Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T13:39:33.575Z Has data issue: false hasContentIssue false

2 - History of Atomic-Scale Microscopy

from Introductory Section

Published online by Cambridge University Press:  03 March 2022

Thomas F. Kelly
Affiliation:
Steam Instruments, Inc.
Brian P. Gorman
Affiliation:
Colorado School of Mines
Simon P. Ringer
Affiliation:
University of Sydney
Get access

Summary

A complete, albeit brief review of the history of atoms and atomic-scale microscopy is offered. From the concept of the atom developed by Greek philosophers to the ultimate microscopy, the path of development is examined. Atomic-Scale Analytical Tomography (ASAT) is cited as the ultimate microscopy in the sense that the objects, atoms, are the smallest building blocks of nature. The concept of atoms developed as the scientific method grew in application and sophistication beginning in the Middle Ages. The first images of atoms were finally obtained in the mid-twentieth century. Early field ion microscopy evolved eventually into three-dimensional atom probe tomography. The crucial role of the electron microscope in atomic-scale microscopy is examined. Recently, combining atom probe tomography and electron microscopy has emerged as a path toward ASAT. The chapter concludes with the point that ASAT can be expected in the next decade.

Type
Chapter
Information
Atomic-Scale Analytical Tomography
Concepts and Implications
, pp. 11 - 39
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ruska, E., The Early Development of Electron Lenses and Electron Microscopy. Stuttgart: S. Hirzel Verlag, 1980.Google ScholarPubMed
Perrin, J. B., “Nobel Lecture: Discontinuous Structure of Matter,” 1926. Accessed at www.nobelprize.org/nobel_prizes/physics/laureates/1926/perrin-lecture.html.Google Scholar
Friedrich, W., Knipping, P., and Laue, M., “Interferenz-Erscheinungen bei Röntgenstrahlen,” Sitzungsber. K. Bayer. Akad. Wiss., vol. 1912, pp. 303322, 1912.Google Scholar
Friedrich, W., Knipping, P., and Laue, M., “Phénomènes d’interférence des rayons de Röntgen,” Le Radium, vol. 10, no. 2, pp. 4757, 1913.Google Scholar
von Laue, M., Phys. Zeits., vol. 14, p. 421, 1913.Google Scholar
Bragg, W. L., “The Diffraction of Short Electromagnetic Waves by a Crystal,” Proc. Camb. Philos. Soc., vol. 17, pp. 4357, Nov. 1912.Google Scholar
Eckert, M., “Max von Laue and the discovery of X-ray diffraction in 1912 – Eckert – 2012 – Annalen der Physik – Wiley Online Library,” 2012. Accessed on February 5, 2017, at http://onlinelibrary.wiley.com.ezproxy.library.wisc.edu/doi/10.1002/andp.201200724/abstract.CrossRefGoogle Scholar
Sacks, O., Uncle Tungsten: Memories of a Chemical Boyhood. New York: Alfred A. Knopf, 2001.Google Scholar
de Broglie, L., “Waves and Quanta,” Nature, vol. 112, no. 2815, p. 540, October 1923, doi: https://doi.org/10.1038/112540a0.Google Scholar
Busch, H., “Über die Wirkungsweise der Konzentrierungsspule bei der Braunschen Röhre [On the Mode of Action of the Concentrating Coil in the Braun Tube],” Arch. Elektrotechn., vol. 18, pp. 583594, 1927.CrossRefGoogle Scholar
