Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T21:51:05.907Z Has data issue: false hasContentIssue false

Chapter 3 - Pathogenesis and Disease Mechanisms in Neuronal Antibody-Mediated Encephalitis

from Section 1 - Overview

Published online by Cambridge University Press:  27 January 2022

Josep Dalmau
Affiliation:
Universitat de Barcelona
Francesc Graus
Affiliation:
Universitat de Barcelona
Get access

Summary

Some types of autoimmune encephalitis associate with distinct HLA haplotypes that likely predispose to the disease (e.g., anti-LGI1 encephalitis or anti-IgLON5 disease). In other instances the autoimmune mechanisms are triggered by tumours that express the neuronal antigen (e.g., small-cell lung cancer and anti-GABAbR encephalitis), or tumours that cause an immune dysregulation (thymoma and anti-GABAaR or anti-AMPAR encephalitis), or viral encephalitis that lead to neuronal destruction and release of antigens (e.g., herpes simplex encephalitis triggering autoimmune encephalitis with NMDAR or GABAaR antibodies). In most autoimmune encephalitis the pathogenic antibodies are IgG1 and cause symptoms by internalization of the target antigen (anti-NMDAR encephalitis) or antibody-mediated complement activation and cellular injury (aquaporin 4 antibodies in neuromyelitis optica spectrum disorders). Direct functional blocking of the antigen has been demonstrated for glycine receptor antibodies and probably GABAbR antibodies. Some autoimmune encephalitis (e.g., anti-LGI1 or CASPR2 encephalitis, anti-IgLON5 disease) associate with predominant IgG4 antibodies that disrupt normal protein–protein interactions. Confirmation of antibody pathogenicity requires that in passive transfer experiments of patients’ antibodies to animals, the antibodies bind to the target neural antigen, alter the structure or function of the antigen, and result in clinical symptoms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Darnell, RB, Posner, JB. Paraneoplastic syndromes involving the nervous system. N Engl J Med 2003;349:15431554.CrossRefGoogle ScholarPubMed
Drachman, DB, Adams, RN, Josifek, LF, Self, SG. Functional activities of autoantibodies to acetylcholine receptors and the clinical severity of myasthenia gravis. N Engl J Med 1982;307:769775.CrossRefGoogle ScholarPubMed
Drachman, DB, Angus, CW, Adams, RN, Michelson, JD, Hoffman, GJ. Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. N Engl J Med 1978;298:11161122.Google Scholar
Nagel, A, Engel, AG, Lang, B, Newsom-Davis, J, Fukuoka, T. Lambert–Eaton myasthenic syndrome IgG depletes presynaptic membrane active zone particles by antigenic modulation. Ann Neurol 1988;24:552558.CrossRefGoogle ScholarPubMed
Waterman, SA, Lang, B, Newsom-Davis, J. Effect of Lambert–Eaton myasthenic syndrome antibodies on autonomic neurons in the mouse. Ann Neurol 1997;42:147156.CrossRefGoogle ScholarPubMed
Dalmau, J, Rosenfeld, MR. Paraneoplastic syndromes of the CNS. Lancet Neurol 2008;7:327340.CrossRefGoogle ScholarPubMed
Furneaux, HM, Rosenblum, MK, Dalmau, J, et al. Selective expression of Purkinje-cell antigens in tumor tissue from patients with paraneoplastic cerebellar degeneration. N Engl J Med 1990;322:18441851.CrossRefGoogle ScholarPubMed
Albert, ML, Darnell, JC, Bender, A, et al. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat Med 1998;11:13211324.Google Scholar
Dalmau, J, Graus, F. Antibody-mediated encephalitis. N Engl J Med 2018;378:840851.CrossRefGoogle ScholarPubMed
Hoftberger, R, Titulaer, MJ, Sabater, L, et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology 2013;81:15001506.CrossRefGoogle Scholar
