Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T16:48:50.001Z Has data issue: false hasContentIssue false

Core Section

Published online by Cambridge University Press:  03 March 2022

Thomas F. Kelly
Affiliation:
Steam Instruments, Inc.
Brian P. Gorman
Affiliation:
Colorado School of Mines
Simon P. Ringer
Affiliation:
University of Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Atomic-Scale Analytical Tomography
Concepts and Implications
, pp. 53 - 198
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Kelly, T. F., Miller, M. K., Rajan, K., and Ringer, S. P., “Atomic-Scale Tomography: A 2020 Vision,” Microsc. Microanal., vol. 19, no. 3, pp. 652664, 2013.Google Scholar
Krivanek, O. L. et al., “Atom-by-Atom Structural and Chemical Analysis by Annular Dark-Field Electron Microscopy,” Nature, vol. 464, pp. 571–574, Mar. 2010, doi: https://doi.org/10.1038/nature08879.Google Scholar
Muller, D. A. et al., “Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy,” Science, vol. 319, no. 5866, pp. 10731076, Feb. 2008, doi: https://doi.org/10.1126/science.1148820.CrossRefGoogle ScholarPubMed
Saghi, Z. and Midgley, P. A., “Electron Tomography in the (S)TEM: From Nanoscale Morphological Analysis to 3D Atomic Imaging,” Annu. Rev. Mater. Res., vol. 42, no. 1, pp. 5979, 2012, doi: https://doi.org/10.1146/annurev-matsci-070511-155019.Google Scholar
Midgley, P. A. and Saghi, Z., “Electron Tomography in Solid State and Materials Science – An Introduction,” Curr. Opin. Solid State Mater. Sci., vol. 17, no. 3, pp. 8992, Jun. 2013, doi: https://doi.org/10.1016/j.cossms.2013.07.006.CrossRefGoogle Scholar
Bals, S., Aert, S. V., and Tendeloo, G. V., “High Resolution Electron Tomography,” Curr. Opin. Solid State Mater. Sci., vol. 17, no. 3, pp. 107114, 2013, doi: https://doi.org/10.1016/j.cossms.2013.03.001.Google Scholar
Van Aert, S., Batenburg, K. J., Rossell, M. D., Erni, R., and Van Tendeloo, G., “Three-Dimensional Atomic Imaging of Crystalline Nanoparticles,” Nature, vol. 470, no. 7334, pp. 374377, Feb. 2011, doi: https://doi.org/10.1038/nature09741.Google Scholar
den Dekker, A. J., Van Aert, S., van den Bos, A., and Van Dyck, D., “Maximum Likelihood Estimation of Structure Parameters from High Resolution Electron Microscopy Images. Part I: A Theoretical Framework,” Ultramicroscopy, vol. 104, no. 2, pp. 83106, Sep. 2005, doi: https://doi.org/10.1016/j.ultramic.2005.03.001.Google Scholar
Van Aert, S. et al., “Quantitative Atomic Resolution Mapping Using High-Angle Annular Dark Field Scanning Transmission Electron Microscopy,” Ultramicroscopy, vol. 109, no. 10, pp. 12361244, Sep. 2009, doi: https://doi.org/10.1016/j.ultramic.2009.05.010.Google Scholar
Batenburg, K. J., “A Network Flow Algorithm for Reconstructing Binary Images from Discrete X-rays,” J. Math. Imaging Vis., vol. 27, no. 2, pp. 175191, Feb. 2007, doi: https://doi.org/10.1007/s10851-006-9798-2.Google Scholar
Jinschek, J. R., Batenburg, K. J., Calderon, H. A. et al., “3-D Reconstruction of the Atomic Positions in a Simulated Gold Nanocrystal Based on Discrete Tomography: Prospects of Atomic Resolution Electron Tomography,” Ultramicroscopy, vol. 108, no. 6, pp. 589604, May 2008, doi: https://doi.org/10.1016/j.ultramic.2007.10.002.CrossRefGoogle Scholar
Kim, H., Zhang, J. Y., Raghavan, S., and Stemmer, S., “Direct Observation of Sr Vacancies in SrTiO3 by Quantitative Scanning Transmission Electron Microscopy,” Phys. Rev. X, vol. 6, no. 4, p. 041063, Dec. 2016, doi: https://doi.org/10.1103/PhysRevX.6.041063.Google Scholar
Lee, E. et al., “Radiation Dose Reduction and Image Enhancement in Biological Imaging through Equally-Sloped Tomography,” J. Struct. Biol., vol. 164, no. 2, pp. 221227, Nov. 2008, doi: https://doi.org/10.1016/j.jsb.2008.07.011.Google Scholar
Scott, M. C. et al., “Electron Tomography at 2.4-Angstrom Resolution,” Nature, vol. 483, pp. 444447, 2012.Google Scholar
Xu, R. et al., “Three-Dimensional Coordinates of Individual Atoms in Materials Revealed by Electron Tomography,” Nat. Mater., vol. 14, 10991103, Sep. 2015, doi: https://doi.org/10.1038/nmat4426.CrossRefGoogle ScholarPubMed
Yang, Y. et al., “Deciphering Chemical Order/Disorder and Material Properties at the Single-Atom Level,” Nature, vol. 542, no. 7639, pp. 7579, Feb. 2017, doi: https://doi.org/10.1038/nature21042.Google Scholar
Goris, B. et al., “Atomic-Scale Determination of Surface Facets in Gold Nanorods,” Nat. Mater., vol. 11, no. 11, pp. 930935, Nov. 2012, doi: https://doi.org/10.1038/nmat3462.Google Scholar
Lepinay, K., Lorut, F., Pantel, R., and Epicier, T., “Chemical 3D Tomography of 28nm High K Metal Gate Transistor: STEM XEDS Experimental Method and Results,” Micron, vol. 47, pp. 4349, Apr. 2013, doi: https://doi.org/10.1016/j.micron.2013.01.004.Google Scholar
Slater, T. J. A., Janssen, A., Camargo, P. H. C. et al., “STEM-EDX Tomography of Bimetallic Nanoparticles: A Methodological Investigation,” Ultramicroscopy, vol. 162, pp. 6173, Mar. 2016, doi: https://doi.org/10.1016/j.ultramic.2015.10.007.Google Scholar
Jarausch, K., Thomas, P., Leonard, D. N., Twesten, R., and Booth, C. R., “Four-Dimensional STEM-EELS: Enabling Nano-scale Chemical Tomography,” Ultramicroscopy, vol. 109, no. 4, pp. 326337, Mar. 2009, doi: https://doi.org/10.1016/j.ultramic.2008.12.012.CrossRefGoogle ScholarPubMed
Voyles, P., Muller, D. A., and Kirkland, F. I., “Depth-Dependent Imaging of Individual Dopant Atoms in Silicon,” Microsc. Microanal., vol. 10, no. 2, pp. 291300, 2004.Google Scholar
Borisevich, A. Y., Lupini, A. R., and Pennycook, S. J., “Depth Sectioning with the Aberration-Corrected Scanning Transmission Electron Microscope,” Proc. Natl. Acad. Sci., vol. 103, no. 9, pp. 30443048, Feb. 2006, doi: https://doi.org/10.1073/pnas.0507105103.Google Scholar
Xin, H. L., Intaraprasonk, V., and Muller, D. A., “Depth Sectioning of Individual Dopant Atoms with Aberration-Corrected Scanning Transmission Electron Microscopy,” Appl. Phys. Lett., vol. 92, no. 1, p. 013125, Jan. 2008, doi: 10.1063/1.2828990.Google Scholar
Wang, P., Behan, G., Kirkland, A. I., and Nellist, P. D., “Nanoscale Energy-Filtered Scanning Confocal Electron Microscopy Using a Double-Aberration-Corrected Transmission Electron Microscope,” Phys. Rev. Lett., vol. 104, no. 20, p. 200801, 2010, doi: https://doi.org/10.1103/PHYSREVLETT.104.200801.Google Scholar
Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston: Springer US, 2011.CrossRefGoogle Scholar
Ophus, C., Ercius, P., Sarahan, M., Czarnik, C., and Ciston, J., “Recording and Using 4D-STEM Datasets in Materials Science,” Microsc. Microanal., vol. 20, no. S3, pp. 6263, Aug. 2014, doi: https://doi.org/10.1017/S1431927614002037.Google Scholar
Ophus, C., “Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond,” Microsc. Microanal., vol. 25, no. 3, pp. 563582, Jun. 2019, doi: https://doi.org/10.1017/S1431927619000497.Google Scholar
Savitzky, B. H. et al., “py4DSTEM: A Software Package for Multimodal Analysis of Four-Dimensional Scanning Transmission Electron Microscopy Datasets,” ArXiv200309523 Cond-Mat, Mar. 2020, Accessed: May 19, 2020. [Online]. Available: http://arxiv.org/abs/2003.09523.Google Scholar
A. Clausen et al., LiberTEM/LiberTEM: 0.5.1. Zenodo, 2020.Google Scholar
Johnstone, D. N., Martineau, B. H., Crout, P., Midgley, P. A., and Eggeman, A. S., “Density-Based Clustering of Crystal Orientations and Misorientations and the orix Python Library,” ArXiv200102716 Cond-Mat, Jan. 2020, Accessed: Oct. 19, 2020. [Online]. Available: http://arxiv.org/abs/2001.02716.Google Scholar
Humphry, M. J., Kraus, B., Hurst, A. C., Maiden, A. M., and Rodenburg, J. M., “Ptychographic Electron Microscopy using High-Angle Dark-Field Scattering for Sub-nanometre Resolution Imaging,” Nat. Commun., vol. 3, no. 1, Art. no. 1, Mar. 2012, doi: https://doi.org/10.1038/ncomms1733.Google Scholar
Nellist, P. D. and Rodenburg, J. M., “Electron Ptychography. I. Experimental Demonstration beyond the Conventional Resolution Limits,” Acta Crystallogr. A, vol. 54, no. 1, Art. no. 1, Jan. 1998, doi: https://doi.org/10.1107/S0108767397010490.Google Scholar
Jiang, Y. et al., “Electron Ptychography of 2D Materials to Deep Sub-ångström Resolution,” Nature, vol. 559, no. 7714, pp. 343349, Jul. 2018, doi: https://doi.org/10.1038/s41586-018-0298-5.Google Scholar