Eyring, C. F., Mackeown, S. S., and Millikan, R. A., “Fields Currents from Points,” Phys. Rev., vol. 31, p. 900, 1928.CrossRefGoogle Scholar
Fowler, R. H. and Nordheim, L., “Electron Emission in Intense Electric Fields,” Proc. R. Soc. A, vol. 119, pp. 173181, 1928. doi: https://doi.org/10.1098/rspa.1928.0091.Google Scholar
Bahadur, K., “Experimental Investigation of Field Ion Emission,” Ph.D. thesis, The Pennsylvania State University, 1955.Google Scholar
Müller, E. W. and Bahadur, K., “Field Ionization of Gases at a Metal Surface and the Resolution of the Field Ion Microscope,” Phys. Rev., vol. 102, no. 3, pp. 624631, May 1956, doi: https://doi.org/10.1103/PhysRev.102.624.CrossRefGoogle Scholar
Crewe, A. V., Wall, J., and Langmore, J., “Visibility of Single Atoms,” Science, vol. 168, no. 3937, pp. 13381340, June 1970, doi: https://doi.org/10.1126/science.168.3937.1338.Google Scholar
Johnson, R. P. and Shockley, W., “An Electron Microscope for Filaments: Emission and Adsorption by Tungsten Single Crystals,” Phys. Rev., vol. 49, pp. 436440, 1936.CrossRefGoogle Scholar
Müller, E. W., “Elektronenmikroskopische Beobachtungen von Feldkathoden,” Z. für Phys., vol. 106, pp. 541550, 1937.CrossRefGoogle Scholar
Müller, E. W., “Auflosungsvermogen der Feldelektronenmikroskop,” Z. Phys., vol. 120, p. 270, 1943.Google Scholar
Müller, E. W., “Das Feldionenmikroskop,” Z. Phys., vol. 131, pp. 136142, 1951, doi: https://doi.org/10.1007/BF01329651.CrossRefGoogle Scholar
Müller, E. W., “Resolution of the Atomic Structure of a Metal Surface by the Field Ion Microscope,” J. Appl. Phys., vol. 27, pp. 474476, 1956.Google Scholar
Müller, E. W., “Das Auflosungsvermogen des Feldionenmikroskopes,” Z. Naturf., vol. 11a, p. 88, 1956.CrossRefGoogle Scholar
Melmed, A. J., “Recollections of Erwin Muller’s Laboratory: The Development of FIM (1951–1956),” Appl. Surf. Sci., vol. 94/95, pp. 1725, 1996.CrossRefGoogle Scholar
Seidman, D. N., “The Direct Observation of Point Defects in Irradiated or Quenched Metals by Quantitative Field Ion Microscopy,” J. Phys. F. Met. Phys., vol. 3, pp. 393421, 1973.Google Scholar
Miller, M. K., Cerezo, A., Hetherington, M. G., and Smith, G. D. W., Atom Probe Field Ion Microscopy. Oxford: Oxford University Press, 1996.CrossRefGoogle Scholar
Beavan, L. A., Scanlan, R. M., and Seidman, D. N., “The Defect Structure of Depleted Zones in Irradiated Tungsten,” ACTA Metall., vol. 19, pp. 13391350, 1971.CrossRefGoogle Scholar
Vurpillot, F., Gilbert, M., and Deconihout, B., “Towards the Three-Dimensional Field Ion Microscope,” Surf. Interface Anal., vol. 39, no. 2–3, pp. 273277, 2007.CrossRefGoogle Scholar
Xu, R., Chen, C.-C, Wu, L et al., “Three-Dimensional Coordinates of Individual Atoms in Materials Revealed by Electron Tomography,” Nat. Mater., vol. 14, no. 11, pp. 10991103, September 2015, doi: https://doi.org/10.1038/nmat4426.Google Scholar
Panitz, J. A., “Anecdotes from an Atom-Probe Original,” Microsc. Microanal., vol. 4, pp. 7475, 1998.CrossRefGoogle Scholar
