Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T22:55:36.719Z Has data issue: false hasContentIssue false

Chapter 12 - Autoimmune Cerebellar Ataxias

from Section 3 - Specific Syndromes and Diseases

Published online by Cambridge University Press:  27 January 2022

Josep Dalmau
Affiliation:
Universitat de Barcelona
Francesc Graus
Affiliation:
Universitat de Barcelona
Get access

Summary

Autoimmune cerebellar ataxias include a heterogeneous group of disorders characterized by isolated or predominant cerebellar dysfunction caused by immune-mediated mechanisms. The best-characterized autoimmune ataxia is paraneoplastic cerebellar degeneration (PCD) that, depending on the type of cancer, associates with different paraneoplastic antibodies such as Yo antibodies in patients with breast or ovarian cancer, Tr (DNER) antibodies in patients with Hodgkin lymphoma, and SOX1 or voltage-gated calcium channel (VGCC) antibodies in patients with small-cell lung cancer (SCLC). Patients with PCD and SCLC can have concurrent symptoms of Lambert–Eaton myasthenic syndrome (LEMS). Non-paraneoplastic cerebellar ataxias usually associate with glutamic acid decarboxylase (GAD) or mGluR1 antibodies. Patients with autoimmune ataxia respond poorly to immunotherapy even when the associated antibodies are directed against neuronal surface antigens (VGCC, mGluR1). Cerebellar ataxia may occur in patients with dietary gluten sensitivity. The autoimmune pathogenesis of gluten ataxia is unclear. Acute cerebellar ataxia and acute cerebellitis are the most frequent causes of cerebellar dysfunction in children. Whereas the term acute cerebellar ataxia is used to define patients with normal MRI and a benign clinical course, the term acute cerebellitis implies a more severe disorder with MRI inflammatory changes. In these patients the long-term prognosis is less favourable.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hadjivassiliou, M, Boscolo, S, Tongiorgi, E, et al. Cerebellar ataxia as a possible organ-specific autoimmune disease. Mov Disord 2008;23:13701377.Google Scholar
Sivera, R, Martin, N, Bosca, I, et al. Autoimmunity as a prognostic factor in sporadic adult onset cerebellar ataxia. J Neurol 2012;259:851854.Google Scholar
Abele, M, Burk, K, Schols, L, et al. The aetiology of sporadic adult-onset ataxia. Brain 2002;125:961968.Google Scholar
Lin, CY, Wang, MJ, Tse, W, et al. Serum antigliadin antibodies in cerebellar ataxias: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2018;89:11741180.Google Scholar
Mitoma, H, Manto, M, Hampe, CS. Time is cerebellum. Cerebellum 2018;17:387391.Google Scholar
Jones, AL, Flanagan, EP, Pittock, SJ, et al. Responses to and outcomes of treatment of autoimmune cerebellar ataxia in adults. JAMA Neurol 2015;72:13041312.CrossRefGoogle ScholarPubMed
Graus, F, Titulaer, MJ, Balu, R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391404.Google Scholar
Mitoma, H, Adhikari, K, Aeschlimann, D, et al. Consensus paper: neuroimmune mechanisms of cerebellar ataxias. Cerebellum 2016;15:213232.CrossRefGoogle ScholarPubMed
Graus, F, Delattre, JY, Antoine, JC, et al. Recommended diagnostic criteria for paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry 2004;75:11351140.Google Scholar
Honnorat, J, Saiz, A, Giometto, B, et al. Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: study of 14 patients. Arch Neurol 2001;58:225230.CrossRefGoogle ScholarPubMed
Lopez-Chiriboga, AS, Komorowski, L, Kumpfel, T, et al. Metabotropic glutamate receptor type 1 autoimmunity: clinical features and treatment outcomes. Neurology 2016;86:10091013.Google Scholar
Klockgether, T. Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurol 2010;9:94104.CrossRefGoogle ScholarPubMed
Graus, F, Saiz, A, Dalmau, J. GAD antibodies in neurological disorders: insights and challenges. Nat Rev Neurol 2020;16:353365.Google Scholar
Manto, M. Toxic agents causing cerebellar ataxias. Handb Clin Neurol 2012;103:201213.CrossRefGoogle ScholarPubMed
Hadjivassiliou, M, Martindale, J, Shanmugarajah, P, et al. Causes of progressive cerebellar ataxia: prospective evaluation of 1500 patients. J Neurol Neurosurg Psychiatry 2017;88:301309.CrossRefGoogle ScholarPubMed
Synofzik, M, Nemeth, AH. Recessive ataxias. Handb Clin Neurol 2018;155:7389.Google Scholar
Hagerman, RJ, Hagerman, P. Fragile X-associated tremor/ataxia syndrome: features, mechanisms and management. Nat Rev Neurol 2016;12:403412.Google Scholar
Fanciulli, A, Wenning, GK. Multiple-system atrophy. N Engl J Med 2015;372:249263.Google Scholar
Baiardi, S, Magherini, A, Capellari, S, et al. Towards an early clinical diagnosis of sporadic CJD VV2 (ataxic type). J Neurol Neurosurg Psychiatry 2017;88:764772.CrossRefGoogle ScholarPubMed
Pichler, M, Vemuri, P, Rabinstein, AA, et al. Prevalence and natural history of superficial siderosis: a population-based study. Stroke 2017;48:32103214.Google Scholar
Matthews, BR, Jones, LK, Saad, DA, Aksamit, AJ, Josephs, KA. Cerebellar ataxia and central nervous system Whipple disease. Arch Neurol 2005;62:618620.CrossRefGoogle ScholarPubMed
Wijburg, MT, van Oosten, BW, Murk, JL, et al. Heterogeneous imaging characteristics of JC virus granule cell neuronopathy (GCN): a case series and review of the literature. J Neurol 2015;262:6573.Google Scholar
Pedroso, JL, Vale, TC, Gama, MTD, et al. Cerebellar degeneration and progressive ataxia associated with HIV-virus infection. Parkinsonism Relat Disord 2018;54:9598.Google Scholar
Hadjivassiliou, M, Sanders, DD, Aeschlimann, DP. Gluten-related disorders: gluten ataxia. Digestive Dis (Basel, Switzerland) 2015;33:264268.Google Scholar
McKeon, A, Lennon, VA, Pittock, SJ, Kryzer, TJ, Murray, J. The neurologic significance of celiac disease biomarkers. Neurology 2014;83:17891796.Google Scholar
Matsunaga, A, Ikawa, M, Fujii, A, et al. Hashimoto’s encephalopathy as a treatable adult-onset cerebellar ataxia mimicking spinocerebellar degeneration. Eur Neurol 2013;69:1420.CrossRefGoogle ScholarPubMed