Hoftberger, R, van Sonderen, A, Leypoldt, F, et al. Encephalitis and AMPA receptor antibodies: novel findings in a case series of 22 patients. Neurology 2015;84:24032412.CrossRefGoogle Scholar
Jeffery, OJ, Lennon, VA, Pittock, SJ, et al. GABAB receptor autoantibody frequency in service serologic evaluation. Neurology 2013;81:882887.CrossRefGoogle ScholarPubMed
Shams’ili, S, Grefkens, J, De Leeuw, B, et al. Paraneoplastic cerebellar degeneration associated with antineuronal antibodies: analysis of 50 patients. Brain 2003;126:14091418.Google Scholar
Keime-Guibert, F, Graus, F, Fleury, A, et al. Treatment of paraneoplastic neurological syndromes with antineuronal antibodies (Anti-Hu, anti-Yo) with a combination of immunoglobulins, cyclophosphamide, and methylprednisolone. J Neurol Neurosurg Psychiatry 2000;68:479482.CrossRefGoogle ScholarPubMed
Albert, ML, Austin, LM, Darnell, RB. Detection and treatment of activated T cells in the cerebrospinal fluid of patients with paraneoplastic cerebellar degeneration. Ann Neurol 2000;47:917.Google Scholar
Tuzun, E, Zhou, L, Baehring, JM, et al. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma. Acta Neuropathol 2009;118:737743.CrossRefGoogle ScholarPubMed
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157165.CrossRefGoogle ScholarPubMed
Florance, NR, Davis, RL, Lam, C, et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol 2009;66:1118.Google Scholar
Armangue, T, Spatola, M, Vlagea, A, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol 2018;17:760772.CrossRefGoogle ScholarPubMed
Pruss, H, Finke, C, Holtje, M, et al. N-methyl-D-aspartate receptor antibodies in herpes simplex encephalitis. Ann Neurol 2012;72:902911.CrossRefGoogle ScholarPubMed
Armangue, T, Titulaer, MJ, Malaga, I, et al. Pediatric anti-N-methyl-D-aspartate receptor encephalitis-clinical analysis and novel findings in a series of 20 patients. J Pediatr 2013;162:850856.CrossRefGoogle Scholar
Mueller, SH, Farber, A, Pruss, H, et al. Genetic predisposition in anti-LGI1 and anti-NMDA receptor encephalitis. Ann Neurol 2018;83:863869.CrossRefGoogle ScholarPubMed
Shu, Y, Qiu, W, Zheng, J, et al. HLA class II allele DRB1*16:02 is associated with anti-NMDAR encephalitis. J Neurol Neurosurg Psychiatry 2019;90:652658.Google Scholar
Spatola, M, Petit-Pedrol, M, Simabukuro, MM, et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology 2017;88:10121020.CrossRefGoogle ScholarPubMed
Petit-Pedrol, M, Armangue, T, Peng, X, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol 2014;13:276286.CrossRefGoogle Scholar
Spatola, M, Petit Pedrol, M, Maudes, E, et al. Clinical features, prognostic factors, and antibody effects in anti-mGluR1 encephalitis. Neurology 2020;95:e3012e3025.CrossRefGoogle ScholarPubMed
Ruiz-Garcia, R, Martinez-Hernandez, E, Joubert, B, et al. Paraneoplastic cerebellar ataxia and antibodies to metabotropic glutamate receptor 2. Neurol Neuroimmunol Neuroinflamm 2020;7;e658.Google Scholar
Spatola, M, Sabater, L, Planaguma, J, et al. Encephalitis with mGluR5 antibodies: symptoms and antibody effects. Neurology 2018;90:e1964e1972.Google Scholar
Dale, RC, Merheb, V, Pillai, S, et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain 2012;135:34533468.CrossRefGoogle ScholarPubMed
Mohammad, SS, Sinclair, K, Pillai, S, et al. Herpes simplex encephalitis relapse with chorea is associated with autoantibodies to N-methyl-D-aspartate receptor or dopamine-2 receptor. Mov Disord 2014;29:117122.Google Scholar
Carvajal-Gonzalez, A, Leite, MI, Waters, P, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 2014;137:21782192.Google Scholar
Ariño, H, Armangue, T, Petit-Pedrol, M, et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 2016;87:759765.Google Scholar