Müller, E. W., “Resolution of the Atomic Structure of a Metal Surface by the Field Ion Microscope,” J. Appl. Phys., vol. 27, pp. 474476, 1956.Google Scholar
Beavan, L. A., Scanlan, R. M., and Seidman, D. N., “The Defect Structure of Depleted Zones in Irradiated Tungsten,” ACTA Metall., vol. 19, pp. 13391350, 1971.Google Scholar
Seidman, D. N., “The Direct Observation of Point Defects in Irradiated or Quenched Metals by Quantitative Field Ion Microscopy,” J. Phys. F. Met. Phys., vol. 3, pp. 393421, 1973.Google Scholar
Vurpillot, F., Gilbert, M., and Deconihout, B., “Towards the Three-Dimensional Field Ion Microscope,” Surf. Interface Anal., vol. 39, no. 2–3, pp. 273277, 2007, doi: https://doi.org/10.1002/sia.2490.Google Scholar
Katnagallu, S. et al., “Imaging Individual Solute Atoms at Crystalline Imperfections in Metals,” New J. Phys., vol. 21, no. 12, p. 123020, Dec. 2019, doi: https://doi.org/10.1088/1367-2630/ab5cc4.Google Scholar
Kim, Y. and Owari, M., “Study of the Ionization in a Field Ion Microscope Using Pulsed-Laser,” E-J. Surf. Sci. Nanotechnol., vol. 16, pp. 190192, 2018, doi: https://doi.org/10.1380/ejssnt.2018.190.Google Scholar
Liddicoat, P. V., “Systems and Methods for Using Multimodal Imaging to Determine Structure and Atomic Composition of Specimens,” US Patent: US10121636B2, Nov. 06, 2018.Google Scholar
Kelly, T. F., “Kinetic-Energy Discrimination for Atom Probe Tomography,” Micros. Microanal., vol. 17, no. 1, pp. 114, 2011.Google Scholar
Giddings, A. D., Prosa, T. J., Olson, D., Clifton, P. H., and Larson, D. J., “Reverse Engineering at the Atomic Scale: Competitive Analysis of a Gallium-Nitride-Based Commercial Light-Emitting Diode,” Microsc. Today, vol. 2014, no. September, pp. 1217, Sep. 2014, doi: https://doi.org/10.1017/2 S1551929514000819.Google Scholar
Suttle, J. R., Kelly, T. F., and McDermott, R. F., “A Superconducting Ion Detection Scheme for Atom Probe Tomography,” presented at the Atom Probe Tomography and Microscopy 2016: from Science to Industry, Gyeongju, Korea, Jun. 2016.Google Scholar
Norden, H. and Bowkett, K. M., “Electron Microscope Holders for Viewing Thin Wire Specimens and Field-Ion Microscope Tips,” J. Sci. Instrum., vol. 44, pp. 238240, 1967.CrossRefGoogle Scholar
Walck, S. D. and Hren, J. J., “Fim/Iap/Tem Studies of Ion Implanted Nickel Emitters,” MRS Online Proc. Libr. Arch., vol. 41, ed 1984, doi: https://doi.org/10.1557/PROC-41-325.Google Scholar
Gorman, B., Diercks, D., Salmon, N. et al., “Hardware and Techniques for Cross-correlative TEM and Atom Probe Analysis,” Microsc. Today, vol. 16, no. 4, pp. 4247, 2008.Google Scholar
Kelly, T. F., “Atomic-Scale Analytical Tomography,” Microsc. Microanal., vol. 23, no. 1, pp. 3445, 2017, doi: https://doi.org/10.1017/S1431927617000125.Google Scholar
Ceguerra, A., Breen, A., Cairney, J., Ringer, S., and Gorman, B., “Integrative Atom Probe Tomography Using Scanning Transmission Electron Microscopy-Centric Atom Placement as a Step Toward Atomic-Scale Tomography,” Microsc. Microanal., vol. 27, no. 1, pp. 140148, 2020, doi: https://doi.org/10.1017/S1431927620024873Google Scholar
Gorman, B. P., “Systems and Methods of Aberration Correction for Atom Probe Tomography,” US Patent: US20190318907A1, Oct. 17, 2019.Google Scholar

References

Bas, P., Bostel, A., Deconihout, B., and Blavette, D., “A General Protocol for the Reconstruction of 3D Atom Probe Data,” Appl. Surf. Sci., vol. 87/88, pp. 298304, 1995.Google Scholar
Miller, M. K., “Atom Probe Tomography,” in Microscopy for Nanotechnology, 2004.Google Scholar
Larson, D. J., Gault, B., Geiser, B. P., De Geuser, F., and Vurpillot, F., “Atom Probe Tomography Spatial Reconstruction: Status and Directions,” Curr. Opin. Solid State Mater. Sci., vol. 17, no. 5, pp. 236247, Oct. 2013, doi: https://doi.org/10.1016/j.cossms.2013.09.002.Google Scholar
Lefebvre, W., Vurpillot, F., and Sauvage, X., Atom Probe Tomography: Put Theory into Practice. London: Academic Press, 2016.Google Scholar
Cerezo, A., Warren, P. J., and Smith, G. D. W., “Some Aspects of Image Projection in the Field-Ion Microscope,” Ultramicroscopy, vol. 79, pp. 251257, 1999.Google Scholar
Larson, D. J., Geiser, B. P., Prosa, T. J., Ulfig, R., and Kelly, T. F., “Non-Tangential Continuity Reconstruction in Atom Probe Tomography Data,” Microsc. Microanal., vol. 17, no. S2, pp. 740741, 2011.Google Scholar
Gomer, R. and Swanson, L. W., “Theory of Field Desorption,” J. Chem. Phys., vol. 38, no. 7, pp. 16131629, 1963.Google Scholar
Gomer, R., “Field Emission, Field Ionization, and Field Desorption,” Surf. Sci., vol. 299/300, pp. 129152, 1994.Google Scholar
Kirchhofer, R. et al., “Quantifying Compositional Homogeneity in Pb(Zr,Ti)O3 Using Atom Probe Tomography,” J. Am. Ceram. Soc., vol. 97, no. 9, pp. 26772697, 2014, doi: https://doi.org/10.1111/jace.13135.Google Scholar
Wilkes, T. D., Smith, G. D. W., and Smith, D. A., “On the Quantitative Analysis of Field-Ion Micrographs,” Metallography, vol. 7, pp. 403430, 1974.CrossRefGoogle Scholar
Vurpillot, F., Gilbert, M., and Deconihout, B., “Towards the Three-Dimensional Field Ion Microscope,” Surf. Interface Anal., vol. 39, no. 2–3, pp. 273277, 2007.Google Scholar
Dagan, M., Gault, B., Smith, G. D. W., Bagot, P. A. J., and Moody, M. P., “Automated Atom-by-Atom Three-Dimensional (3D) Reconstruction of Field Ion Microscopy Data,” Microsc. Microanal., vol. 23, no. 2, pp. 255268, 2017, doi: https://doi.org/10.1017/S1431927617000277.Google Scholar
Kelly, T. F., “Kinetic-Energy Discrimination for Atom Probe Tomography,” Micros. Microanal., vol. 17, no. 1, pp. 114, 2011.Google Scholar
Fleischmann, C., Paredis, K., Melkonyan, D., and Vandervorst, W., “Revealing the 3-Dimensional Shape of Atom Probe Tips by Atomic Force Microscopy,” Ultramicroscopy, vol. 194, pp. 221226, Nov. 2018, doi: https://doi.org/10.1016/j.ultramic.2018.08.010.Google Scholar
Williams, D. B. and Carter, C. B., Transmission Electron Microscopy, 2nd ed., 4 vols. New York, NY: Springer, 2009.Google Scholar
Katnagallu, S. et al., “Imaging Individual Solute Atoms at Crystalline Imperfections in Metals,” New J. Phys., vol. 21, no. 12, p. 123020, Dec. 2019, doi: https://doi.org/10.1088/1367-2630/ab5cc4.Google Scholar
Liddicoat, P. V., “Systems and Methods for Using Multimodal Imaging to Determine Structure and Atomic Composition of Specimens.” US Patent: US10121636B2, Nov. 6, 2018.Google Scholar
Ceguerra, A. V., Gorman, B. P., Breen, A. J., and Ringer, S. P., “Method for Constructing ASAT Images,” unpublished research, 2020.Google Scholar
Gorman, B. P., Diercks, D., Salmon, N. et al., “Hardware and Techniques for Cross-Correlative TEM and Atom Probe Analysis,” Micros. Today, vol. 16, no. 4, pp. 4247, 2008.Google Scholar
Thompson, K., Lawrence, D. J., Larson, D. J. et al., “In-Situ Site-Specific Specimen Preparation for Atom Probe Tomography,” Ultramicroscopy, vol. 107, no. 2–3, pp. 131139, 2007.Google Scholar
Zheng, F., Migunov, V., Caron, J. et al., “Three-Dimensional Electric Field Mapping of an Electrically Biased Atom Probe Needle Using Off-Axis Electron Holography,” Micros. Microanal., vol. 25, no. S2, pp. 326327, 2019, doi: https://doi.org/10.1017/S1431927619002368.Google Scholar
Wu, M., Tafel, A., Hommelhoff, P., and Spiecker, E., “Determination of 3D Electrostatic Field at an Electron Nano-emitter,” Appl. Phys. Lett., vol. 114, no. 1, p. 013101, Jan. 2019, doi: https://doi.org/10.1063/1.5055227.Google Scholar
Gorman, B. P., “Systems and Methods of Aberration Correction for Atom Probe Tomography.” US Patent: US20190318907A1, Oct. 17, 2019.Google Scholar
Diercks, D. R. and Gorman, B. P., “Nanoscale Measurement of Laser-Induced Temperature Rise and Field Evaporation Effects in CdTe and GaN,” J. Phys. Chem. C, vol. 119, no. 35, pp. 2062320631, Sep. 2015, doi: https://doi.org/10.1021/acs.jpcc.5b02126.Google Scholar
Vurpillot, F., Gault, B., Geiser, B. P., and Larson, D. J., “Reconstructing Atom Probe Data: A Review,” Ultramicroscopy, vol. 132, pp. 1930, Sep. 2013, doi: https://doi.org/10.1016/j.ultramic.2013.03.010.Google Scholar
Diercks, D. R. and Gorman, B. P., “Self-Consistent Atom Probe Tomography Reconstructions Utilizing Electron Microscopy,” Ultramicroscopy, vol. 195, pp. 3246, Dec. 2018, doi: https://doi.org/10.1016/j.ultramic.2018.08.019.Google Scholar