Peterson, K, Rosenblum, MK, Kotanides, H, Posner, JB. Paraneoplastic cerebellar degeneration. I. A clinical analysis of 55 anti-Yo antibody-positive patients. Neurology 1992;42:19311937.Google Scholar
Graus, F, Keime-Guibert, F, Rene, R, et al. Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain 2001;124:11381148.CrossRefGoogle Scholar
Honnorat, J, Cartalat-Carel, S, Ricard, D, et al. Onco-neural antibodies and tumour type determine survival and neurological symptoms in paraneoplastic neurological syndromes with Hu or CV2/CRMP5 antibodies. J Neurol Neurosurg Psychiatry 2009;80:412416.CrossRefGoogle ScholarPubMed
Sabater, L, Hoftberger, R, Boronat, A, et al. Antibody repertoire in paraneoplastic cerebellar degeneration and small cell lung cancer. PLoS One 2013;8:e60438.Google Scholar
Mason, WP, Graus, F, Lang, B, et al. Small-cell lung cancer, paraneoplastic cerebellar degeneration and the Lambert–Eaton myasthenic syndrome. Brain 1997;120:12791300.Google Scholar
Bernal, F, Shams’ili, S, Rojas, I, et al. Anti-Tr antibodies as markers of paraneoplastic cerebellar degeneration and Hodgkin’s disease. Neurology 2003;60:230234.Google Scholar
Pittock, SJ, Lucchinetti, CF, Lennon, VA. Anti-neuronal nuclear autoantibody type 2: paraneoplastic accompaniments. Ann Neurol 2003;53:580587.Google Scholar
Dalmau, J, Graus, F, Villarejo, A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004;127:18311844.CrossRefGoogle ScholarPubMed
Gadoth, A, Kryzer, TJ, Fryer, J, et al. Microtubule-associated protein 1B: novel paraneoplastic biomarker. Ann Neurol 2017;81:266277.Google Scholar
Mandel-Brehm, C, Dubey, D, Kryzer, TJ, et al. Kelch-like protein 11 antibodies in seminoma-associated paraneoplastic encephalitis. N Engl J Med 2019;381:4754.Google Scholar
Maudes, E, Landa, J, Munoz-Lopetegi, A, et al. Clinical significance of Kelch-like protein 11 antibodies. Neurol Neuroimmunol Neuroinflamm 2020;7:e666.Google Scholar
Bataller, L, Wade, DF, Rosenfeld, MR, Dalmau, J. Immunity to Zic proteins frequently associates with paraneoplastic neurologic disorders (PND) and predicts small-cell lung cancer. Ann Neurol 2002;59:19851988.Google Scholar
Pittock, SJ, Lucchinetti, CF, Parisi, JE, et al. Amphiphysin autoimmunity: paraneoplastic accompaniments. Ann Neurol 2005;58:96107.Google Scholar
Tetsuka, S, Tominaga, K, Ohta, E, et al. Paraneoplastic cerebellar degeneration associated with an onconeural antibody against creatine kinase, brain-type. J Neurol Sci 2013;335:4857.Google Scholar
Do, LD, Gupton, SL, Tanji, K, et al. TRIM9 and TRIM67 are new targets in paraneoplastic cerebellar degeneration. Cerebellum 2019;18:245254.Google Scholar
van Coevorden-Hameete, MH, van Beuningen, SFB, Perrenoud, M, et al. Antibodies to TRIM46 are associated with paraneoplastic neurological syndromes. Ann Clin Transl Neurol 2017;4:680686.Google Scholar
Bataller, L, Sabater, L, Saiz, A, et al. Carbonic anhydrase-related protein VIII: autoantigen in paraneoplastic cerebellar degeneration. Ann Neurol 2004;56:575579.Google Scholar
Prevezianou, A, Tzartos, JS, Dagklis, IE, et al. Paraneoplastic cerebellar degeneration in a patient with breast cancer associated with carbonic anhydrase-related protein VIII autoantibodies. J Neuroimmunol 2020;344:577242.Google Scholar
Hoftberger, R, Kovacs, GG, Sabater, L, et al. Protein kinase Cγ antibodies and paraneoplastic cerebellar degeneration. J Neuroimmunol 2013;256:9193.Google Scholar
Ren, H, Zhao, D, Xu, X, et al. Paraneoplastic cerebellar degeneration associated with anti-protein kinase Cgamma antibodies in a Chinese patient. J Neuroimmunol 2020;350:577408.CrossRefGoogle Scholar
Ruiz-Garcia, R, Martinez-Hernandez, E, Joubert, B, et al. Paraneoplastic cerebellar ataxia and antibodies to metabotropic glutamate receptor 2. Neurol Neuroimmunol Neuroinflamm 2020;7:e658.CrossRefGoogle ScholarPubMed
van Coevorden-Hameete, MH, de Graaff, E, Titulaer, MJ, et al. Plasticity-related gene 5: a novel surface autoantigen in paraneoplastic cerebellar degeneration. Neurol Neuroimmunol Neuroinflamm 2015;2:e156.CrossRefGoogle ScholarPubMed
Arino, H, Gresa-Arribas, N, Blanco, Y, et al. Cerebellar ataxia and glutamic acid decarboxylase antibodies: immunologic profile and long-term effect of immunotherapy. JAMA Neurol 2014;71:10091016.Google Scholar
Spatola, M, Pedrol, MP, Maudes, E, et al. Clinical features, prognostic factors, and antibody effects in anti-mGluR1 encephalitis. Neurology 2020;95:e3012e3025.Google Scholar
Jarius, S, Wandinger, KP, Horn, S, Heuer, H, Wildemann, B. A new Purkinje cell antibody (anti-Ca) associated with subacute cerebellar ataxia: immunological characterization. J Neuroinflammation 2010;7:21.CrossRefGoogle ScholarPubMed
Pittock, SJ, Alfugham, N, O’Connor, K, et al. GTPase regulator associated with focal adhesion kinase 1 (GRAF1) immunoglobulin-associated ataxia and neuropathy. Mov Disord Clin Pract 2020;7:904909.CrossRefGoogle ScholarPubMed
Alfugham, N, Gadoth, A, Lennon, VA, et al. ITPR1 autoimmunity: frequency, neurologic phenotype, and cancer association. Neurol Neuroimmunol Neuroinflamm 2018;5:e418.CrossRefGoogle ScholarPubMed
Jarius, S, Scharf, M, Begemann, N, et al. Antibodies to the inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) in cerebellar ataxia. J Neuroinflammation 2014;11:206.Google Scholar
Miske, R, Gross, CC, Scharf, M, et al. Neurochondrin is a neuronal target antigen in autoimmune cerebellar degeneration. Neurol Neuroimmunol Neuroinflamm 2017;4:e307.Google Scholar
Shelly, S, Kryzer, TJ, Komorowski, L, et al. Neurochondrin neurological autoimmunity. Neurol Neuroimmunol Neuroinflamm 2019;6:e612.Google Scholar
Joubert, B, Gobert, F, Thomas, L, et al. Autoimmune episodic ataxia in patients with anti-CASPR2 antibody-associated encephalitis. Neurol Neuroimmunol Neuroinflamm 2017;4:e371.Google Scholar
Yaguchi, H, Yabe, I, Takahashi, H, et al. Identification of anti-Sez6l2 antibody in a patient with cerebellar ataxia and retinopathy. J Neurol 2014;261:224226.Google Scholar