Müller, E. W., Panitz, J. A., and McLane, S. B., “The Atom-Probe Field Ion Microscope,” Rev. Sci. Instrum., vol. 39, pp. 8386, 1968.CrossRefGoogle Scholar
Miller, M. K. and Smith, G. D. W., “Atom Probe Microanalysis of a Pearlitic Steel,” Met. Sci., vol. 11, no. 7, p. 249, 1977.Google Scholar
Panitz, J. A., “The 10 cm Atom Probe,” Rev Sci. Instrum., vol. 44, pp. 10341038, 1973.Google Scholar
Panitz, J. A., “Imaging Atom-Probe Mass Spectroscopy,” Prog. Surf. Sci., vol. 8, no. 6, pp. 219262, 1978, doi: https://doi.org/16/0079-6816(78)90002-3.CrossRefGoogle Scholar
Panitz, J. A. and Foesch, J. A., “Areal Detection Efficiency of Channel Electron Multiplier Arrays,” Rev. Sci. Instrum., vol. 47, pp. 4449, April 1975.CrossRefGoogle Scholar
Kellogg, G. L. and Tsong, T. T., “Pulsed-Laser Atom-Probe Field-Ion Microscopy,” J. Appl. Phys., vol. 51, pp. 11841194, 1980.CrossRefGoogle Scholar
Poschenrieder, W. P., “Multiple-Focusing Time of Flight Mass Spectrometers Part I. TOFMS with Equal Momentum Acceleration,” Int. J. Mass Spectrom. Ion. Phys., vol. 6, pp. 413426, 1971.CrossRefGoogle Scholar
Poschenrieder, W. P., “Multiple-Focusing Time-of-Flight Mass Spectrometers Part II. TOFMS with Equal Energy Acceleration,” Int. J. Mass Spectrom. Ion. Phys., vol. 9, pp. 357373, 1972.Google Scholar
Miller, M. K., “Atom Probe Field Ion Microscopy,” in Microbeam Analysis Society Annual Meeting, Albuquerque, NM, 1986, pp. 343347.Google Scholar
Cerezo, A., Godfrey, T. J., and Smith, G. D. W., “Application of a Position-Sensitive Detector to Atom Probe Microanalysis,” Rev. Sci. Instrum., vol. 59, no. 6, pp. 862866, 1988.CrossRefGoogle Scholar
Cerezo, A., Godfrey, T. J., and Smith, G. D. W., “Development and Initial Applications of a Position-Sensitive Atom Probe,” J. Phys., vol. 49, p. C6/25–30, 1988.Google Scholar
Blavette, D., Deconihout, B., Bostel, A. et al., “The Tomographic Atom Probe: A Quantitative Three-Dimensional Nanoanalytical Instrument on an Atomic Scale,” Rev. Sci. Instrum., vol. 64, pp. 29112919, 1993.Google Scholar
Blavette, D., Bostel, A., Sarrau, J. M., Deconihout, B., and Menand, A., “An Atom Probe for Three-Dimensional Tomography,” Nature, vol. 363, pp. 432435, 1993.CrossRefGoogle Scholar
Nishikawa, O. and Kimoto, M., “Toward a Scanning Atom Probe – Computer Simulation of Electric Field,” Appl. Surf. Sci., vol. 76/77, pp. 424430, 1994.Google Scholar
Nishikawa, O., Kimoto, M., Iwatsuki, M., and Ishikawa, Y., “Development of a Scanning Atom Probe,” J. Vac. Sci. Technol. B, vol. 13, no. 2, pp. 599602, 1995.CrossRefGoogle Scholar
Prosa, T. J. and Larson, D. J., “Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography,” Microsc. Microanal., vol. 23, no. 2, 2017, doi: https://doi.org/10.1017/S1431927616012642.Google Scholar
Kelly, T. F., Camus, P. P., Larson, D. J., Holzman, L. M., and Bajikar, S. S., “On the Many Advantages of Local-Electrode Atom Probes,” Ultramicroscopy, vol. 62, pp. 2942, 1996.CrossRefGoogle ScholarPubMed
Kelly, T. F. and Larson, D. J., “Local Electrode Atom Probes,” Mat. Char., vol. 44, pp. 5985, 2000.CrossRefGoogle Scholar