Petersen, T. C. and Ringer, S. P., “Electron Tomography Using a Geometric Surface-Tangent Algorithm: Application to Atom Probe Specimen Morphology,” J. Appl. Phys., vol. 105, p. 103518, 2009.Google Scholar
Petersen, T. C. and Ringer, S. P., “An Electron Tomography Algorithm for Reconstructing 3D Morphology Using Surface Tangents of Projected Scattering Interfaces,” Comput. Phys. Commun., vol. 181, no. 3, pp. 676682, 2010.Google Scholar
Ren, D., Ophus, C., Chen, M., and Waller, L., “A Multiple Scattering Algorithm for Three Dimensional Phase Contrast Atomic Electron Tomography,” Ultramicroscopy, vol. 208, p. 112860, Jan. 2020, doi: https://doi.org/10.1016/j.ultramic.2019.112860.Google Scholar
Haley, D., Petersen, T., Ringer, S. P., and Smith, G. D. W., “Atom Probe Trajectory Mapping Using Experimental Tip Shape Measurements,” J. Microsc., vol. 244, no. 2, pp. 170180, Nov. 2011, doi: https://doi.org/10.1111/j.1365-2818.2011.03522.x.Google Scholar
Haley, D., Moody, M. P., and Smith, G. D. W., “Level Set Methods for Modelling Field Evaporation in Atom Probe,” Microsc. Microanal., vol. 19, no. 6, pp. 17091717, 2013.Google Scholar
Vurpillot, F., Bostel, A., and Blavette, D., “The Shape of Field Emitters and the Ion Trajectories in Three-Dimensional Atom Probes,” J. Microsc., vol. 196, no. 3, pp. 332336, Apr. 1999.Google Scholar
Vurpillot, F., “Etude de la Fonction de Transfert Point-Image de la Sonde Atomique Tomographique,” University of Rouen, Rouen, 2001.Google Scholar
Geiser, B. P. et al., “A System for Simulation of Tip Evolution under Field Evaporation,” Micros. Microanal., vol. 15, no. S2, pp. 302303, 2009.Google Scholar
Oberdorfer, C., Eich, S. M., and Schmitz, G., “A Full-Scale Simulation Approach for Atom Probe Tomography,” Ultramicroscopy, vol. 128, pp. 5567, 2013, doi: https://doi.org/10.1016/j.ultramic.2013.01.005.Google Scholar
Marquis, E. A., Geiser, B. P., Prosa, T. J., and Larson, D. J., “Evolution of Tip Shape during Field Evaporation of Complex Multilayer Structures,” J. Microsc., vol. 241, no. 3, pp. 225233, 2011.CrossRefGoogle ScholarPubMed
Kelly, T. F., Miller, M. K., Rajan, K., and Ringer, S. P., “Atomic-Scale Tomography: A 2020 Vision,” Micros. Microanal., vol. 19, no. 3, pp. 652664, 2013.Google Scholar

References

Kirchhofer, R., Diercks, D. R., and Gorman, B. P., “Electron Diffraction and Imaging for Atom Probe Tomography,” Rev. Sci. Instrum., vol. 89, no. 5, p. 053706, May 2018, doi: https://doi.org/10.1063/1.4999484.Google Scholar
Nordén, H. and Bowkett, K. M., “Electron Microscope Holders for Viewing Thin Wire Specimens and Field-Ion Microscope Tips,” J. Sci. Instrum., vol. 44, pp. 238240, 1967.Google Scholar
Fischione, P. E., Haugh, J. J., and Burke, M. G., “An Advanced Technique for the Preparation and TEM Examination of FIM Specimens,” J. Phys. Paris Colloq., vol. 50, pp. 555560, 1989.Google Scholar
Instruments, Fischione, “2Model 2050 | Fischione,” Model 2050 On-Axis Rotation Tomography Holder, 2020. www.fischione.com/products/holders/model-2050-axis-rotation-tomography-holder (accessed May 31, 2020).Google Scholar
Kotula, P. G., Brewer, L. N., Michael, J., and Giannuzzi, L., “Computed Tomographic Spectral Imaging: 3D STEM-EDS Spectral Imaging,” Microsc. Microanal., vol. 13, no. S02, pp. 13241325, Aug. 2007, doi: https://doi.org/10.1017/S1431927607071851.Google Scholar
Gorman, B. P., Improving AP Reconstructions through Combined FIB, STEM, and LEAP. M&M 2006, 2006.Google Scholar
Gorman, B. P., Diercks, D., Salmon, N. et al., “Hardware and Techniques for Cross-Correlative TEM and Atom Probe Analysis,” Microsc. Today, vol. 16, no. 4, pp. 4247, 2008.Google Scholar
Thompson, K., Lawrence, D. J., Larson, D. J. et al., “In-Situ Site-Specific Specimen Preparation for Atom Probe Tomography,” Ultramicroscopy, vol. 107, no. 2–3, pp. 131139, 2007.Google Scholar
Miller, M. K., “Sculpting Needle-Shaped Atom Probe Specimens with a Dual Beam FIB,” Microsc. Microanal., vol. 11, p. 808, 2005.CrossRefGoogle Scholar
Kirchhofer, R., “Development of a Dynamic Atom Probe,” Ph.D. thesis, Colorado School of Mines, Golden, Colorado, 2014.Google Scholar
Diercks, D. R. and Gorman, B. P., “Self-Consistent Atom Probe Tomography Reconstructions Utilizing Electron Microscopy,” Ultramicroscopy, vol. 195, pp. 3246, Dec. 2018, doi: https://doi.org/10.1016/j.ultramic.2018.08.019.Google Scholar
Burton, G. L., Ricote, S., Foran, B. J., Diercks, D. R., and Gorman, B. P., “Quantification of Grain Boundary Defect Chemistry in a Mixed Proton-Electron Conducting Oxide Composite,” J. Am. Ceram. Soc., vol. 103, no. 5, pp. 32173230, 2020, doi: https://doi.org/10.1111/jace.17014.Google Scholar
Stokes, A., Al-Jassim, M., Diercks, D., Clarke, A., and Gorman, B., “Impact of Wide-Ranging Nanoscale Chemistry on Band Structure at Cu(In, Ga)Se 2 Grain Boundaries,” Sci. Rep., vol. 7, no. 1, p. 14163, Oct. 2017, doi: https://doi.org/10.1038/s41598-017-14215-0.Google Scholar
Stokes, A., Al-Jassim, M., Diercks, D. R., Egaas, B., and Gorman, B., “3-D Point Defect Density Distributions in Thin Film Cu(In,Ga)Se2 Measured by Atom Probe Tomography,” Acta Mater., vol. 102, pp. 3237, 2016.CrossRefGoogle Scholar
Gorman, B. P., Burton, G., and Diercks, D. R., “Utilizing Atom Probe Tomography for 3-D Quantification of Point Defects,” Microsc. Microanal., vol. 23, no. S1, pp. 15741575, Jul. 2017, doi: https://doi.org/10.1017/S1431927617008534.Google Scholar
Clark, D. R. et al., “Probing Grain-Boundary Chemistry and Electronic Structure in Proton-Conducting Oxides by Atom Probe Tomography,” Nano Lett., vol. 16, no. 11, pp. 69246930, Nov. 2016, doi: https://doi.org/10.1021/acs.nanolett.6b02918.Google Scholar
Diercks, D. R. et al., “Three-Dimensional Quantification of Composition and Electrostatic Potential at Individual Grain Boundaries in Doped Ceria,” J. Mater. Chem. A, vol. 4, no. 14, pp. 51675175, Mar. 2016, doi: https://doi.org/10.1039/C5TA10064 J.Google Scholar
Diercks, D. R., Gorman, B. P., Manerbino, A., and Coors, G., “Atom Probe Tomography of Yttrium-Doped Barium-Cerium-Zirconium Oxide with NiO Addition,” J. Am. Ceram. Soc., vol. 97, no. 10, pp. 33013306, Oct. 2014, doi: https://doi.org/10.1111/jace.13093.Google Scholar
Kirchhofer, R., Teague, M. C., and Gorman, B. P., “Thermal Effects on Mass and Spatial Resolution during Laser Pulse Atom Probe Tomography of Cerium Oxide,” J. Nucl. Mater., vol. 436, no. 1–3, pp. 2328, 2013.Google Scholar
LeBlanc, E. G. et al., “Determining and Controlling the Magnesium Composition in CdTe/CdMgTe Heterostructures,” J. Electron. Mater., vol. 46, no. 9, pp. 53795385, Sep. 2017, doi: https://doi.org/10.1007/s11664-017-5589-3.Google Scholar
Kuzmina, M., Herbig, M., Ponge, D., Sandlobes, S., and Raabe, D., “Linear Complexions: Confined Chemical and Structural States at Dislocations,” Science, vol. 349, no. 6252, pp. 10801083, Sep. 2015.CrossRefGoogle ScholarPubMed
Gorman, B., Ballard, J., Romanes, M. et al., “Mediation of Electrostatic Discharge Induced Morphological Damage in Atomically Precise Tips,” Microsc. Microanal., vol. 16, no. S2, pp. 480481, 2010.Google Scholar
Beleggia, M., Kasama, T., Larson, D. J. et al., “Towards Quantitative Off-Axis Electron Holographic Mapping of the Electric Field around the Tip of a Sharp Biased Metallic Needle,” J. Appl. Phys., vol. 116, no. 2, p. 024305, 2014, doi: https://doi.org/10.1063/1.4887448.Google Scholar
Zheng, F., Migunov, V., Caron, J. et al., “Three-Dimensional Electric Field Mapping of an Electrically Biased Atom Probe Needle Using Off-Axis Electron Holography,” Microsc. Microanal., vol. 25, no. (Supp. 2), pp. 326327, 2019.Google Scholar
Rose, H., “Nonstandard Imaging Methods in Electron Microscopy,” Ultramicroscopy, vol. 2, pp. 251267, Jan. 1976, doi: https://doi.org/10.1016/S0304-3991(76)91538-2.Google Scholar
Savitzky, B. H. et al., “py4DSTEM: A Software Package for Multimodal Analysis of Four-Dimensional Scanning Transmission Electron Microscopy Datasets,” Microsc. Microanal., Mar. 2020, Accessed: May 19, 2020. [Online]. doi: http://arxiv.org/abs/2003.09523.Google Scholar
Müller, E. W., “Resolution of the Atomic Structure of a Metal Surface by the Field Ion Microscope,” J. Appl. Phys., vol. 27, no. 5, pp. 474476, 1956.Google Scholar