Landa, J, Guasp, M, Petit-Pedrol, M, et al. Seizure-related 6 homolog like 2 autoimmunity: neurologic syndrome and antibody effects. Neurol Neuroimmunol Neuroinflamm 2021;8:e916.Google Scholar
Honorat, JA, Lopez-Chiriboga, AS, Kryzer, TJ, et al. Autoimmune gait disturbance accompanying adaptor protein-3B2-IgG. Neurology 2019;93:e954e963.Google Scholar
Jarius, S, Wildemann, B. ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 2: Anti-PKC-gamma, anti-GluR-delta2, anti-Ca/ARHGAP26 and anti-VGCC. J Neuroinflammation 2015;12:167.Google Scholar
Landa, J, Guasp, M, Míguez-Cabello, F, et al. Encephalitis with autoantibodies against the Glutamate Kainate Receptors GluK2. Ann Neurol 2021;90:101117.Google Scholar
Honorat, JA, Lopez-Chiriboga, AS, Kryzer, TJ, et al. Autoimmune septin-5 cerebellar ataxia. Neurol Neuroimmunol Neuroinflamm 2018;5:e474.Google Scholar
Hoftberger, R, Sabater, L, Ortega, A, Dalmau, J, Graus, F. Patient with homer-3 antibodies and cerebellitis. JAMA Neurol 2013;70:506509.Google Scholar
Darnell, RB, Furneaux, HM, Posner, JB. Antiserum from a patient with cerebellar degeneration identifies a novel protein in Purkinje cells, cortical neurons and neuroectodermal tumors. J Neurosci 1991;11:12241230.Google Scholar
Hadjivassiliou, M, Graus, F, Honnorat, J, et al. Diagnostic criteria for primary autoimmune cerebellar ataxia: guidelines from an international task force on immune-mediated cerebellar ataxias. Cerebellum 2020;19:605610.Google Scholar
Brouwer, B. Beitrag zur Kenntnis der chronischen diffusen Kleinhirnerkrankungen. Neurol Zentralbl 1919;38:674682.Google Scholar
Brain, WR, Daniel, PM, Greenfield, JG. Subacute cortical cerebellar degeneration and its relation to carcinoma. J Neurol Neurosurg Psychiat 1951;14:5975.Google Scholar
Brain, WR, Wilkinson, M. Subacute cerebellar degeneration associated with neoplasms. Brain 1965;88:465478.CrossRefGoogle ScholarPubMed
Henson, RA, Urich, HE. Cancer and the Nervous System: The Neurological Manifestations of Systemic Malignant Disease. London: Blackwell Scientific, 1982.Google Scholar
Porta-Etessam, J, Berbel, A, Martinez-Salio, A, et al. [Paraneoplastic cerebellar degeneration with asymmetrical pan-cerebellar syndrome]. Rev Neurol 1998;26:10151017.Google Scholar
Krolak-Salmon, P, Androdias, G, Meyronet, D, et al. Slow evolution of cerebellar degeneration and chorea in a man with anti-Yo antibodies. Eur J Neurol 2006;13:307308.Google Scholar
Bodranghien, F, Bastian, A, Casali, C, et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum 2016;15:369391.Google Scholar
Schmahmann, JD. The cerebellum and cognition. Neurosci Lett 2019;688:6275.Google Scholar
de Andres C, Esquivel, A, de Villoria, JG, Graus, F, Sanchez-Ramon, S. Unusual magnetic resonance imaging and cerebrospinal fluid findings in paraneoplastic cerebellar degeneration: a sequential study. J Neurol Neurosurg Psychiatry 2006;77:562563.Google Scholar
Suri, V, Khan, NI, Jadhao, N, Gupta, R. Paraneoplastic cerebellar degeneration in Hodgkin’s lymphoma. Ann Ind Acad Neurol 2012;15:205207.Google Scholar
Choi, KD, Kim, JS, Park, SH, et al. Cerebellar hypermetabolism in paraneoplastic cerebellar degeneration. J Neurol Neurosurg Psychiatry 2006;77:525528.Google Scholar
Abdulaziz, ATA, Yu, XQ, Zhang, L, et al. Paraneoplastic cerebellar degeneration associated with cerebellar hypermetabolism: case report. Medicine (Baltimore) 2018;97:e10717.Google Scholar
Gheysens, O, Deroose, CM, Tousseyn, T, et al. Hodgkin lymphoma-associated paraneoplastic cerebellar degeneration on FDG-PET/CT. Br J Haematol 2014;164:468.Google Scholar
Saiz, A, Graus, F, Dalmau, J, et al. Detection of 14-3-3 brain protein in the cerebrospinal fluid of patients with paraneoplastic neurological disorders. Ann Neurol 1999;46:774777.Google Scholar
Psimaras, D, Carpentier, AF, Rossi, C. Cerebrospinal fluid study in paraneoplastic syndromes. J Neurol Neurosurg Psychiatry 2010;81:4245.Google Scholar
Schmid, AH, Riede, UN. A morphometric study of the cerebellar cortex from patients with carcinoma: a contribution on quantitative aspects in carcinotoxic cerebellar atrophy. Acta Neuropathologica 1974;28:343352.Google Scholar
Storstein, A, Krossnes, B, Vedeler, CA. Autopsy findings in the nervous system and ovarian tumour of two patients with paraneoplastic cerebellar degeneration. Acta Neurol Scand Suppl 2006;183:6970.Google Scholar
Verschuuren, J, Chuang, L, Rosenblum, MK, et al. Inflammatory infiltrates and complete absence of Purkinje cells in anti-Yo-associated paraneoplastic cerebellar degeneration. Acta Neuropathol (Berl) 1996;91:519525.CrossRefGoogle ScholarPubMed
Giometto, B, Marchiori, GC, Nicolao, P, et al. Sub-acute cerebellar degeneration with anti-Yo autoantibodies: immunohistochemical analysis of the immune reaction in the central nervous system [published erratum appears in Neuropathol Appl Neurobiol 1998 Feb;24(1):2]. Neuropathol Appl Neurobiol 1997;23:468474.Google Scholar
Hormigo, A, Dalmau, J, Rosenblum, MK, River, ME, Posner, JB. Immunological and pathological study of anti-Ri-associated encephalopathy. Ann Neurol 1994;36:896902.Google Scholar
Brieva-Ruiz, L, Diaz-Hurtado, M, Matias-Guiu, X, et al. Anti-Ri-associated paraneoplastic cerebellar degeneration and breast cancer: an autopsy case study. Clin Neurol Neurosurg 2008;110:10441046.Google Scholar
McKeon, A, Tracy, JA, Pittock, SJ, et al. Purkinje cell cytoplasmic autoantibody type 1 accompaniments: the cerebellum and beyond. Arch Neurol 2011;68:12821289.Google Scholar
Rojas, I, Graus, F, Keime-Guibert, F, et al. Long-term clinical outcome of paraneoplastic cerebellar degeneration and anti-Yo antibodies. Neurology 2000;55:713715.Google Scholar
Rojas-Marcos, I, Picard, G, Chinchon, D, et al. Human epidermal growth factor receptor 2 overexpression in breast cancer of patients with anti-Yo–associated paraneoplastic cerebellar degeneration. Neuro-oncology 2012;14:506510.Google Scholar
Openshaw, H, Stuve, O, Antel, JP, et al. Multiple sclerosis flares associated with recombinant granulocyte colony-stimulating factor. Neurology 2000;54:21472150.Google Scholar