Lai, M, Huijbers, MG, Lancaster, E, et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol 2010;9:776785.Google Scholar
Irani, SR, Alexander, S, Waters, P, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 2010;133:27342748.CrossRefGoogle ScholarPubMed
van Sonderen, A, Roelen, DL, Stoop, JA, et al. Anti-LGI1 encephalitis is strongly associated with HLA-DR7 and HLA-DRB4. Ann Neurol 2017;81:193198.CrossRefGoogle ScholarPubMed
Kim, TJ, Lee, ST, Moon, J, et al. Anti-LGI1 encephalitis is associated with unique HLA subtypes. Ann Neurol 2017;81:183192.CrossRefGoogle ScholarPubMed
Binks, S, Varley, J, Lee, W, et al. Distinct HLA associations of LGI1 and CASPR2-antibody diseases. Brain 2018;141:22632271.Google Scholar
van Sonderen, A, Arino, H, Petit-Pedrol, M, et al. The clinical spectrum of Caspr2 antibody-associated disease. Neurology 2016;87:521528.Google Scholar
Patterson, KR, Dalmau, J, Lancaster, E. Mechanisms of Caspr2 antibodies in autoimmune encephalitis and neuromyotonia. Ann Neurol 2018;83:4051.Google Scholar
Irani, SR, Pettingill, P, Kleopa, KA, et al. Morvan syndrome: clinical and serological observations in 29 cases. Ann Neurol 2012;72:241255.Google Scholar
Muniz-Castrillo, S, Joubert, B, Elsensohn, MH, et al. Anti-CASPR2 clinical phenotypes correlate with HLA and immunological features. J Neurol Neurosurg Psychiatry 2020;91:10761084.Google Scholar
Hara, M, Arino, H, Petit-Pedrol, M, et al. DPPX antibody-associated encephalitis: main syndrome and antibody effects. Neurology 2017;88:13401348.Google Scholar
Tobin, WO, Lennon, VA, Komorowski, L, et al. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 2014;83:17971803.CrossRefGoogle ScholarPubMed
Gresa-Arribas, N, Planaguma, J, Petit-Pedrol, M, et al. Human neurexin-3alpha antibodies associate with encephalitis and alter synapse development. Neurology 2016;86:22352242.CrossRefGoogle ScholarPubMed
Sabater, L, Planaguma, J, Dalmau, J, Graus, F. Cellular investigations with human antibodies associated with the anti-IgLON5 syndrome. J Neuroinflammation 2016;13:226.Google Scholar
Gaig, C, Graus, F, Compta, Y, et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 2017;88:17361743.Google Scholar
Sabater, L, Gaig, C, Gelpi, E, et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 2014;13:575586.Google Scholar
Landa, J, Guasp, M, Petit-Pedrol, M, et al. Seizure-related 6 homolog like 2 autoimmunity: neurologic syndrome and antibody effects. Neurol Neuroimmunol Neuroinflamm 2021;8:e916.CrossRefGoogle ScholarPubMed
Bernal, F, Shams’ili, S, Rojas, I, et al. Anti-Tr antibodies as markers of paraneoplastic cerebellar degeneration and Hodgkin’s disease. Neurology 2003;60:230234.Google Scholar
de Graaff, E, Maat, P, Hulsenboom, E, et al. Identification of delta/notch-like epidermal growth factor-related receptor as the Tr antigen in paraneoplastic cerebellar degeneration. Ann Neurol 2012;71:815824.Google Scholar
Mason, WP, Graus, F, Lang, B, et al. Small-cell lung cancer, paraneoplastic cerebellar degeneration and the Lambert–Eaton myasthenic syndrome. Brain 1997;120:12791300.Google Scholar
Titulaer, MJ, Lang, B, Verschuuren, JJ. Lambert–Eaton myasthenic syndrome: from clinical characteristics to therapeutic strategies. Lancet Neurol 2011;10:10981107.CrossRefGoogle ScholarPubMed
Pittock, SJ, Lucchinetti, CF, Parisi, JE, et al. Amphiphysin autoimmunity: paraneoplastic accompaniments. Ann Neurol 2005;58:96107.CrossRefGoogle ScholarPubMed
Saiz, A, Dalmau, J, Butler, MH, et al. Anti-amphiphysin I antibodies in patients with paraneoplastic neurological disorders associated with small cell lung carcinoma. J Neurol Neurosurg Psychiatry 1999;66:214217.CrossRefGoogle ScholarPubMed