Tsong, T. T., Atom-Probe Field Ion Microscopy: Field Ion Emission and Surfaces and Interfaces at Atomic Resolution. Cambridge, UK: Cambridge University Press, 1990.Google Scholar
Day, A. C., Ph.D. thesis, University of Sydney, 2021. Thesis Advisor: Simon P. Ringer.Google Scholar
Stephenson, L. T. et al., “The Laplace Project: An Integrated Suite for Preparing and Transferring Atom Probe Samples under Cryogenic and UHV Conditions,” PLOS ONE, vol. 13, no. 12, p. e0209211, Dec. 2018, doi: https://doi.org/10.1371/journal.pone.0209211.Google Scholar
Chang, Y. et al., “Ti and Its Alloys as Examples of Cryogenic Focused Ion Beam Milling of Environmentally-Sensitive Materials,” Nat. Commun., vol. 10, no. 1, Art. no. 1, Feb. 2019, doi: https://doi.org/10.1038/s41467-019-08752-7.Google Scholar
Lilensten, L. and Gault, B., “New Approach for FIB-Preparation of Atom Probe Specimens for Aluminum Alloys,” PLOS ONE, vol. 15, no. 4, p. e0231179, Apr. 2020, doi: https://doi.org/10.1371/journal.pone.0231179.CrossRefGoogle ScholarPubMed
Rivas, N. A. et al., “Cryo-Focused Ion Beam Preparation of Perovskite Based Solar Cells for Atom Probe Tomography,” PLOS ONE, vol. 15, no. 1, p. e0227920, Jan. 2020, doi: https://doi.org/10.1371/journal.pone.0227920.Google Scholar
Miller, M. K. and Kelly, T. F., “The Atom TOMography (ATOM) Concept,” Microsc. Microanal., vol. 16 (S2), pp. 18561857, 2010.Google Scholar
Kelly, T. F. et al., “Toward Atomic-Scale Tomography: The ATOM Project,” Microsc. Microanal., vol. 17 (Suppl 2), pp. 708709, 2011, doi: https://doi.org/10.1017/S1431927611004417.Google Scholar
Kelly, T. F., Miller, M. K., Rajan, K., and Ringer, S. P., “Visions of Atomic-Scale Tomography,” Microsc. Today, 2012, doi: https://doi.org/10.1017/S1551929512000211.Google Scholar
Kelly, T. F., Miller, M. K., Rajan, K., and Ringer, S. P., “Atomic-Scale Tomography: A 2020 Vision,” Microsc. Microanal., vol. 19, no. 3, pp. 652664, 2013.Google Scholar
Poppa, H., “High Resolution, High Speed Ultrahigh Vacuum Microscopy,” J. Vac. Sci. Technol. A, vol. 22, no. 5, pp. 19311947, Sep. 2004, doi: https://doi.org/10.1116/1.1786304.Google Scholar
Jungjohann, K. and Carter, C. B., “In Situ and Operando,” in Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry, Carter, C. B. and Williams, D. B., eds. Cham: Springer International Publishing, 2016, pp. 1780.Google Scholar
Ross, F. M. and Minor, A. M., “In Situ Transmission Electron Microscopy,” in Springer Handbook of Microscopy, Hawkes, P. W. and Spence, J. C. H., eds. Cham: Springer International Publishing, 2019, pp. 2–2.Google Scholar
Tromp, R. M. and Ross, F. M., “Advances in In Situ Ultra-High Vacuum Electron Microscopy: Growth of SiGe on Si,” Annu. Rev. Mater. Sci., vol. 30, no. 1, pp. 431449, 2000, doi: https://doi.org/10.1146/annurev.matsci.30.1.431.Google Scholar
Ross, F. M., Tersoff, J., Tromp, R. M., Reuter, M. C., and Bennett, P., “Island Growth of Ge on Si(001) and CoSi2 on Si(111) Studied with UHV Electron Microscopy,” J. Electron Microsc. (Tokyo), vol. 48, no. SUPPL., pp. 10591066, 1999.Google Scholar
Collazo-Davila, C. et al., “Design and Initial Performance of an Ultrahigh Vacuum Sample Preparation Evaluation Analysis and Reaction (SPEAR) System,” Microsc. Microanal., vol. 1, no. 6, pp. 267279, Dec. 1995, doi: https://doi.org/10.1017/S1431927695112672.Google Scholar
Jayaram, G., Plass, R., and Marks, L. D., “UHV-HREM and Diffraction of Surfaces,” Interface Sci., vol. 2, no. 4, pp. 379395, Dec. 1995, doi: https://doi.org/10.1007/BF00222625.Google Scholar
McDonald, M. L., Gibson, J. M., and Unterwald, F. C., “Design of an Ultrahigh‐Vacuum Specimen Environment for High‐Resolution Transmission Electron Microscopy,” Rev. Sci. Instrum., vol. 60, no. 4, pp. 700707, Apr. 1989, doi: https://doi.org/10.1063/1.1141004.Google Scholar
Sun, J. and Li, H., “Chapter Ten – How to Operate a Cryo-Electron Microscope,” in Methods in Enzymology, vol. 481, G. J. Jensen, ed. Press, Academic, 2010, pp. 231249.Google Scholar
Salome, M., Raynaud, B., Schack, M. et al., “A Side-Entry Liquid He Cooled Stage for the Philips EM400 Electron Microscope (Ion Implantation Application),” J. Phys. [E], vol. 18, no. 4, pp. 331333, Apr. 1985, doi: https://doi.org/10.1088/0022-3735/18/4/018.Google Scholar
Murooka, S. and Fujiki, H., “A Side-Entry Helium-Cooled Stage for Electron Microscopy,” Jpn. J. Appl. Phys., vol. 30, no. 2 R, p. 411, Feb. 1991, doi: https://doi.org/10.1143/JJAP.30.411.Google Scholar
Jones, J. S. and Swann, P. R., “Specimen Cooling Holder for Side Entry Transmission Electron Microscopes,” US Patent: US4950901A, Aug. 21, 1990.Google Scholar
Fujiyoshi, Y. et al., “Development of a Superfluid Helium Stage for High-Resolution Electron Microscopy,” Ultramicroscopy, vol. 38, no. 3, pp. 241251, Dec. 1991, doi: https://doi.org/10.1016/0304-3991(91)90159-4.Google Scholar
Minor, A. M., Denes, P., and Muller, D. A., “Cryogenic Electron Microscopy for Quantum Science,” MRS Bull., vol. 44, no. 12, pp. 961966, Dec. 2019, doi: https://doi.org/10.1557/mrs.2019.288.Google Scholar
Pfeil-Gardiner, O., Mills, D. J., Vonck, J., and Kuehlbrandt, W., “A Comparative Study of Single-Particle Cryo-EM with Liquid-Nitrogen and Liquid-Helium Cooling,” IUCrJ, vol. 6, no. 6, pp. 10991105, Nov. 2019, doi: https://doi.org/10.1107/S2052252519011503.CrossRefGoogle ScholarPubMed
Radebaugh, R., “Cryocoolers: The State of the Art and Recent Developments,” J. Phys. Condens. Matter, vol. 21, p. 9, 2009, doi: https://doi.org/10.1088/0953-8984/21/16/164219.Google Scholar
Advanced Research Systems, Inc., “CS202-DMX-20B,” Advanced Research Systems, 2020. www.arscryo.com/cs202-dmx-20b (accessed May 31, 2020).Google Scholar
Janis Research Company, LLC, “Vibration Isolated Closed Cycle Refrigerator Systems,” 2020. www.janis.com/Products/productsoverview/10KelvinCryocoolers/VibrationIsolated10KCryocooler.aspx (accessed May 31, 2020).Google Scholar
Völkl, E., Allard, L. F., and Joy, D. C., eds., Introduction to Electron Holography. Springer US, 1999.Google Scholar
Larson, D. J., Camus, P. P., and Kelly, T. F., “Simulated Electron Beam Trajectories toward a Field Ion Microscopy Specimen,” Appl. Surf. Sci., vol. 67, no. 1–4, pp. 473480, 1993.Google Scholar
Larson, D. J., Camus, P. P., and Kelly, T. F., “Scanning Electron Microscopy in Very High Electric Fields near Field Ion/Emission Specimens,” in 53rd Annual Meeting of the Microscopy Society of America, 1995, pp. 624625.Google Scholar
Petford‐Long, A. K. and Graef, M. D., “Lorentz Microscopy,” in Characterization of Materials, American Cancer Society, 2012, pp. 115.Google Scholar
Gorman, B. P., “Systems and Methods of Aberration Correction for Atom Probe Tomography,” US Patent: US20190318907A1, Oct. 17, 2019.Google Scholar
Chiaramonti, A. N., Miaja-Avila, L., Blanchard, P. T. et al., “A Three-Dimensional Atom Probe Microscope Incorporating a Wavelength-Tuneable Femtosecond-Pulsed Coherent Extreme Ultraviolet Light Source,” MRS Adv., vol. 4, no. 44–45, pp. 23672375, 2019, doi: https://doi.org/10.1557/adv.2019.296.Google Scholar
Chiaramonti, A. N. et al., “Field Ion Emission in an Atom Probe Microscope Triggered by Femtosecond-Pulsed Coherent Extreme Ultraviolet Light,” Microsc. Microanal., vol. 26, no. 2, pp. 258266, Apr. 2020, doi: https://doi.org/10.1017/S1431927620000203.Google Scholar
Migunov, V., London, A., Farle, M., and Dunin-Borkowski, R. E., “Model-Independent Measurement of the Charge Density Distribution along an Fe Atom Probe Needle Using Off-Axis Electron Holography without Mean Inner Potential Effects,” J. Appl. Phys., vol. 117, no. 13, 2015, doi: https://doi.org/10.1063/1.4916609.Google Scholar
Wu, M., Tafel, A., Hommelhoff, P., and Spiecker, E., “Determination of 3D Electrostatic Field at an Electron Nano-Emitter,” Appl. Phys. Lett., vol. 114, no. 1, p. 013101, Jan. 2019, doi: https://doi.org/10.1063/1.5055227.CrossRefGoogle Scholar
Ceguerra, A. V., Breen, A. J., Cairney, J. M., Ringer, S. P., and Gorman, B. P., “Integrative Atom Probe Tomography Using STEM-Centric Atom Placement as a Step Towards Atomic-Scale Tomography,” Microsc. Microanal., vol. 27, no. 1, pp. 140–148, 2020, doi: https://doi.org/10.1017/S1431927620024873Google Scholar
Gorman, B. P., “Systems and Methods of Aberration Correction for Atom Probe Tomography,” US Patent: US10755891B2, Aug. 25, 2020.Google Scholar