Graus, F, Dalmau, J. Paraneoplastic neurological syndromes in the era of immune-checkpoint inhibitors. Nat Rev Clin Oncol 2019;16:535548.Google Scholar
Luque, FA, Furneaux, HM, Ferziger, R, et al. Anti-Ri: an antibody associated with paraneoplastic opsoclonus and breast cancer. Ann Neurol 1991;29:241251.Google Scholar
Shams’ili, S, Grefkens, J, De Leeuw, B, et al. Paraneoplastic cerebellar degeneration associated with antineuronal antibodies: analysis of 50 patients. Brain 2003;126:14091418.Google Scholar
Pittock, SJ, Parisi, JE, McKeon, A, et al. Paraneoplastic jaw dystonia and laryngospasm with antineuronal nuclear autoantibody type 2 (anti-Ri). Arch Neurol 2010;67:11091115.CrossRefGoogle ScholarPubMed
Simard, C, Vogrig, A, Joubert, B, et al. Clinical spectrum and diagnostic pitfalls of neurologic syndromes with Ri antibodies. Neurol Neuroimmunol Neuroinflamm 2020;7:e699.Google Scholar
Bechich, S, Graus, F, Arboix, A, et al. Anti-Hu-associated paraneoplastic sensory neuropathy and breast cancer. J Neurol 2000;247:552553.Google Scholar
Hoftberger, R, Sabater, L, Velasco, F, et al. Carbonic anhydrase-related protein VIII antibodies and paraneoplastic cerebellar degeneration. Neuropathol Appl Neurobiol 2014;40:650653.Google Scholar
Kerasnoudis, A, Rockhoff, M, Federlein, J, Gold, R, Krogias, C. Isolated ZIC4 antibodies in paraneoplastic cerebellar syndrome with an underlying ovarian tumor. Arch Neurol 2011;68:1073.Google Scholar
David, YB, Warner, E, Levitan, M, et al. Autoimmune paraneoplastic cerebellar degeneration in ovarian carcinoma patients treated with plasmapheresis and immunoglobulin: a case report. Cancer 1996;78:21532156.Google Scholar
Stark, E, Wurster, U, Patzold, U, Sailer, M, Haas, J. Immunological and clinical response to immunosuppressive treatment in paraneoplastic cerebellar degeneration. Arch Neurol 1995;52:814818.Google Scholar
Widdess-Walsh, P, Tavee, JO, Schuele, S, Stevens, GH. Response to intravenous immunoglobulin in anti-Yo associated paraneoplastic cerebellar degeneration: case report and review of the literature. J Neurooncol 2003;63:187190.Google Scholar
Thone, J, Hohaus, A, Lamprecht, S, Bickel, A, Erbguth, F. Effective immunosuppressant therapy with cyclophosphamide and corticosteroids in paraneoplastic cerebellar degeneration. J Neurol Sci 2008;272:171173.Google Scholar
Berzero, G, Karantoni, E, Dehais, C, et al. Early intravenous immunoglobulin treatment in paraneoplastic neurological syndromes with onconeural antibodies. J Neurol Neurosurg Psychiatry 2018;89:798792.Google Scholar
Uchuya, M, Graus, F, Vega, F, Reñé, R, Delattre, JY. Intravenous immunoglobulin treatment in paraneoplastic neurological syndromes with antineuronal autoantibodies. J Neurol Neurosurg Psychiat 1996;60:388392.Google Scholar
Keime-Guibert, F, Graus, F, Fleury, A, et al. Treatment of paraneoplastic neurological syndromes with antineuronal antibodies (Anti-Hu, anti-Yo) with a combination of immunoglobulins, cyclophosphamide, and methylprednisolone. J Neurol Neurosurg Psychiatry 2000;68:479482.CrossRefGoogle ScholarPubMed
Shams’ili, S, de Beukelaar, J, Gratama, JW, et al. An uncontrolled trial of rituximab for antibody associated paraneoplastic neurological syndromes. J Neurol 2006;253:1620.Google Scholar
Vernino, S, O’Neill, BP, Marks, RS, O’Fallon, JR, Kimmel, DW. Immunomodulatory treatment trial for paraneoplastic neurological disorders. Neuro-oncol 2004;6:5562.CrossRefGoogle ScholarPubMed
Trotter, JL, Hendin, BA, Osterland, K. Cerebellar degeneration with Hodgkin’s disease: an immunological study. Arch Neurol 1976;33:660661.CrossRefGoogle ScholarPubMed
Graus, F, Dalmau, J, Valldeoriola, F, et al. Immunological characterization of a neuronal antibody (anti-Tr) associated with paraneoplastic cerebellar degeneration and Hodgkin’s disease. J Neuroimmunol 1997;74:5561.Google Scholar
de Graaff, E, Maat, P, Hulsenboom, E, et al. Identification of delta/notch-like epidermal growth factor-related receptor as the Tr antigen in paraneoplastic cerebellar degeneration. Ann Neurol 2012;71:815824.Google Scholar
Khan, N. Paraneoplastic cerebellar degeneration in a patient with anaplastic non-Hodgkin’s lymphoma. BMJ Case Rep 2018;2018:bcr2017224100.Google Scholar
Inui, R, Saito, K, Shimomura, Y, et al. Anti-Ma-associated paraneoplastic cerebellar degeneration in a patient with nodular lymphocyte-predominant Hodgkin lymphoma: a case report. BMC Neurol 2020;20:355.Google Scholar
Hammack, J, Kotanides, H, Rosenblum, MK, Posner, JB. Paraneoplastic cerebellar degeneration. II. Clinical and immunologic findings in 21 patients with Hodgkin’s disease. Neurology 1992;42:19381943.Google Scholar
Greene, M, Lai, Y, Baella, N, Dalmau, J, Lancaster, E. Antibodies to Delta/notch-like epidermal growth factor-related receptor in patients with anti-Tr, paraneoplastic cerebellar degeneration, and Hodgkin lymphoma. JAMA Neurol 2014;71:10031008.Google Scholar
Taniguchi, Y, Tanji, C, Kawai, T, et al. A case report of plasmapheresis in paraneoplastic cerebellar ataxia associated with anti-Tr antibody. Ther Apher Dial 2006;10:9093.Google Scholar
Yeo, KK, Walter, AW, Miller, RE, Dalmau, J. Rituximab as potential therapy for paraneoplastic cerebellar degeneration in pediatric Hodgkin disease. Pediatr Blood Cancer 2012;58:986987.Google Scholar
Peltola, J, Hietaharju, A, Rantala, I, Lehtinen, T, Haapasalo, H. A reversible neuronal antibody (anti-Tr) associated paraneoplastic cerebellar degeneration in Hodgkin’s disease. Acta Neurol Scand 1998;98:360363.Google Scholar
Gungor, S, Kilic, B, Arslan, M, Ozgen, U. Hodgkin’s lymphoma associated with paraneoplastic cerebellar degeneration in children: a case report and review of the literature. Childs Nerv Syst 2017;33:509512.Google Scholar
Avramova, BE, Hristova, T, Yordanova, M, et al. Cerebellar degeneration as a rare paraneoplastic syndrome in a child with Hodgkin lymphoma. J Pediatr Hematol Oncol 2016;38:470472.Google Scholar