De Camilli, P, Thomas, A, Cofiell, R, et al. The synaptic vesicle-associated protein amphiphysin is the 128-kD autoantigen of Stiff-Man syndrome with breast cancer. J Exp Med 1993;178:22192223.CrossRefGoogle ScholarPubMed
Castellani, S, Giannini, AJ, Adams, PM. Physostigmine and haloperidol treatment of acute phencyclidine intoxication. Am J Psychiatry 1982;139:508510.Google Scholar
Krystal, JH, Karper, LP, Seibyl, JP, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994;51:199214.Google Scholar
Weiner, AL, Vieira, L, McKay, CA, Bayer, MJ. Ketamine abusers presenting to the emergency department: a case series. J Emerg Med 2000;18:447451.CrossRefGoogle Scholar
Findlay, GS, Phelan, R, Roberts, MT, et al. Glycine receptor knock-in mice and hyperekplexia-like phenotypes: comparisons with the null mutant. J Neurosci 2003;23:80518059.Google Scholar
Makarovsky, I, Markel, G, Hoffman, A, et al. Strychnine: a killer from the past. Isr Med Assoc J 2008;10:142145.Google Scholar
Dalmau, J, Tuzun, E, Wu, HY, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol 2007;61:2536.Google Scholar
Camdessanche, JP, Streichenberger, N, Cavillon, G, et al. Brain immunohistopathological study in a patient with anti-NMDAR encephalitis. Eur J Neurol 2011;18:929931.Google Scholar
Bien, CG, Vincent, A, Barnett, MH, et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 2012;135:16221638.CrossRefGoogle ScholarPubMed
Hughes, EG, Peng, X, Gleichman, AJ, et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci 2010;30:58665875.CrossRefGoogle ScholarPubMed
Peng, X, Hughes, EG, Moscato, EH, et al. Cellular plasticity induced by anti-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Ann Neurol 2015;77:381398.Google Scholar
Crisp, SJ, Dixon, CL, Jacobson, L, et al. Glycine receptor autoantibodies disrupt inhibitory neurotransmission. Brain 2019;142:33983410.CrossRefGoogle ScholarPubMed
Mikasova, L, De Rossie, P, Bouchet, D, et al. Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis. Brain 2012;135:16061621.Google Scholar
Planaguma, J, Leypoldt, F, Mannara, F, et al. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain 2015;138:94109.Google Scholar
Haselmann, H, Mannara, F, Werner, C, et al. Human autoantibodies against the AMPA receptor subunit GluA2 induce receptor reorganization and memory dysfunction. Neuron 2018;100:91105.Google Scholar
Petit-Pedrol, M, Sell, J, Planaguma, J, et al. LGI1 antibodies alter Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory. Brain 2018;141:31443159.Google Scholar
Sillevis, SP, Kinoshita, A, De Leeuw, B, et al. Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med 2000;342:2127.Google Scholar
Rauschenberger, V, von Wardenburg, N, Schaefer, N, et al. Glycine receptor autoantibodies impair receptor function and induce motor dysfunction. Ann Neurol 2020;88:544561.Google Scholar
Werner, C, Pauli, M, Doose, S, et al. Human autoantibodies to amphiphysin induce defective presynaptic vesicle dynamics and composition. Brain 2016;139:365379.Google Scholar
Jones, BE, Tovar, KR, Goehring, A, et al. Autoimmune receptor encephalitis in mice induced by active immunization with conformationally stabilized holoreceptors. Sci Transl Med 2019;11:eaaw0044.Google Scholar
Wagnon, I, Helie, P, Bardou, I, et al. Autoimmune encephalitis mediated by B-cell response against N-methyl-d-aspartate receptor. Brain 2020;143:29572972.Google Scholar
Planaguma, J, Haselmann, H, Mannara, F, et al. Ephrin-B2 prevents N-methyl-D-aspartate receptor antibody effects on memory and neuroplasticity. Ann Neurol 2016;80:388400.Google Scholar
Mannara, F, Radosevic, M, Planaguma, J, et al. Allosteric modulation of NMDA receptors prevents the antibody effects of patients with anti-NMDAR encephalitis. Brain 2020;143:27092720.Google Scholar