References

Arslan, I., Marquis, E. A., Homer, M., Hekmaty, M. A., and Bartelt, N. C., “Towards Better 3-D Reconstructions by Combining Electron Tomography and Atom-Probe Tomography,” Ultramicroscopy, vol. 108, no. 12, pp. 15791585, Nov. 2008, doi: https://doi.org/10.1016/j.ultramic.2008.05.008.Google Scholar
Gorman, B. P., Diercks, D., Salmon, N. et al., “Hardware and Techniques for Cross-Correlative TEM and Atom Probe Analysis,” Microsc. Today, vol. 16, no. 1–4, pp. 4247, 2008.Google Scholar
Gorman, B. P., Puthucode, A., Diercks, D. R., and Kaufman, M. J., “Cross-correlative TEM and Atom Probe Analysis of Partial Crystallisation in NiNbSn Metallic Glasses,” Mater. Sci. Technol., vol. 24, no. 6, pp. 682688, Jun. 2008, doi: https://doi.org/10.1179/174328408x293595.Google Scholar
Lefebvre, W. et al., “HAADF–STEM Atom Counting in Atom Probe Tomography Specimens: Towards Quantitative Correlative Microscopy,” Ultramicroscopy, vol. 159, pp. 403412, 2015, doi: https://doi.org/10.1016/j.ultramic.2015.02.011.Google Scholar
Katnagallu, S. et al., “Imaging Individual Solute Atoms at Crystalline Imperfections in Metals,” New J. Phys., vol. 21, no. 12, p. 123020, Dec. 2019, doi: https://doi.org/10.1088/1367-2630/ab5cc4.Google Scholar
Haley, D., Petersen, T., Ringer, S. P., and Smith, G. D. W., “Atom Probe Trajectory Mapping Using Experimental Tip Shape Measurements,” J. Microsc., vol. 244, no. 2, pp. 170180, Nov. 2011, doi: https://doi.org/10.1111/j.1365-2818.2011.03522.x.Google Scholar
Haley, D., Moody, M. P., and Smith, G. D. W., “Level Set Methods for Modelling Field Evaporation in Atom Probe,” Microsc. Microanal., vol. 19, no. 6, pp. 17091717, 2013.Google Scholar
Vurpillot, F., “Private Communication, Université de Rouen,” presented at the test1, University of Rouen, 2016, [Online]. Available: test2.Google Scholar
Gorman, B. P., “Systems and Methods of Aberration Correction for Atom Probe Tomography,” US Patent: US20190318907A1, Oct. 17, 2019.Google Scholar
Larson, D. J. et al., “Field-Ion Specimen Preparation Using Focused Ion-Beam Milling,” Ultramicroscopy, vol. 79, pp. 287293, 1999.Google Scholar
Miller, M. K., Russell, K. F., Thompson, K., Alvis, R., and Larson, D. J., “Review of Atom Probe FIB-Based Specimen Preparation Methods,” Microsc. Microanal., vol. 13, no. 6, pp. 428436, Nov. 2007, doi: https://doi.org/10.1017/S1431927607070845.Google Scholar
Thompson, K., Lawrence, D. J., Larson, D. J. et al., “In-Situ Site-Specific Specimen Preparation for Atom Probe Tomography,” Ultramicroscopy, vol. 107, no. 2–3, pp. 131139, 2007.Google Scholar
Prosa, T. J. and Larson, D. J., “Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography,” Microsc. Microanal., vol. 23, no. 2, 2017, doi: https://doi.org/10.1017/S1431927616012642.Google Scholar
Burton, G. L., Ricote, S., Foran, B. J., Diercks, D. R., and Gorman, B. P., “Quantification of Grain Boundary Defect Chemistry in a Mixed Proton-Electron Conducting Oxide Composite,” J. Am. Ceram. Soc., vol. 103, no. 5, pp. 32173230, 2020, doi: https://doi.org/10.1111/jace.17014.Google Scholar
Larson, D. J., Camus, P. P., and Kelly, T. F., “Scanning Electron Microscopy in Very High Electric Fields Near Field Ion/Emission Specimens,” in 53rd Annual Meeting of the Microscopy Society of America, 1995, pp. 624625.Google Scholar
Kirchhofer, R., Diercks, D. R., and Gorman, B. P., “Electron Diffraction and Imaging for Atom Probe Tomography,” Rev. Sci. Instrum., vol. 89, no. 5, p. 053706, May 2018, doi: https://doi.org/10.1063/1.4999484.Google Scholar
Dunin-Borkowski, R. E., Kasama, T., McCartney, M. R., and Smith, D. J., “Electron Holography,” in Science of Microscopy, 2 vols., Hawkes, P. W. and Spence, J. C. H., eds. New York: Springer, 2007, pp. 11411195.Google Scholar
Beleggia, M., Kasama, T., Larson, D. J. et al., “Towards Quantitative Off-Axis Electron Holographic Mapping of the Electric Field around the Tip of a Sharp Biased Metallic Needle,” J. Appl. Phys., vol. 116, no. 2, p. 024305, 2014, doi: https://doi.org/10.1063/1.4887448.Google Scholar
Zheng, F., Migunov, V., Caron, J. et al., “Three-Dimensional Electric Field Mapping of an Electrically Biased Atom Probe Needle Using Off-Axis Electron Holography,” Microsc. Microanal., vol. 25, no. S2, pp. 326327, 2019, doi: https://doi.org/10.1017/S1431927619002368.Google Scholar
Rose, H., “Nonstandard Imaging Methods in Electron Microscopy,” Ultramicroscopy, vol. 2, pp. 251267, Jan. 1976, doi: https://doi.org/10.1016/S0304-3991(76)91538-2.Google Scholar
MacLaren, I. et al., “On the Origin of Differential Phase Contrast at a Locally Charged and Globally Charge-Compensated Domain Boundary in a Polar-Ordered Material,” Ultramicroscopy, vol. 154, pp. 5763, Jul. 2015, doi: https://doi.org/10.1016/j.ultramic.2015.03.016.Google Scholar
Lubk, A. and Zweck, J., “Differential Phase Contrast: An Integral Perspective,” Phys. Rev. A, vol. 91, no. 2, p. 023805, Feb. 2015, doi: https://doi.org/10.1103/PhysRevA.91.023805.Google Scholar
Gault, B., Moody, M. P., Cairney, J. M., and Ringer, S. P., “Atom Probe Crystallography,” Mater. Today, vol. 15, no. 9, pp. 378386, Sep. 2012.Google Scholar
Geiser, B. P., Kelly, T. F., Larson, D. J., Schneir, J., and Roberts, J. P., “Spatial Distribution Maps for Atom Probe Tomography,” Microsc. Microanal., vol. 13, no. 6, pp. 437447, 2007.Google Scholar
Babinsky, K., De Kloe, R., Clemens, H., and Primig, S., “A Novel Approach for Site-Specific Atom Probe Specimen Preparation by Focused Ion Beam and Transmission Electron Backscatter Diffraction,” Ultramicroscopy, vol. 144, pp. 918, Sep. 2014, doi: https://doi.org/10.1016/j.ultramic.2014.04.003.Google Scholar
Burton, G. L., Wright, S., Stokes, A. et al., “Orientation Mapping with Kikuchi Patterns Generated from a Focused STEM Probe and Indexing with Commercially Available EDAX Software,” Ultramicroscopy, vol. 209, p. 112882, Feb. 2020, doi: https://doi.org/10.1016/j.ultramic.2019.112882.Google Scholar
Herbig, M., Choi, P.-P., and Raabe, D., “Combining Structural and Chemical Information on the Nanometer Scale by Correlative TEM and APT,” Microsc. Microanal., vol. 19, no. S2, pp. 948949, 2013, doi: https://doi.org/10.1017/S1431927613006739.Google Scholar
Rice, K. P., Keller, R. R., and Stoykovich, M. P., “Specimen-Thickness Effects on Transmission Kikuchi Patterns in the Scanning Electron Microscope,” J. Microsc., vol. 254, no. 3, pp. 129136, Jun. 2014, doi: https://doi.org/10.1111/jmi.12124.Google Scholar
Herbig, M., Choi, P.-P., and Raabe, D., “Combining Structural and Chemical Information at the Nanometer Scale by Correlative Transmission Electron Microscopy and Atom Probe Tomography,” Ultramicroscopy, vol. 153, pp. 3239, Jun. 2015, doi: https://doi.org/10.1016/j.ultramic.2015.02.003.Google Scholar
Chen, Y., Rice, K. P., Prosa, T. J., Marquis, E. A., and Reed, R. C., “Integrated APT/t-EBSD for Grain Boundary Analysis of Thermally Grown Oxide on a Ni-Based Superalloy,” Microsc. Microanal., vol. 21, no. Supplement S3, pp. 687688, Aug. 2015, doi: https://doi.org/10.1017/S1431927615004237.Google Scholar
Rice, K. P., Chen, Y., Prosa, T. J., and Larson, D. J., “Implementing Transmission Electron Backscatter Diffraction for Atom Probe Tomography,” Microsc. Microanal., vol. 22, no. 03, pp. 583588, Jun. 2016, doi: https://doi.org/10.1017/S1431927616011296.Google Scholar
Breen, A. J. et al., “Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data,” Microsc. Microanal., vol. 23, no. 2, pp. 279290, 2017, doi: https://doi.org/10.1017/S1431927616012605.Google Scholar
Guo, W. et al., “Correlative Energy-Dispersive X-Ray Spectroscopic Tomography and Atom Probe Tomography of the Phase Separation in an Alnico 8 Alloy,” Microsc. Microanal., vol. 22, no. 6, pp. 12511260, Dec. 2016, doi: https://doi.org/10.1017/S1431927616012496.Google Scholar
Bachhav, M., Danoix, R., Danoix, F. et al., “Investigation of Wustite (Fe1-xO) by Femtosecond Laser Assisted Atom Probe Tomography,” Ultramicroscopy, vol. 111, pp. 584588, 2011.Google Scholar
Bachhav, M., Danoix, F., Hannoyer, B., Bassat, J. M., and Danoix, R., “Investigation of O-18 Enriched Hematite (α-Fe2O3) by Laser Assisted Atom Probe Tomography,” Int. J. Mass Spectrom., vol. 335, pp. 5760, Feb. 2013, doi: https://doi.org/10.1016/j.ijms.2012.10.012.Google Scholar