Yu, Z, Kryzer, TJ, Griesmann, GE, et al. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann Neurol 2001;49:146154.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Bataller, L, Wade, DF, Graus, F, et al. Antibodies to Zic4 in paraneoplastic neurologic disorders and small-cell lung cancer. Neurology 2004;62:778782.Google Scholar
Rogemond, V, Honnorat, J. Anti-CV2 autoantibodies and paraneoplastic neurological syndromes. CLin Rev Allerg Immunol 2000;19:5159.Google Scholar
Vernino, S, Tuite, P, Adler, CH, et al. Paraneoplastic chorea associated with CRMP-5 neuronal antibody and lung carcinoma. Ann Neurol 2002;51:625630.Google Scholar
Pavolucci, L, Giannini, G, Giannoccaro, MP, et al. Paraneoplastic cerebellar degeneration and Lambert-Eaton myasthenia in a patient with merkel cell carcinoma and voltage-gated calcium channel antibodies. Muscle Nerve 2017;56:9981000.Google Scholar
Takasugi, J, Shimamura, M, Koda, T, et al. Paraneoplastic cerebellar degeneration and Lambert–Eaton myasthenic syndrome associated with neuroendocrine carcinoma of the oropharynx. Intern Med (Tokyo, Japan) 2018;57:587590.Google Scholar
Goldstein, JM, Waxman, SG, Vollmer, TL, et al. Subacute cerebellar degeneration and Lambert–Eaton myasthenic syndrome associated with antibodies to voltage-gated calcium channels: differential effect of immunosuppressive therapy on central and peripheral defects. J Neurol Neurosurg Psychiatry 1994;57:11381139.Google Scholar
Clouston, PD, Saper, CB, Arbizu, T, et al. Paraneoplastic cerebellar degeneration. III. Cerebellar degeneration, cancer, and the Lambert–Eaton myasthenic syndrome. Neurology 1992;42:19441950.Google Scholar
Zalewski, N, Lennon, VA, Pittock, SJ, McKeon, A. Calcium channel autoimmunity: Cerebellar ataxia and lambert-eaton syndrome coexisting. Muscle Nerve 2017. doi: 10.1002/mus.26053.Google Scholar
Fukuda, T, Motomura, M, Nakao, Y, et al. Reduction of P/Q-type calcium channels in the postmortem cerebellum of paraneoplastic cerebellar degeneration with Lambert–Eaton myasthenic syndrome. Ann Neurol 2003;53:2128.Google Scholar
Counsell, CE, McLeod, M, Grant, R. Reversal of subacute paraneoplastic cerebellar syndrome with intravenous immunoglobulin. Neurology 1994;44:11841185.Google Scholar
Pellkofer, HL, Voltz, R, Kuempfel, T. Favorable response to rituximab in a patient with anti-VGCC-positive Lambert–Eaton myasthenic syndrome and cerebellar dysfunction. Muscle Nerve 2009;40:305308.Google Scholar
Shimizu, F, Takeshita, Y, Sano, Y, et al. GRP78 antibodies damage the blood–brain barrier and relate to cerebellar degeneration in Lambert–Eaton myasthenic syndrome. Brain 2019;142:22532264.Google Scholar
Graus, F, Lang, B, Pozo-Rosich, P, et al. P/Q type calcium-channel antibodies in paraneoplastic cerebellar degeneration with lung cancer. Neurology 2002;59:764766.CrossRefGoogle ScholarPubMed
Dalmau, J, Gultekin, SH, Voltz, R, et al. Ma1, a novel neuron- and testis-specific protein, is recognized by the serum of patients with paraneoplastic neurological disorders. Brain 1999;122 (Pt 1):2739.Google Scholar
Ducray, F, Demarquay, G, Graus, F, et al. Seronegative paraneoplastic cerebellar degeneration: the PNS Euronetwork experience. Eur J Neurol 2014;21:731735.Google Scholar
Iyer, JG, Parvathaneni, K, Bhatia, S, et al. Paraneoplastic syndromes (PNS) associated with Merkel cell carcinoma (MCC): a case series of 8 patients highlighting different clinical manifestations. J Am Acad Dermatol 2016;75:541547.Google Scholar
Storstein, A, Raspotnig, M, Vitaliani, R, et al. Prostate cancer, Hu antibodies and paraneoplastic neurological syndromes. J Neurol 2016;263:10011007.Google Scholar
Linnoila, J, Guo, Y, Gadoth, A, et al. Purkinje cell cytoplasmic antibody type I (anti-Yo): predictive of gastrointestinal adenocarcinomas in men. J Neurol Neurosurg Psychiatry 2018;89:11161117.Google Scholar
Dubey, D, Wilson, MR, Clarkson, B, et al. Expanded clinical phenotype, oncological associations, and immunopathologic insights of paraneoplastic Kelch-like protein-11 encephalitis. JAMA Neurol 2020;77:14201429.Google Scholar
Bataller, L, Sabater, L, Saiz, A, et al. Carbonic anhydrase-related protein VIII: autoantigen in paraneoplastic cerebellar degeneration. Ann Neurol 2004;56:575579.Google Scholar
Ammar, H, Brown, SH, Malani, A, et al. A case of paraneoplastic cerebellar ataxia secondary to renal cell carcinoma. Southern Med J 2008;101:556557.Google Scholar
Zhu, Y, Chen, S, Chen, S, et al. An uncommon manifestation of paraneoplastic cerebellar degeneration in a patient with high grade urothelial, carcinoma with squamous differentiation: a case report and literature review. BMC Cancer 2016;16:324.Google Scholar
Henke, C, Rieger, J, Hartmann, S, et al. Paraneoplastic cerebellar degeneration associated with lymphoepithelial carcinoma of the tonsil. BMC Neurol 2013;13:147.Google Scholar
Lakshmaiah, KC, Viveka, BK, Anil Kumar, N, et al. Gastric diffuse large B cell lymphoma presenting as paraneoplastic cerebellar degeneration: case report and review of literature. J Egyptian National Cancer Institute 2013;25:231235.Google Scholar
Sola-Valls, N, Gaba, L, Munoz, E, et al. Paraneoplastic cerebellar degeneration associated with thymic germinoma. J Neurol Sci 2012;320:153155.Google Scholar
Solimena, M, Folli, F, Aparisi, R, Pozza, G, De Camilli, P. Autoantibodies to GABA-ergic neurons and pancreatic beta cells in stiff-man syndrome. N Engl J Med 1990;322:15551560.Google Scholar
Solimena, M, De Camilli, P. Autoimmunity to glutamic acid decarboxylase (GAD) in stiff-man syndrome and insulin-dependent diabetes mellitus. Trends Neurosci 1991;14:452457.CrossRefGoogle ScholarPubMed
Saiz, A, Blanco, Y, Sabater, L, et al. Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain 2008;131:25532563.Google Scholar
Saiz, A, Arpa, J, Sagasta, A, et al. Autoantibodies to glutamic acid decarboxylase in three patients with cerebellar ataxia, late-onset insulin-dependent diabetes mellitus, and polyendocrine autoimmunity. Neurology 1997;49:10261030.CrossRefGoogle ScholarPubMed