Cerezo, A., Grovenor, C. R. M., and Smith, G. D. W., “Pulsed Laser Atom Probe Analysis of III-V Compound Semiconductors,” J. Phys., vol. 47-C2, pp. 309314, 1986.Google Scholar
Cerezo, A., Grovenor, C. R. M., and Smith, G. D. W., “Pulsed Laser Atom Probe Analysis of Semiconductor Materials,” J. Microsc., vol. 141, pp. 155170, 1986.CrossRefGoogle Scholar
Gault, B. et al., “Design of a Femtosecond Laser Assisted Tomographic Atom Probe,” Rev. Sci. Instrum., vol. 77, no. 4, p. 043705/1–8, Jan. 2006.CrossRefGoogle Scholar
Bunton, J. H., Olson, J. D., Lenz, D., and Kelly, T. F., “Advances in Pulsed-Laser Atom Probe: Instrument and Specimen Design for Optimum Performance,” Microsc. Microanal., vol. 13, pp. 418427, 2007.CrossRefGoogle ScholarPubMed
Chen, Y.-S., Liang, J., Rosenthal, A. et al., “Observation of Hydrogen Trapping at Dislocations, Grain Boundaries, and Precipitates,” Science, vol. 367, no. 6474, pp. 171175, 2020, doi: https://doi.org/10.1126/science.aaz0122.CrossRefGoogle ScholarPubMed
Tang, S., Xin, T., Xu, W. et al., “Precipitation Strengthening in an Ultralight Magnesium Alloy,” Nat. Commun., vol. 10, p. 1003, 2019.CrossRefGoogle Scholar
McCarroll, I. E., Bagot, P. A. J., Devaraj, A., Perea, D. E., and Cairney, J. M., “New Frontiers in Atom Probe Tomography: A Review of Research Enabled by Cryo and/or Vacuum Transfer Systems,” Mater. Today Adv., vol. 7, September, p. 100090, 2020, https://doi.org/10.1016/j.mtadv.2020.100090.CrossRefGoogle ScholarPubMed
Macauleym, C., Heller, M., Rausch, A., Ku, F., and Felfer, P., “A Versatile Cryo-Transfer System, Connecting Cryogenic Focused Ion Beam Sample Preparation to Atom Probe Microscopy,” PLOS ONE, vol. 16, no. 1, p. e0245555, 2021, https://doi.org/10.1371/journal.pone.0245555.CrossRefGoogle Scholar
Cerezo, A., Hyde, J. M., Sijbrandij, S., and Smith, G. D. W., “Data Analysis in the Optical PoSAP,” Appl. Surf. Sci., vol. 94–95, pp. 457463, Aug. 1995.Google Scholar
Ercius, P., Boese, M., Duden, T., and Dahmen, U., “Operation of TEAM I in a User Environment at NCEM,” Microsc. Microanal., vol. 18, no. 4, pp. 676683, 2012, doi: https://doi.org/10.1017/S1431927612001225.Google Scholar
Hawkes, P. W. and Kasper, E., Principles of Electron Optics, Volume 1: Basic Geometrical Optics. Academic Press, 1996.Google Scholar
Hawkes, P. W. and Kasper, E., Principles of Electron Optics, Volume 2: Applied Geometrical Optics. Academic Press, 1996.Google Scholar
Knoll, M. and Ruska, E., “Das Elektronenmikroskop,” Z. Phys., vol. 78, pp. 318339, 1932.CrossRefGoogle Scholar
Crewe, A. V., “Scanning Electron Microscopes: Is High Resolution Possible?,” Science, vol. 154, no. 3750, pp. 729738, 1966.Google Scholar
Haider, M., Rose, H., Uhlemann, S. et al., “A Spherical-Aberration-Corrected 200 kV Transmission Electron Microscope,” Ultramicroscopy, vol. 75, no. 1, pp. 5360, Oct. 1998, doi: https://doi.org/10.1016/S0304-3991(98)00048-5.CrossRefGoogle Scholar
Batson, P. E., Dellby, N., and Krivanek, O. L., “Sub-ångstrom Resolution using Aberration Corrected Electron Optics,” Nature, vol. 418, no. 6898, pp. 617620, Aug. 2002, doi: https://doi.org/10.1038/nature00972.CrossRefGoogle ScholarPubMed