Keast, V. J., Scott, A. J., Brydson, R., Williams, D. B., and Bruley, J., “Electron Energy-Loss Near-Edge Structure – a Tool for the Investigation of Electronic Structure on the Nanometre Scale,” J. Microsc., vol. 203, no. 2, pp. 135175, Aug. 2001, doi: https://doi.org/10.1046/j.1365-2818.2001.00898.x.Google Scholar
Jarausch, K., Thomas, P., Leonard, D. N., Twesten, R., and Booth, C. R., “Four-Dimensional STEM-EELS: Enabling Nano-scale Chemical Tomography,” Ultramicroscopy, vol. 109, no. 4, pp. 326337, Mar. 2009, doi: https://doi.org/10.1016/j.ultramic.2008.12.012.Google Scholar
Binev, P., Dahmen, W., DeVore, R. et al., “Compressed Sensing and Electron Microscopy,” in Modeling Nanoscale Imaging in Electron Microscopy, Vogt, T., Dahmen, W., and Binev, P., eds. Springer US, 2012, pp. 73126.Google Scholar
Leary, R., Saghi, Z., Midgley, P. A., and Holland, D. J., “Compressed Sensing Electron Tomography,” Ultramicroscopy, vol. 131, pp. 7091, Aug. 2013, doi: https://doi.org/10.1016/j.ultramic.2013.03.019.Google Scholar
Saghi, Z. et al., “Compressed Sensing Electron Tomography of Needle-Shaped Biological Specimens – Potential for Improved Reconstruction Fidelity with Reduced Dose,” Ultramicroscopy, vol. 160, pp. 230238, Jan. 2016, doi: https://doi.org/10.1016/j.ultramic.2015.10.021.Google Scholar
Egerton, R. F., Li, P., and Malac, M., “Radiation Damage in the TEM and SEM,” Micron, vol. 35, no. 6, pp. 399409, 2004, doi: https://doi.org/10.1016/j.micron.2004.02.003.Google Scholar
Rose, H., “Outline of a Spherically Corrected Semiaplanatic Medium-Voltage TEM,” Optik, vol. 85, pp. 1924, 1990.Google Scholar
Bell, D. C., Mankin, M., Day, R. W., and Erdman, N., “Successful Application of Low Voltage Electron Microscopy to Practical Materials Problems,” Ultramicroscopy, vol. 145, pp. 5665, Oct. 2014, doi: https://doi.org/10.1016/j.ultramic.2014.03.005.Google Scholar
Lee, Z., Rose, H., Lehtinen, O., Biskupek, J., and Kaiser, U., “Electron Dose Dependence of Signal-to-Noise Ratio, Atom Contrast and Resolution in Transmission Electron Microscope Images,” Ultramicroscopy, vol. 145, pp. 312, Oct. 2014, doi: https://doi.org/10.1016/j.ultramic.2014.01.010.Google Scholar
Hren, J. J., “Barriers to AEM: Contamination and Etching,” in Introduction to Analytical Electron Microscopy, Hren, J. J, Goldstein, J. I, and Joy, D. C, eds. New York: Plenum Press, 1979, pp. 481505.Google Scholar
Wall, J. S., “Contamination in the STEM at Ultra High Vacuum,” Scanning Electron Microsc.-1980, pp. 99106, 1980.Google Scholar

References

Gault, B., Moody, M. P., Cairney, J. M., and Ringer, S. P., “Atom Probe Crystallography,” Mater. Today, vol. 15, no. 9, pp. 378386, 2012.Google Scholar
Committee on Integrated Computational Materials Engineering, National Materials Advisory Board, Division on Engineering and Physical Sciences, National Research Council, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security. National Academies Press, 2008.Google Scholar
Eades, J. A. and Steeds, J. W., “Real Space Crystallography,” Phys. Bull., vol. 26, no. 3, pp. 108109, Mar. 1975, doi: https://doi.org/10.1088/0031-9112/26/3/024.Google Scholar
De Rosier, D. J. and Klug, A., “Reconstruction of Three Dimensional Structures from Electron Micrographs,” Nature, vol. 217, no. 5124, pp. 130134, Jan. 1968, doi: https://doi.org/10.1038/217130a0.Google Scholar
Henderson, R. and Unwin, P. N. T., “Three-Dimensional Model of Purple Membrane Obtained by Electron Microscopy,” Nature, vol. 257, no. 5521, pp. 2832, Sep. 1975, doi: https://doi.org/10.1038/257028a0.Google Scholar
Tsong, T. T., Atom-Probe Field Ion Microscopy: Field Ion Emission and Surfaces and Interfaces at Atomic Resolution. Cambridge, UK: Cambridge University Press, 1990.Google Scholar
Walko, R. J. and Muller, E. W., “Self-Imaging of a Surface by Field Desorption,” Phys. Stat. Sol. A, vol. 9, pp. K9K10, 1972.Google Scholar
Yu, Suchorski, Ernst, N, Schmidt, W. A. et al., “Field Desorption and Field Evaporation of Metals,” Prog. Surf. Sci., vol. 53, no. 2–4, pp. 135153, 1996.Google Scholar
Moore, A. J. W. and Spink, J. A., “Field Evaporation from Tungsten and the Bonding of Surface Atoms,” Surf. Sci., vol. 12, pp. 479496, 1968.Google Scholar
Moore, A. J. W. and Spink, J. A., “Field Evaporation of Tungsten Atoms,” Surf. Sci., vol. 17, pp. 262266, 1969.Google Scholar
Moore, A. J. W., “The Simulation of FIM Desorption Patterns,” Philos. Mag. A, vol. 43, no. 3, pp. 803814, 1981.Google Scholar
Cerezo, A., Warren, P. J., and Smith, G. D. W., “Some Aspects of Image Projection in the Field-Ion Microscope,” Ultramicroscopy, vol. 79, pp. 251257, 1999.Google Scholar
Oberdorfer, C., Eich, S. M., and Schmitz, G., “A Full-Scale Simulation Approach for Atom Probe Tomography,” Ultramicroscopy, vol. 128, pp. 5567, 2013, doi: https://doi.org/10.1016/j.ultramic.2013.01.005.Google Scholar
Vurpillot, F. and Oberdorfer, C., “Modeling Atom Probe Tomography: A Review,” Ultramicroscopy, vol. 159, Part 2, pp. 202216, Dec. 2015, doi: https://doi.org/10.1016/j.ultramic.2014.12.013.Google Scholar
Wallace, N. D., Ceguerra, A. V., Breen, A. J., and Ringer, S. P., “On the Retrieval of Crystallographic Information from Atom Probe Microscopy Data via Signal Mapping from the Detector Coordinate Space,” Ultramicroscopy, vol. 189, pp. 6575, Jun. 2018, doi: https://doi.org/10.1016/j.ultramic.2018.02.006.Google Scholar
Haley, D., Bagot, P. A. J., and Moody, M. P., “DF-Fit: A Robust Algorithm for Detection of Crystallographic Information in Atom Probe Tomography Data,” Microsc. Microanal., vol. 25, no. 2, pp. 331337, 2019, doi: https://doi.org/10.1017/S1431927618015507.Google Scholar
Kühbach, M., Breen, A., Herbig, M., and Gault, B., “Building a Library of Simulated Atom Probe Data for Different Crystal Structures and Tip Orientations Using TAPSim,” Microsc. Microanal., vol. 25, pp. 320330, 2019, doi: https://doi.org/10.1017/S1431927618016252.Google Scholar
Gault, B., de Geuser, F., Stephenson, L. T. et al., “Estimation of the Reconstruction Parameters for Atom Probe Tomography,” Microsc. Microanal., vol. 14, no. 4, pp. 296305, 2008.Google Scholar
Gault, B. et al., “Dynamic Reconstruction for Atom Probe Tomography,” Ultramicroscopy, vol. 111, pp. 16191624, 2011.Google Scholar
Day, A. C., Ceguerra, A. V., and Ringer, S. P., “Introducing a Crystallography-Mediated Reconstruction (CMR) Approach to Atom Probe Tomography,” Microsc. Microanal., vol. 25 no. 2, pp. 288300, 2019, doi: https://doi.org/10.1017/S1431927618015593.Google Scholar
Breen, A. J. et al., “Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data,” Microsc. Microanal., vol. 23, no. 2, pp. 279290, 2017, doi: https://doi.org/10.1017/S1431927616012605.Google Scholar
Howe, J. M., Physical Metallurgy: 3-Volume Set. Amsterdam: Elsevier, 2014.Google Scholar
Padmanabhan, K. A. and Gleiter, H., “On the Structure of Grain/interphase Boundaries and Interfaces,” Beilstein J. Nanotechnol., vol. 5, no. 1, pp. 16031615, Sep. 2014, doi: https://doi.org/10.3762/bjnano.5.172.Google Scholar
Dillon, S. J., Tang, M., Carter, W. C., and Harmer, M. P., “Complexion: A New Concept for Kinetic Engineering in Materials Science,” Acta Mater., vol. 55, no. 18, pp. 62086218, Oct. 2007, doi: https://doi.org/10.1016/j.actamat.2007.07.029.Google Scholar
Patala, S., “Understanding Grain Boundaries – the Role of Crystallography, Structural Descriptors and Machine Learning,” Comput. Mater. Sci., vol. 162, pp. 281294, May 2019, doi: https://doi.org/10.1016/j.commatsci.2019.02.047.Google Scholar
Keller, R. R. and Geiss, R. H., “Transmission EBSD from 10 nm Domains in a Scanning Electron Microscope,” J. Microsc., vol. 245, no. 3, pp. 245251, Mar. 2012, doi: https://doi.org/10.1111/j.1365-2818.2011.03566.x.Google Scholar
Trimby, P. W., “Orientation Mapping of Nanostructured Materials Using Transmission Kikuchi Diffraction in the Scanning Electron Microscope,” Ultramicroscopy, vol. 120, pp. 1624, Sep. 2012, doi: https://doi.org/10.1016/j.ultramic.2012.06.004.Google Scholar
Tugcu, K. et al., “Enhanced Grain Refinement of an Al–Mg–Si Alloy by High-Pressure Torsion Processing at 100°C,” Mater. Sci. Eng. A, vol. 552, pp. 415418, Aug. 2012, doi: https://doi.org/10.1016/j.msea.2012.05.063.Google Scholar