Bataller, L, Valero, C, Diaz, R, et al. Cerebellar ataxia associated with neuroendocrine thymic carcinoma and GAD antibodies. J Neurol Neurosurg Psychiatry 2009;80:696697.Google Scholar
Piccolo, G, Tavazzi, E, Cavallaro, T, et al. Clinico-pathological findings in a patient with progressive cerebellar ataxia, autoimmune polyendocrine syndrome, hepatocellular carcinoma and anti-GAD autoantibodies. J Neurol Sci 2010;290:148149.Google Scholar
Muñiz-Castrillo, S, Vogrig, A, Joubert, B, et al. Transient neurological symptoms preceding cerebellar ataxia with glutamic acid decarboxylase antibodies. Cerebellum 2020;19:715721.Google Scholar
Guasp, M, Sola-Valls, N, Martinez-Hernandez, E, et al. Cerebellar ataxia and autoantibodies restricted to glutamic acid decarboxylase 67 (GAD67). J Neuroimmunol 2016;300:1517.Google Scholar
Gresa-Arribas, N, Arino, H, Martinez-Hernandez, E, et al. Antibodies to inhibitory synaptic proteins in neurological syndromes associated with glutamic acid decarboxylase autoimmunity. PLoS One 2015;10:e0121364.Google Scholar
Planche, V, Marques, A, Ulla, M, Ruivard, M, Durif, F. Intravenous immunoglobulin and rituximab for cerebellar ataxia with glutamic acid decarboxylase autoantibodies. Cerebellum 2014;13:318322.Google Scholar
Mitoma, H, Hadjivassiliou, M, Honnorat, J. Guidelines for treatment of immune-mediated cerebellar ataxias. Cerebellum Ataxias 2015;2:14.Google Scholar
Virgilio, R, Corti, S, Agazzi, P, et al. Effect of steroid treatment in cerebellar ataxia associated with anti-glutamic acid decarboxylase antibodies. J Neurol Neurosurg Psychiatry 2009;80:9596.Google Scholar
Pedroso, JL, Braga-Neto, P, Dutra, LA, Barsottini, OG. Cerebellar ataxia associated to anti-glutamic acid decarboxylase autoantibody (anti-GAD): partial improvement with intravenous immunoglobulin therapy. Arq Neuropsiquiatr 2011;69:993.Google Scholar
Nanri, K, Niwa, H, Mitoma, H, et al. Low-titer anti-GAD-antibody-positive cerebellar ataxia. Cerebellum 2013;12:171175.Google Scholar
Petrijan, T, Menih, M. Low-titre gad antibody-associated late-onset cerebellar ataxia with a significant clinical response to intravenous immunoglobulin treatment. Cerebellum 2017;16:868871.Google Scholar
Meinck, HM, Faber, L, Morgenthaler, N, et al. Antibodies against glutamic acid decarboxylase: prevalence in neurological diseases. J Neurol Neurosurg Psychiatry 2001;71:100103.Google Scholar
Walikonis, JE, Lennon, VA. Radioimmunoassay for glutamic acid decarboxylase (GAD65) autoantibodies as a diagnostic aid for stiff-man syndrome and a correlate of susceptibility to type 1 diabetes mellitus. Mayo Clin Proc 1998;73:11611166.Google Scholar
Sillevis, SP, Kinoshita, A, De, LB, et al. Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med 2000;342:2127.Google Scholar
Iorio, R, Damato, V, Mirabella, M, et al. Cerebellar degeneration associated with mGluR1 autoantibodies as a paraneoplastic manifestation of prostate adenocarcinoma. J Neuroimmunol 2013;263:155158.Google Scholar
Marignier, R, Chenevier, F, Rogemond, V, et al. Metabotropic glutamate receptor type 1 autoantibody-associated cerebellitis: a primary autoimmune disease? Arch Neurol 2010;67:627630.Google Scholar
Lancaster, E, Martinez-Hernandez, E, Titulaer, MJ, et al. Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome. Neurology 2011;77:16981701.Google Scholar
Pedroso, JL, Dutra, LA, Espay, AJ, Hoftberger, R, Barsottini, OGP. Video NeuroImages: head titubation in anti-mGluR1 autoantibody-associated cerebellitis. Neurology 2018;90:746747.CrossRefGoogle ScholarPubMed
Christ, M, Muller, T, Bien, C, et al. Autoimmune encephalitis associated with antibodies against the metabotropic glutamate receptor type 1: case report and review of the literature. Therapeut Adv Neurol Disord 2019;12:1756286419847418.Google Scholar
Kammermeier, PJ, Xiao, B, Tu, JC, Worley, PF, Ikeda, SR. Homer proteins regulate coupling of group I metabotropic glutamate receptors to N-type calcium and M-type potassium channels. J Neurosci 2000;20:72387245.CrossRefGoogle Scholar
Zuliani, L, Sabater, L, Saiz, A, et al. Homer 3 autoimmunity in subacute idiopathic cerebellar ataxia. Neurology 2007;68:239240.Google Scholar
Fouka, P, Alexopoulos, H, Chatzi, I, et al. Antibodies to inositol 1,4,5-triphosphate receptor 1 in patients with cerebellar disease. Neurol Neuroimmunol Neuroinflamm 2017;4:e306.Google Scholar
Berzero, G, Hacohen, Y, Komorowski, L, et al. Paraneoplastic cerebellar degeneration associated with anti-ITPR1 antibodies. Neurol Neuroimmunol Neuroinflamm 2017;4:e326.Google Scholar
Xu, X, Ren, H, Li, L, et al. Anti-Homer-3 antibody associated cerebellar ataxia: a rare case report and literature review. J Neuroimmunol 2019;330:155158.Google Scholar
Jarius, S, Ringelstein, M, Haas, J, et al. Inositol 1,4,5-trisphosphate receptor type 1 autoantibodies in paraneoplastic and non-paraneoplastic peripheral neuropathy. J Neuroinflammation 2016;13:278.Google Scholar
Weihua, Z, Haitao, R, Fang, F, et al. Neurochondrin antibody serum positivity in three cases of autoimmune cerebellar ataxia. Cerebellum 2019;18:11371142.Google Scholar
Jarius, S, Martinez-Garcia, P, Hernandez, AL, et al. Two new cases of anti-Ca (anti-ARHGAP26/GRAF) autoantibody-associated cerebellar ataxia. J Neuroinflammation 2013;10:7.Google Scholar
Doss, S, Numann, A, Ziegler, A, et al. Anti-Ca/anti-ARHGAP26 antibodies associated with cerebellar atrophy and cognitive decline. J Neuroimmunol 2014;267:102104.Google Scholar
Wallwitz, U, Brock, S, Schunck, A, et al. From dizziness to severe ataxia and dysarthria: new cases of anti-Ca/ARHGAP26 autoantibody-associated cerebellar ataxia suggest a broad clinical spectrum. J Neuroimmunol 2017;309:7781.Google Scholar
Newman, LS, McKeever, MO, Okano, HJ, Darnell, RB. Beta-NAP, a cerebellar degeneration antigen, is a neuron-specific vesicle coat protein. Cell 1995;82:773783.Google Scholar
Geis, C, Weishaupt, A, Hallermann, S, et al. Stiff person syndrome-associated autoantibodies to amphiphysin mediate reduced GABAergic inhibition. Brain 2010;133:31663180.Google Scholar