Larson, D. J., Prosa, T. J., Ulfig, R. M., Geiser, B P., and Kelly, T. F., Local Electrode Atom Probe Tomography: A User’s Guide. New York: Springer, 2013.Google Scholar
Scherzer, O., “Some Defects of Electron Lenses,” Z. Phys., vol. 101, pp. 593603, 1936.Google Scholar
Scherzer, O., “Die imaginäre Einheit in der Diracgleichung,” Ann. Phys., vol. 425, no. 7, pp. 591593, 1938, doi: https://doi.org/10.1002/andp.19384250704.Google Scholar
Scherzer, O., “Sphärische und chromatische Korrektur von Elektronen-Linsen,” Optik, vol. 2, pp. 114132, 1947.Google Scholar
Crewe, A. V., “Electron Microscopes using Field Emission Source,” Surf. Sci., vol. 48, no. 1, pp. 152160, Mar. 1975, doi: https://doi.org/10.1016/0039-6028(75)90314-3.CrossRefGoogle Scholar
Devaraj, A. et al., “Three-Dimensional Nanoscale Characterisation of Materials by Atom Probe Tomography,” Int. Mater. Rev., vol. 63, no. 2, pp. 134, 2017, doi: https://doi.org/10.1080/09506608.2016.1270728.Google Scholar
Deltrap, J., “Correction of spherical aberration of electron lenses,” Ph.D. dissertation, University of Cambridge, 1964.Google Scholar
Crewe, A. V. and Beck, V., “A Quadrupole-Octupole Corrector for a 100 KEV STEM,” in Proc. 32nd Ann. EMSA Mtg., 1974, pp. 426427.Google Scholar
Crewe, A. V., “The Sextupole as Corrector,” Electron Microsc., vol. 1, pp. 3637, 1980.Google Scholar
Crewe, A. V. and Kopf, D., “A Sextupole System for the Correction of Spherical Aberration,” Optik, vol. 55, pp. 110, 1980.Google Scholar
Crewe, A. V., “A System for the Correction of Axial Aperture Aberrations in Electron Lenses,” Optik, vol. 60, pp. 271281, 1982.Google Scholar
Crewe, A. V. and Jiye, X., “Correction of Spherical and Coma Aberrations with a Sextupole-Round Lens-Sextupole System,” Optik, vol. 69, pp. 141146, 1985.Google Scholar
Jiye, X., Shao, Z., and Crewe, A. V., “The Wave Electron Optical Properties of a Magnetic Round Lens Corrected with Sextupoles,” Optik, no. 70, pp. 1522, 1985.Google Scholar
Shao, Z. and Crewe, A. V., “Spherical Aberrations of Multipoles,” J. Appl. Phys., vol. 62, no. 4, pp. 11491153, Aug. 1987, doi: https://doi.org/10.1063/1.339663.Google Scholar
Chen, E. G. and Mu, C. J., in Proceedings of the International Symposium on Electron Microscopy, Beijing, China, Singapore, 1990, vol. K. Kuo and J. Yao, eds., pp. 2835.Google Scholar
Krivanek, O. L., Dellby, N., Spence, A. J., Camps, R. A., and Brown, L. M., “Aberration Correction in the STEM,” in Electron Microscopy and Analysis 1997, 1997, vol. 153, pp. 3540.Google Scholar
Zach, J. and Haider, M., “Correction of Spherical and Chromatic Aberration in a Low Voltage SEM,” Optik, vol. 93, pp. 112118, 1995.Google Scholar
Zach, J. and Haider, M., “Aberration Correction in a Low Voltage SEM by a Multipole Corrector,” Nucl. Instrum. Methods Phys. Res. A, vol. 363, pp. 316325, 1995.CrossRefGoogle Scholar
Dahmen, U., Erni, R., Radmilovic, V. et al., “Background, Status and Future of the Transmission Electron Aberration-Corrected Microscope Project,” Philos. Trans. Roy. Soc. A, vol. 367, p. 3795, 2009.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×