Farabi, E., Hodgson, P. D., Rohrer, G. S., and Beladi, H., “Five-Parameter Intervariant Boundary Characterization of Martensite in Commercially Pure Titanium,” Acta Mater., vol. 154, pp. 147160, Aug. 2018, doi: https://doi.org/10.1016/j.actamat.2018.05.023.Google Scholar
Farabi, E., Tari, V., Hodgson, P. D., Rohrer, G. S., and Beladi, H., “On the Grain Boundary Network Characteristics in a Martensitic Ti–6Al–4 V Alloy,” J. Mater. Sci., vol. 55, no. 31, pp. 1529915321, Nov. 2020, doi: https://doi.org/10.1007/s10853-020-05075-7.Google Scholar
DeMott, R., Collins, P., Kong, C. et al., “3D Electron Backscatter Diffraction Study of α Lath Morphology in Additively Manufactured Ti-6Al-4 V,” Ultramicroscopy, vol. 218, p. 113073, Nov. 2020, doi: https://doi.org/10.1016/j.ultramic.2020.113073.Google Scholar
Ganesh, K. J., Kawasaki, M., Zhou, J. P., and Ferreira, P. J., “D-STEM: A Parallel Electron Diffraction Technique Applied to Nanomaterials,” Microsc. Microanal., vol. 16, no. 5, pp. 614621, Oct. 2010, doi: https://doi.org/10.1017/S1431927610000334.Google Scholar
Vincent, R. and Midgley, P. A., “Double Conical Beam-Rocking System for Measurement of Integrated Electron Diffraction Intensities,” Ultramicroscopy, vol. 53, no. 3, pp. 271282, 1994, doi: https://doi.org/10.1016/0304-3991(94)90039-6.CrossRefGoogle Scholar
Rauch, E. F. and Véron, M., “Automated Crystal Orientation and Phase Mapping in TEM,” Mater. Charact., vol. 98, pp. 19, Dec. 2014, doi: https://doi.org/10.1016/j.matchar.2014.08.010.Google Scholar
Ruiz-Zepeda, F., Arizpe-Zapata, J. A., Bahema, D., Ponce, A., and Garcia-Gutierrez, D. I., “Electron Diffraction and Crystal Orientation Phase Mapping Under Scanning Transmission Electron Microscopy,” in Advanced Transmission Electron Microscopy: Applications to Nanomaterials, Deepak, F. L., Mayoral, A., and Arenal, R., eds. Springer International Publishing AG, 2015.Google Scholar
Zuo, J.-M., “Electron Nanodiffraction,” in Springer Handbook of Microscopy, Hawkes, P. W. and Spence, J. C. H., eds. Cham: Springer International Publishing, 2019, pp. 905969.Google Scholar
Savitzky, B. H. et al., “py4DSTEM: A Software Package for Multimodal Analysis of Four-Dimensional Scanning Transmission Electron Microscopy Datasets,” ArXiv200309523 Cond-Mat Physics, Mar. 2020, accessed: May 19, 2020. [Online]. Available: http://arxiv.org/abs/2003.09523.Google Scholar
Yen, H.-W. et al., “Role of Stress-Assisted Martensite in the Design of Strong Ultrafine-Grained Duplex Steels,” Acta Mater., vol. 82, pp. 100114, Jan. 2015, doi: https://doi.org/10.1016/j.actamat.2014.09.017.Google Scholar
Liddicoat, P. V. et al., “Nanostructural Hierarchy Increases the Strength of Aluminium Alloys,” Nat. Commun., vol. 1, p. 63, Sep. 2010, doi: https://doi.org/10.1038/ncomms1062.Google Scholar
Yao, L., Ringer, S. P., Cairney, J. M., and Miller, M. K., “The Anatomy of Grain Boundaries: Their Structure and Atomic-Level Solute Distribution,” Scr. Mater., vol. 69, no. 8, pp. 622625, Oct. 2013, doi: https://doi.org/10.1016/j.scriptamat.2013.07.013.Google Scholar
Kirova, E. M. and Pisarev, V. V., “Morphological Aspect of Crystal Nucleation in Wall-Confined Supercooled Metallic Film,” J. Phys. Condens. Matter, vol. 33, no. 3, p. 034003, Oct. 2020, doi: https://doi.org/10.1088/1361-648X/abba6b.Google Scholar
Ojovan, M. I. and Louzguine-Luzgin, D. V., “Revealing Structural Changes at Glass Transition via Radial Distribution Functions,” J. Phys. Chem. B, vol. 124, no. 15, pp. 31863194, Apr. 2020, doi: https://doi.org/10.1021/acs.jpcb.0c00214.Google Scholar
Thompson, K., Geiser, B., Gerstl, S. A., and Sebastian, J., “Investigations of Dopant Clustering in Si via Radial Distribution Function,” Microsc. Microanal., vol. 12, no. Supplement S02, pp. 17341735, 2006, doi: https://doi.org/10.1017/S1431927606065391.Google Scholar
Haley, D., Petersen, T., Barton, G., and Ringer, S. P., “Influence of Field Evaporation on Radial Distribution Functions in Atom Probe Tomography,” Philos. Mag., vol. 89, no. 11, pp. 925943, 2009, doi: https://doi.org/10.1080/14786430902821610.Google Scholar
Zhou, J., Odqvist, J., Thuvander, M., and Hedström, P., “Quantitative Evaluation of Spinodal Decomposition in Fe-Cr by Atom Probe Tomography and Radial Distribution Function Analysis,” Microsc. Microanal., vol. 19, no. 3, pp. 665675, 2013, doi: https://doi.org/10.1017/S1431927613000470.Google Scholar
Ceguerra, A. V, Powles, R. C, Moody, M. P, and Ringer, S. P, “Quantitative Description of Atomic Architecture in Solid Solutions: A Generalized Theory for Multicomponent Short-Range Order,” Phys. Rev. B, vol. 82, no. 13, p. 132201, 2010.Google Scholar
Ceguerra, A. V, Moody, M. P, Powles, R. C, Petersen, T. C, Marceau, R. K. W, and Ringer, S. P, “Short-Range Order in Multicomponent Materials,” Acta Crystallogr. A, vol. 68, no. 5, pp. 547560, Sep. 2012, doi: https://doi.org/10.1107/S0108767312025706.Google Scholar

References

Gault, B., Moody, M. P., Cairney, J. M., and Ringer, S. P., “Atom Probe Crystallography,” Mater. Today, vol. 15, no. 9, pp. 378386, 2012.Google Scholar
Kirchhofer, Rita, Diercks, David, and Gorman, Brian, “Near Atomic Scale Quantification of a Diffusive Phase Transformation in (Zn,Mg)O/Al2O3 Using Dynamic Atom Probe Tomography,” J. Mater. Res., vol. 30, no. 8, Apr. 2015.Google Scholar
Bunton, J. H., Olson, J. D., Lenz, D. R., Larson, D. J., and Kelly, T. F., “Optimized Laser Thermal Pulsing of Atom Probe Tomography: LEAP 4000X,” Microsc. Microanal., vol. 16 no. S2, pp. 1011, 2010.Google Scholar
Larson, D. J. et al., “Analysis of Bulk Dielectrics with Atom Probe Tomography,” Microsc. Microanal., vol. 14, no. Supp. 2, pp. 12541255, 2008.Google Scholar
Prosa, T. J., Kostrna Keeney, S., and Kelly, T. F., “Recent Advances in Analysis of Organic Materials Using LEAP Tomography,” Microsc. Microanal., vol. 13, no. Supp. 2, pp. 190191, 2007.Google Scholar
Gault, B., Yang, W., Ratinac, K. R. et al., “Atom Probe Microscopy of Self-Assembled Monolayers: Preliminary Results,” Langmuir, vol. 26, no. 8, pp. 52915294, Apr. 2010, doi: https://doi.org/10.1021/la904459 k.Google Scholar
Larson, D. J. and Geiser, B. P., “Field Evaporation Simulation of a Cross Section ABA Structure,” presented at the Third Australian Atom Probe Workshop, Magnetic Island, Queensland, Australia, 2017, [Online]. Available: Third Australian Atom Probe Workshop.Google Scholar
Tsong, T. T., “Direct Observation of Interactions between Individual Atoms on Tungsten Surfaces,” Phys. Rev. B, vol. 6, no. 2, pp. 416–426, 1972.Google Scholar
Tsong, T. T. and Kellogg, G. L., “Direct Observation of the Directional Walk of Single Adatoms and the Adatom Polarizability,” Phys. Rev. B, vol. 12, no. 4, pp. 13431353, 1975.Google Scholar
Gault, B., Danoix, F., Hoummada, K., Mangelinck, D., and Leitner, H., “Impact of Directional Walk on Atom Probe Microanalysis,” Ultramicroscopy, vol. 113, pp. 182191, Feb. 2012, doi: https://doi.org/10.1016/j.ultramic.2011.06.005.Google Scholar
Yao, L., Gault, B., Cairney, J. M., and Ringer, S. P., “On the Multiplicity of Field Evaporation Events in Atom Probe: A New Dimension to the Analysis of Mass Spectra,” Philos. Mag. Lett., vol. 90, no. 2, pp. 121129, 2010.Google Scholar
Kobayashi, Y., Takahashi, J., and Kawakami, K., “Anomalous Distribution in Atom Map of Solute Carbon in Steel,” Ultramicroscopy, vol. 111, no. 6, pp. 600603, 2011.Google Scholar
Hyde, J. M. et al., “Atom Probe Tomography of Reactor Pressure Vessel Steels: An Analysis of Data Integrity,” Ultramicroscopy, vol. 111, pp. 676682, 2011.Google Scholar
Tu, Y. et al., “Influence of Laser Power on Atom Probe Tomographic Analysis of Boron Distribution in Silicon,” Ultramicroscopy, vol. 173, no. Supplement C, pp. 5863, Feb. 2017, doi: https://doi.org/10.1016/j.ultramic.2016.11.023.Google Scholar
Müller, E. W., Nakamura, S., Nishikawa, O., and McLane, S. B., “Gas-Surface Interactions and Field-Ion Microscopy of Nonrefractory Metals,” J. Appl. Phys., vol. 36, no. 8, pp. 24962503, 1965.Google Scholar
Lefebvre, W., “Atom Counting in Atom Probe Tomography Specimens Using Quantitative HAADF-STEM,” Microsc. Microanal., vol. 19, no. Supp. 2, pp. 950951, 2013, doi: https://doi.org/10.1017/S1431927613006740.Google Scholar
De Geuser, F., Gault, B., Bostel, A., and Vurpillot, F., “Correlated Field Evaporation as Seen by Atom Probe Tomography,” Surf. Sci., vol. 601, no. 2, pp. 536543, 2007.Google Scholar