Zis, P, Rao, DG, Hoggard, N, Sarrigiannis, PG, Hadjivassiliou, M. Anti-MAG associated cerebellar ataxia and response to rituximab. J Neurol 2018;265:115118.Google Scholar
Dalakas, MC, Teravainen, H, Engel, WK. Tremor as a feature of chronic relapsing and dysgammaglobulinemic polyneuropathies: incidence and management. Arch Neurol 1984;41:711714.Google Scholar
Govert, F, Witt, K, Erro, R, et al. Orthostatic myoclonus associated with Caspr2 antibodies. Neurology 2016;86:13531355.Google Scholar
Becker, EB, Zuliani, L, Pettingill, R, et al. Contactin-associated protein-2 antibodies in non-paraneoplastic cerebellar ataxia. J Neurol Neurosurg Psychiatry 2012;83:437440.Google Scholar
Borsche, M, Hahn, S, Hanssen, H, et al. Sez6l2-antibody-associated progressive cerebellar ataxia: a differential diagnosis of atypical parkinsonism. J Neurol 2019;266:522524.Google Scholar
Bartels, F, Pruss, H, Finke, C. Anti-ARHGAP26 autoantibodies are associated with isolated cognitive impairment. Front Neurol 2018;9:656.Google Scholar
Jarius, S, Wildemann, B, Stocker, W, Moser, A, Wandinger, KP. Psychotic syndrome associated with anti-Ca/ARHGAP26 and voltage-gated potassium channel antibodies. J Neuroimmunol 2015;286:7982.Google Scholar
Rommel, FR, Miske, R, Stocker, W, et al. Chorea minor associated with anti-neurochondrin autoantibodies. Neuropediatrics 2017;48:482483.Google Scholar
Hadjivassiliou, M, Grunewald, RA, Chattopadhyay, AK, et al. Clinical, radiological, neurophysiological, and neuropathological characteristics of gluten ataxia. Lancet 1998;352:15821585.Google Scholar
Sapone, A, Bai, JC, Ciacci, C, et al. Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med 2012;10:13.Google Scholar
Bushara, KO, Goebel, SU, Shill, H, Goldfarb, LG, Hallett, M. Gluten sensitivity in sporadic and hereditary cerebellar ataxia. Ann Neurol 2001;49:540543.Google Scholar
Hadjivassiliou, M, Sanders, DS, Woodroofe, N, Williamson, C, Grunewald, RA. Gluten ataxia. Cerebellum 2008;7:494498.Google Scholar
Tarlac, V, Kelly, L, Anderson, RP, Bye, N, Storey, E. Coeliac disease patients do not produce antibodies to a common cerebellar epitope. Cerebellum Ataxias 2014;1:18.Google Scholar
Hadjivassiliou, M, Boscolo, S, Davies-Jones, GA, et al. The humoral response in the pathogenesis of gluten ataxia. Neurology 2002;58:12211226.Google Scholar
Boscolo, S, Sarich, A, Lorenzon, A, et al. Gluten ataxia: passive transfer in a mouse model. Ann N Y Acad Sci 2007;1107:319328.Google Scholar
Boscolo, S, Lorenzon, A, Sblattero, D, et al. Anti transglutaminase antibodies cause ataxia in mice. PLoS One 2010;5:e9698.Google Scholar
Bürk, K, Bösch, S, Müller, CA, et al. Sporadic cerebellar ataxia associated with gluten sensitivity. Brain 2001;124:10131019.Google Scholar
Hadjivassiliou, M, Sanders, DS, Grunewald, RA, et al. Gluten sensitivity: from gut to brain. Lancet Neurol 2010;9:318330.Google Scholar
Burk, K, Bosch, S, Muller, CA, et al. Sporadic cerebellar ataxia associated with gluten sensitivity. Brain 2001;124:10131019.Google Scholar
Wilkinson, ID, Hadjivassiliou, M, Dickson, JM, et al. Cerebellar abnormalities on proton MR spectroscopy in gluten ataxia. J Neurol Neurosurg Psychiatry 2005;76:10111013.Google Scholar
Hadjivassiliou, M, Wallis, LI, Hoggard, N, et al. MR spectroscopy and atrophy in Gluten, Friedreich’s and SCA6 ataxias. Acta Neurol Scand 2012;126:138143.Google Scholar
Hadjivassiliou, M, Aeschlimann, P, Sanders, DS, et al. Transglutaminase 6 antibodies in the diagnosis of gluten ataxia. Neurology 2013;80:17401745.Google Scholar
Cascella, NG, Santora, D, Gregory, P, et al. Increased prevalence of transglutaminase 6 antibodies in sera from schizophrenia patients. Schizophr Bull 2013;39:867871.Google Scholar
Hadjivassiliou, M, Davies-Jones, GA, Sanders, DS, Grunewald, RA. Dietary treatment of gluten ataxia. J Neurol Neurosurg Psychiatry 2003;74:12211224.Google Scholar
Souayah, N, Chin, RL, Brannagan, TH, et al. Effect of intravenous immunoglobulin on cerebellar ataxia and neuropathic pain associated with celiac disease. Eur J Neurol 2008;15:13001303.Google Scholar
Thakkar, K, Maricich, SM, Alper, G. Acute ataxia in childhood: 11-year experience at a major pediatric neurology referral center. J Child Neurol 2016;31:11561160.Google Scholar
Van Samkar, A, Poulsen, MNF, Bienfait, HP, Van Leeuwen, RB. Acute cerebellitis in adults: a case report and review of the literature. BMC Res Notes 2017;10:610.Google Scholar
Emelifeonwu, JA, Shetty, J, Kaliaperumal, C, et al. Acute cerebellitis in children: a variable clinical entity. J Child Neurol 2018;33:675684.Google Scholar
Bozzola, E, Bozzola, M, Tozzi, AE, et al. Acute cerebellitis in varicella: a ten year case series and systematic review of the literature. Ital J Pediatr 2014;40:57.Google Scholar
Connolly, AM, Dodson, WE, Prensky, AL, Rust, RS. Course and outcome of acute cerebellar ataxia. Ann Neurol 1994;35:673679.Google Scholar
Lancella, L, Esposito, S, Galli, ML, et al. Acute cerebellitis in children: an eleven year retrospective multicentric study in Italy. Ital J Pediatr 2017;43:54.Google Scholar
Shimokaze, T, Kato, M, Yoshimura, Y, Takahashi, Y, Hayasaka, K. A case of acute cerebellitis accompanied by autoantibodies against glutamate receptor delta2. Brain Dev 2007;29:224226.Google Scholar
Shiihara, T, Kato, M, Konno, A, Takahashi, Y, Hayasaka, K. Acute cerebellar ataxia and consecutive cerebellitis produced by glutamate receptor delta2 autoantibody. Brain Dev 2007;29:254256.Google Scholar
Kubota, M, Takahashi, Y. Steroid-responsive chronic cerebellitis with positive glutamate receptor delta 2 antibody. J Child Neurol 2008;23:228230.Google Scholar
Berridge, G, Menassa, DA, Moloney, T, et al. Glutamate receptor delta2 serum antibodies in pediatric opsoclonus myoclonus ataxia syndrome. Neurology 2018;91:e714e723.Google Scholar
Matsumoto, H, Okabe, S, Hirakawa-Yamada, M, et al. Steroid-responsive focal epilepsy with focal dystonia accompanied by glutamate receptor delta2 antibody. J Neuroimmunol 2012;249:101104.Google Scholar
