations and Instrumentation. Phoenix, AZ, Amer. Meteor. Soc., 140144.Google Scholar
Sassen, K. (2005). Polarization in Lidar, in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Weitkamp, C., ed. (Springer), pp. 1942.CrossRefGoogle Scholar
Gimmestad, G. G. (2008). Reexamination of depolarization in lidar measurements. Appl. Opt. 47(21), 37953802.CrossRefGoogle ScholarPubMed
Kaul, B. V., Samokhvalov, I. V., and Volkov, S. N.. (2004). Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar. Appl. Opt. 43(36), 66206628.CrossRefGoogle ScholarPubMed
van de Hulst, H. (1981). Light Scattering by Small Particles. Wiley.Google Scholar
Houston, J. D. and Carswell, A. I.. (1978). Four-component polarization measurement of lidar atmospheric scattering. Appl. Opt. 17(4), 614620.CrossRefGoogle ScholarPubMed
Hayman, M., and Thayer, J. P.. (2012). General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices. J. Opt. Soc. Amer., 29A(4), 400409.CrossRefGoogle Scholar
Neely, R. R., Hayman, M., Stillwell, R et al. (2013). Polarization lidar at Summit, Greenland, for the detection of cloud phase and particle orientation. J. Atmos. Oceanic Technol. 30(8), 16351655.Google Scholar
Hayman, M., Spuler, S., Morley, B et al. (2012). Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers. Opt. Express 20(28), 2955329567.Google Scholar
Hayman, M. (2011). Optical theory for the advancement of polarization lidar. Ph.D. thesis, University of Colorado.Google Scholar
Stillwell, R. A., Neely, R. R. III, Thayer, J. P et al. (2018). Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar. Atmos. Meas. Tech., 11(2), 835859. doi: https://doi.org/10.5194/amt-11-835-2018.Google Scholar
Inaba, H. and Kobayashi, T.. (1969). Laser-Raman radar for chemical analysis of polluted air. Nature 224(5215), 170172. doi: https://doi.org/10.1038/224170a0.CrossRefGoogle ScholarPubMed
Melfi, S. H., Lawrence, J. D., and McCormick, M. P. (1969). Observation of Raman scattering by water vapor in the atmosphere. Appl. Phys. Lett. 15(9), 295297.Google Scholar
Schotland, R. M. (1969). Some observations of the vertical profile of water vapor by means of a laser optical radar. Proc. 4th Symposium on Remote Sensing of Environment, 273283, PRIM.Google Scholar
Leonard, D. A. (1967). Observation of Raman scattering from the atmosphere using a pulsed nitrogen ultraviolet laser. Nature 216(5111), 142143.Google Scholar
Cooney, J. A. (1968). Measurements on the Raman component of laser atmospheric backscatter. Appl. Phys. Lett. 12(2), 4042. doi: https://doi.org/10.1063/1.1651884.CrossRefGoogle Scholar
Whiteman, D. N. (2003). Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations. Appl. Opt. 42(15), 25712592.CrossRefGoogle ScholarPubMed
Whiteman, D. N. (2003). Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols. Appl. Opt. 42(15), 25932608.Google Scholar
Fenner, W. R., H. A. Hyatt, J. M. Kellam and S. P. S. Porto (1973), Raman cross section of some simple gases, Jour. Opt. Soc. Am. 63, 73–77.Google Scholar
Gorshelev, V., Serdyuchenko, A., Weber, M et al. (2014). High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K. Atmos. Meas. Tech., 7(2), 609624. doi: https://doi.org/10.5194/amt-7-609-2014.Google Scholar
Gimmestad, G. G. (2005). Differential-absorption lidar for ozone and industrial emissions. In Chapter 7 in Lidar: Range-Resolved Optical Remote Sensing of the atmosphere, Weitkamp, C., ed., Springer-Verlag.Google Scholar
Godin, S., Carswell, A. I., Donovan, D. P. et al. (1999). Ozone differential absorption lidar algorithm inter-comparison. Appl. Opt. 38(30), 62256236.Google Scholar
McDermid, I. S., Godin, S. M., and Lindqvist, L. O.. (1990). Ground-based laser DIAL system for long-term measurements of stratospheric ozone. Appl. Opt. 29(25), 3603–3612.CrossRefGoogle ScholarPubMed
Zhao, Y. Z., Hardesty, R. M., and Post, M. J.. (1992). Multibeam transmitter for signal dynamic range reduction in incoherent lidar systems. Appl. Opt. 31(36), 76237632.Google Scholar
Bösenberg, J. (2005), Differential-absorption lidar for water vapor and temperature profiling. Chapter 8 in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Weitkamp, C, ed., Springer-Verlag.Google Scholar
Thomason, L. and Osborn, M.. (1992). Lidar conversion parameters derived from SAGE-II extinction measurements. Geophysical Research Letters, 19(16), 16551658.CrossRefGoogle Scholar
McCormic, M. P. (2005). Airborne and spaceborne Lidar. Chapter 13 in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Weitkamp, C., ed., Springer-Verlag.Google Scholar
Hostetler, C. A., Behrenfeld, M. J., Hu, Y.-X et al. (2018). Spaceborne lidar in the study of marine systems. Annual Review Marine Science, 10(1): 121147, https://doi.org/10.1146/annurev-marine-121916-063335.CrossRefGoogle Scholar
von Cossart, G., Fielder, J., and von Zahn, U.. (1999). Size distributions of NLC particles as determined from 3-color observations of NLC by ground-based lidar. Geophys. Res. Lett., 26(11), 15131516.CrossRefGoogle Scholar
Bissonnette, L. R. (2005). Lidar and multiple scattering. Chapter 3 in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Weitkamp, C., ed., Springer, pp. 43100.Google Scholar
Takeuchi, N. (2005). Elastic lidar measurement of the troposphere (2005). In Laser Remote Sensing, Fujii, T. and Fukuchi, T., eds., CRC Press, Taylor & Francis Group, pp. 123168.Google Scholar
Calpini, B. and Simionov, V.. (2005). Trace gas species detection in the lower atmosphere by lidar: From remote sensing of atmospheric pollutants to possible air pollution abatement strategies. In Laser Remote Sensing, Fujii, T. and Fukuchi, T., eds., CRC Press, Taylor & Francis Group, pp. 123168.Google Scholar
Raimondi, V., Cecchi, G., Pantani, L., and Chiari, R.. (1998). Fluorescence lidar monitoring of historic buildings. Appl. Opt. 37(6), 10891098.CrossRefGoogle ScholarPubMed
Clynes, T. (2018). “Exclusive: Laser Scans Reveal Maya ‘Megalopolis’ below Guatemalan Jungle,” National Geographic, February 1 issue.Google Scholar
Neff, T. (2018). The Laser That’s Changing the World: The Amazing Stories behind Lidar, from 3D Mapping to Self-Driving Cars. Prometheus Books.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×