Kelly, T. F., “Kinetic-Energy Discrimination for Atom Probe Tomography,” Micros. Microanal., vol. 17, no. 1, pp. 114, 2011.Google Scholar
Miller, M. K. and Forbes, R. G., Atom-Probe Tomography: The Local Electrode Atom Probe, 1st ed. Boston: Springer US, 2014.Google Scholar
Bachhav, M., Danoix, F., Hannoyer, B., Bassat, J. M., and Danoix, R., “Investigation of O-18 Enriched Hematite (α-Fe2O3) by Laser Assisted Atom Probe Tomography,” Int. J. Mass Spectrom., vol. 335, pp. 5760, Feb. 2013, doi: https://doi.org/10.1016/j.ijms.2012.10.012.Google Scholar
Diercks, D. R., Gorman, B. P., Kirchhofer, R. et al., “Atom Probe Tomography Evaporation Behavior of C-Axis GaN Nanowires: Crystallographic, Stoichiometric, and Detection Efficiency Aspects,” J. Appl. Phys., vol. 114, no. 18, p. 184903, Nov. 2013, doi: https://doi.org/10.1063/1.4830023.Google Scholar
Kirchhofer, R., Teague, M. C., and Gorman, B. P., “Thermal Effects on Mass and Spatial Resolution during Laser Pulse Atom Probe Tomography of Cerium Oxide,” J. Nucl. Mater., vol. 436, no. 1–3, pp. 2328, 2013.Google Scholar
Diercks, D. R. and Gorman, B. P., “Nanoscale Measurement of Laser-Induced Temperature Rise and Field Evaporation Effects in CdTe and GaN,” J. Phys. Chem. C, vol. 119, no. 35, pp. 2062320631, Sep. 2015, doi: https://doi.org/10.1021/acs.jpcc.5b02126.Google Scholar
Gault, B. et al., “Behavior of Molecules and Molecular Ions near a Field Emitter,” New J. Phys., vol. 18, no. 3, p. 033031, 2016.Google Scholar
Kingham, D. R., “The Post-Ionization of Field Evaporated Ions: A Theoretical Explanation of Multiple Charge States,” Surf. Sci., vol. 116, no. 2, pp. 273301, 1982.Google Scholar
Frasinski, L. J., Codling, K., and Hatherly, P. A., “Covariance Mapping: A Correlation Method Applied to Multiphoton Multiple Ionization,” Science, vol. 246, no. 4933, pp. 10291031, 1989.Google Scholar
Saxey, D. W., “Correlated Ion Analysis and the Interpretation of Atom Probe Mass Spectra,” Ultramicroscopy, vol. 111, no. 6, pp. 473479, 2011, doi: https://doi.org/10.1016/j.ultramic.2010.11.021.Google Scholar
Savitzky, B. H. et al., “py4DSTEM: A Software Package for Multimodal Analysis of Four-Dimensional Scanning Transmission Electron Microscopy Datasets,” ArXiv200309523 Cond-Mat Physics, Mar. 2020, Accessed: May 19, 2020. [Online]. Available: http://arxiv.org/abs/2003.09523.Google Scholar
Williams, D. B. and Carter, C. B., Transmission Electron Microscopy, 2nd ed., 4 vols. New York: Springer, 2009.Google Scholar
Burton, G. L., Ricote, S., Foran, B. J., Diercks, D. R., and Gorman, B. P., “Quantification of Grain Boundary Defect Chemistry in a Mixed Proton-Electron Conducting Oxide Composite,” J. Am. Ceram. Soc., vol. 103, no. 5, pp. 32173230, 2020, doi: https://doi.org/10.1111/jace.17014.Google Scholar
Kelly, T. F., Miller, M. K., Rajan, K., and Ringer, S. P., “Atomic-Scale Tomography: A 2020 Vision,” Microsc. Microanal., vol. 19, no. 3, pp. 652664, 2013.Google Scholar
Da Costa, G., Vurpillot, F., Bostel, A., Bouet, M., and Deconihout, B., “Design of a Delay-Line Position-Sensitive Detector with Improved Performance,” Rev. Sci. Instrum., vol. 76, no. 1, pp. 013304–1–8, 2005.Google Scholar
Mane, A. et al., “An Atomic Layer Deposition Method to Fabricate Economical and Robust Large Area Microchannel Plates for Photodetectors,” Phys. Procedia, vol. 37, pp. 722732, 2012, doi: https://doi.org/10.1016/j.phpro.2012.03.720.Google Scholar
Minot, M. J. et al., “Pilot Production and Advanced Development of Large-Area Picosecond Photodetectors,” Proceedings of SPIE 9968, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVIII, Sep. 30, 2016, p. 99680X, doi: https://doi.org/10.1117/12.2237331.Google Scholar
Bajikar, S. S., Larson, D. J., Camus, P. P., and Kelly, T. F., “Mass Resolution Enhancement in Local-Electrode Atom Probes: A Preliminary Study Using Field Emitter Arrays,” J. Phys. IV, vol. 6, no. C5, pp. 303308, 1996.Google Scholar
Kelly, T. F., Camus, P. P., Larson, D. J., Holzman, L. M., and Bajikar, S. S., “On the Many Advantages of Local-Electrode Atom Probes,” Ultramicroscopy, vol. 62, no. 1, pp. 2942, 1996.Google Scholar
Prosa, T. J., Geiser, B. P., Ulfig, R. M., Kelly, T. F., and Larson, D. J., “Measurement of Detection Efficiency in Atom Probe Tomography,” Microsc. Microanal., vol. 20, no. Supplement S3, pp. 11601161, 2014, doi: https://doi.org/10.1017/S1431927614007533.Google Scholar
Larson, D. J., Prosa, T. J., Ulfig, R. M., Geiser, B. P., and Kelly, T. F., Local Electrode Atom Probe Tomography: A User’s Guide. New York: Springer, 2013.Google Scholar
Da Costa, G., Wang, H., Duguay, S. et al., “Advance in Multi-hit Detection and Quantization in Atom Probe Tomography,” Rev. Sci. Instrum., vol. 83, no. 12, p. 123709, 2012.Google Scholar
Panitz, J. A., “The 10 cm Atom Probe,” Rev Sci. Instrum., vol. 44, no. 8, pp. 10341038, 1973.Google Scholar
Panitz, J. A., “Imaging Atom-Probe Mass Spectroscopy,” Prog. Surf. Sci., vol. 8, no. 6, pp. 219262, Jan. 1978, doi: https://doi.org/10.1016/0079-6816(78)90002-3.Google Scholar
Miller, M. K., Kelly, T. F., Rajan, K., and Ringer, S. P., “The Future of Atom Probe Tomography,” Mater. Today, vol. 15, no. 4, pp. 158165, Apr. 2012.Google Scholar
Matoba, S., Takahashi, R., Io, C., Koizumi, T., and Shiromaru, H., “Absolute Detection Efficiency of a High-Sensitivity Microchannel Plate with Tapered Pores,” Jpn. J. Appl. Phys., vol. 50, no. 11, p. 112201, 2011, doi: https://doi.org/10.1143/JJAP.50.112201.Google Scholar
Bacchi, C., Da Costa, G., and Vurpillot, F., “Spatial and Compositional Biases Introduced by Position Sensitive Detection Systems in APT: A Simulation Approach,” Microsc. Microanal., vol. 25, no. 2, pp. 418424, 2019, doi: https://doi.org/10.1017/S143192761801629X.Google Scholar
Bacchi, C., “New Generation of Position-Sensitive Detectors for the Development of the Atom Probe Tomography,” PhD thesis, University of Rouen, France, 2020.Google Scholar
Ronsheim, P., Flaitz, P., Hatzistergos, M. et al., “Impurity Measurements in Silicon with D-SIMS and Atom Probe Tomography,” Appl. Surf. Sci., vol. 255, no. 4, pp. 15471550, 2008.Google Scholar
Thuvander, M. et al., “Quantitative Atom Probe Analysis of Carbides,” Ultramicroscopy, vol. 111, no. 6, pp. 604608, May 2011, doi: https://doi.org/10.1016/j.ultramic.2010.12.024.Google Scholar
Llopart, X., Ballabriga, R., Campbell, M., Tlustos, L., and Wong, W., “Timepix, a 65 k Programmable Pixel Readout Chip for Arrival Time, Energy and/or Photon Counting Measurements,” Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 581, no. 1–2, pp. 485494, Oct. 2007, doi: https://doi.org/10.1016/j.nima.2007.08.079.Google Scholar
John, J. J. et al., “PImMS, a Fast Event-Triggered Monolithic Pixel Detector with Storage of Multiple Timestamps,” J. Instrum., vol. 7, no. 8, p. C08001, Aug. 2012, doi: https://doi.org/10.1088/1748-0221/7/08/C08001.Google Scholar
Jungmann, J. H. and Heeren, R. M. A., “Detection Systems for Mass Spectrometry Imaging: A Perspective on Novel Developments with a Focus on Active Pixel Detectors,” Rapid Commun. Mass Spectrom., vol. 27, no. 1, pp. 123, Jan. 2013, doi: https://doi.org/10.1002/rcm.6418.Google Scholar
McDermott, R. F. and Suttle, J. R., “System and Method for Characterizing Ions Using a Superconducting Transmission Line Detector,” US Patent 9490112, 2015.Google Scholar
Suttle, J. R., Kelly, T. F., and McDermott, R. F., “A Superconducting Ion Detection Scheme for Atom Probe Tomography,” presented at Atom Probe Tomography and Microscopy 2016: from Science to Industry, Gyeongju, Korea, Jun. 2016.Google Scholar
Suttle, J., “A Superconducting Ion Detector,” Ph.D. thesis, The University of Wisconsin – Madison, 2018.Google Scholar
Gorman, B. P., “Systems and Methods of Aberration Correction for Atom Probe Tomography,” US20190318907A1, Oct. 17, 2019.Google Scholar
Suttle, J. R., Kelly, T. F., and McDermott, R., “Superconducting Delay-Line Detector for Time-of-Flight Spectrometry,” Microsc. Microanal., vol. 24, no. S1, pp. 12, 2018.Google Scholar
Hilton, G. C. et al., “Impact Energy Measurement in Time-of-Flight Mass Spectrometry with Cryogenic Microcalorimeters,” Nature, vol. 391, no. 6668, pp. 672675, 1998.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×