Fukuoka, T, Takeda, H, Ohe, Y, et al. Anti-glutamate receptor delta2 antibody-positive migrating focal encephalitis. Clin Neurol Neurosurg 2012;114:13511354.Google Scholar
De Bruecker, Y, Claus, F, Demaerel, P, et al. MRI findings in acute cerebellitis. Eur Radiol 2004;14:14781483.Google Scholar
Jabbour, P, Samaha, E, Abi Lahoud, G, et al. Hemicerebellitis mimicking a tumour on MRI. Childs Nerv Syst 2003;19:122125.Google Scholar
Levy, EI, Harris, AE, Omalu, BI, et al. Sudden death from fulminant acute cerebellitis. Pediatr Neurosurg 2001;35:2428.Google Scholar
Ishida, K, Mitoma, H, Wada, Y, et al. Selective loss of Purkinje cells in a patient with anti-glutamic acid decarboxylase antibody-associated cerebellar ataxia. J Neurol Neurosurg Psychiatry 2007;78:190192.Google Scholar
Coesmans, M, Smitt, PA, Linden, DJ, et al. Mechanisms underlying cerebellar motor deficits due to mGluR1-autoantibodies. Ann Neurol 2003;53:325336.Google Scholar
Fabian, RH, Petroff, G. Intraneuronal IgG in the central nervous system: uptake by retrograde axonal transport. Neurology 1987;37:17801784.Google Scholar
Greenlee, JE, Clawson, SA, Hill, KE, et al. Anti-Yo antibody uptake and interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: a possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers. PLoS One 2015;10:e0123446.Google Scholar
Graus, F, Illa, I, Agusti, M, et al. Effect of intraventricular injection of an anti-Purkinje cell antibody (anti-Yo) in a guinea pig model. J Neurol Sci 1991;106:8287.Google Scholar
Greenlee, JE, Burns, JB, Rose, JW, Jaeckle, KA, Clawson, S. Uptake of systemically administered human anticerebellar antibody by rat Purkinje cells following blood–brain barrier disruption. Acta Neuropathologica 1995;89:341345.Google Scholar
Sakai, K, Gofuku, M, Kitagawa, Y, Ogasawara, T, Hirose, G. Induction of anti-Purkinje cell antibodies in vivo by immunizing with a recombinant 52-kDa paraneoplastic cerebellar degeneration-associated protein. J Neuroimmunol 1995;60:135141.Google Scholar
McKasson, M, Clardy, SL, Clawson, SA, et al. Voltage-gated calcium channel autoimmune cerebellar degeneration: case and study of cytotoxicity. Neurol Neuroimmunol Neuroinflamm 2016;3:e222.Google Scholar
Martin-Garcia, E, Mannara, F, Gutierrez-Cuesta, J, et al. Intrathecal injection of P/Q type voltage-gated calcium channel antibodies from paraneoplastic cerebellar degeneration cause ataxia in mice. J Neuroimmunol 2013;261:5359.Google Scholar
Mitoma, H, Song, SY, Ishida, K, et al. Presynaptic impairment of cerebellar inhibitory synapses by an autoantibody to glutamate decarboxylase. J Neurol Sci 2000;175:4044.Google Scholar
Manto, M, Mitoma, H, Hampe, CS. Anti-GAD antibodies and the cerebellum: where do we stand? Cerebellum 2018;18:153156.Google Scholar
Chang, T, Alexopoulos, H, Pettingill, P, et al. Immunization against GAD induces antibody binding to GAD-independent antigens and brainstem GABAergic neuronal loss. PLoS One 2013;8:e72921.Google Scholar
Ishida, K, Mitoma, H, Song, SY, et al. Selective suppression of cerebellar GABAergic transmission by an autoantibody to glutamic acid decarboxylase. Ann Neurol 1999;46:263267.Google Scholar
Manto, MU, Laute, MA, Aguera, M, et al. Effects of anti-glutamic acid decarboxylase antibodies associated with neurological diseases. Ann Neurol 2007;61:544551.Google Scholar
Manto, MU, Hampe, CS, Rogemond, V, Honnorat, J. Respective implications of glutamate decarboxylase antibodies in stiff person syndrome and cerebellar ataxia. Orphanet J Rare Dis 2011;6:3.Google Scholar
Manto, M, Honnorat, J, Hampe, CS, et al. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions. Front Behav Neurosci 2015;9:78.Google Scholar
Chang, T, Alexopoulos, H, McMenamin, M, et al. Neuronal surface and glutamic acid decarboxylase autoantibodies in nonparaneoplastic stiff person syndrome. JAMA Neurol 2013;70:11401149.Google Scholar
Geis, C, Weishaupt, A, Grunewald, B, et al. Human stiff-person syndrome IgG induces anxious behavior in rats. PLoS One 2011;6:e16775.Google Scholar
Hansen, N, Grunewald, B, Weishaupt, A, et al. Human stiff person syndrome IgG-containing high-titer anti-GAD65 autoantibodies induce motor dysfunction in rats. Exp Neurol 2013;239:202209.Google Scholar
Albert, ML, Austin, LM, Darnell, RB. Detection and treatment of activated T cells in the cerebrospinal fluid of patients with paraneoplastic cerebellar degeneration [see comments]. Ann Neurol 2000;47:917.Google Scholar
Tanaka, M, Tanaka, K, Tsuji, S, et al. Cytotoxic T cell activity against the peptide, AYRARALEL, from Yo protein of patients with the HLA A24 or B27 supertype and paraneoplastic cerebellar degeneration. J Neurol Sci 2001;188:6165.Google Scholar
Skorstad, G, Hestvik, AL, Vartdal, F, Holmoy, T. Cerebrospinal fluid T cell responses against glutamic acid decarboxylase 65 in patients with stiff person syndrome. J Autoimmun 2009;32:2432.Google Scholar
Yshii, LM, Gebauer, CM, Pignolet, B, et al. CTLA4 blockade elicits paraneoplastic neurological disease in a mouse model. Brain 2016;139:29232934.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Autoimmune Cerebellar Ataxias
  • Josep Dalmau, Universitat de Barcelona, Francesc Graus, Universitat de Barcelona
  • Book: Autoimmune Encephalitis and Related Disorders of the Nervous System
  • Online publication: 27 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108696722.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Autoimmune Cerebellar Ataxias
  • Josep Dalmau, Universitat de Barcelona, Francesc Graus, Universitat de Barcelona
  • Book: Autoimmune Encephalitis and Related Disorders of the Nervous System
  • Online publication: 27 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108696722.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Autoimmune Cerebellar Ataxias
  • Josep Dalmau, Universitat de Barcelona, Francesc Graus, Universitat de Barcelona
  • Book: Autoimmune Encephalitis and Related Disorders of the Nervous System
  • Online publication: 27 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108696722.013
Available formats
×