Ng, AS, Kramer, J, Centurion, A, et al. Clinico-pathological correlation in adenylate kinase 5 autoimmune limbic encephalitis. J Neuroimmunol 2015;287:3135.Google Scholar
Pruss, H, Holtje, M, Maier, N, et al. IgA NMDA receptor antibodies are markers of synaptic immunity in slow cognitive impairment. Neurology 2012;78:17431753.CrossRefGoogle ScholarPubMed
Doss, S, Wandinger, KP, Hyman, BT, et al. High prevalence of NMDA receptor IgA/IgM antibodies in different dementia types. Ann Clin Transl Neurol 2014;1:822832.CrossRefGoogle ScholarPubMed
Dahm, L, Ott, C, Steiner, J, et al. Seroprevalence of autoantibodies against brain antigens in health and disease. Ann Neurol 2014;76:8294.Google Scholar
Hammer, C, Stepniak, B, Schneider, A, et al. Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood–brain barrier integrity. Mol Psychiatry 2014;19:11431149.Google Scholar
Busse, S, Busse, M, Brix, B, et al. Seroprevalence of N-methyl-D-aspartate glutamate receptor (NMDA-R) autoantibodies in aging subjects without neuropsychiatric disorders and in dementia patients. Eur Arch Psychiatry Clin Neurosci 2014;264:545550.Google Scholar
Sperber, PS, Siegerink, B, Huo, S, et al. Serum Anti-NMDA (N-methyl-D-aspartate)-receptor antibodies and long-term clinical outcome after stroke (PROSCIS-B). Stroke 2019;50:32133219.CrossRefGoogle ScholarPubMed
Zerche, M, Weissenborn, K, Ott, C, et al. Preexisting serum autoantibodies against the NMDAR subunit NR1 modulate evolution of lesion size in acute ischemic stroke. Stroke 2015;46:11801186.Google Scholar
Bartels, F, Stronisch, T, Farmer, K, et al. Neuronal autoantibodies associated with cognitive impairment in melanoma patients. Ann Oncol 2019;30:823829.Google Scholar
Pollak, TA, Kempton, MJ, Iyegbe, C, et al. Clinical, cognitive and neuroanatomical associations of serum NMDAR autoantibodies in people at clinical high risk for psychosis. Mol Psychiatry 2021;26:2590–2604.Google Scholar
Steiner, J, Walter, M, Glanz, W, et al. Increased prevalence of diverse N-methyl-D-aspartate glutamate receptor antibodies in patients with an initial diagnosis of schizophrenia: specific relevance of IgG NR1a antibodies for distinction from N-methyl-D-aspartate glutamate receptor encephalitis. JAMA Psychiatry 2013;70:271278.Google Scholar
Hara, M, Martinez-Hernandez, E, Arino, H, et al. Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology 2018;90:e1386e1394.Google Scholar
Titulaer, MJ and Dalmau, J. Antibodies to NMDA receptor, blood–brain barrier disruption and schizophrenia: a theory with unproven links. Mol Psychiatry 2014;19:1054.Google Scholar
Castillo-Gomez, E, Oliveira, B, Tapken, D, et al. All naturally occurring autoantibodies against the NMDA receptor subunit NR1 have pathogenic potential irrespective of epitope and immunoglobulin class. Mol Psychiatry 2017;22:17761784.Google Scholar
Schou, MB, Saether, SG, Drange, OK, et al. The significance of anti-neuronal antibodies for acute psychiatric disorders: a retrospective case-controlled study. BMC Neurosci 2018;19:68.Google Scholar
Steiner, J, Teegen, B, Schiltz, K, et al. Prevalence of N-methyl-D-aspartate receptor autoantibodies in the peripheral blood: healthy control samples revisited. JAMA Psychiatry 2014;71:838839.CrossRefGoogle ScholarPubMed
Lai, M, Hughes, EG, Peng, X, et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol 2009;65:424434.Google Scholar
Dalmau, J, Geis, C, Graus, F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev 2017;97:839887.Google Scholar
Hinson, SR, Romero, MF, Popescu, BF, et al. Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci USA 2012;109:12451250.CrossRefGoogle ScholarPubMed
Huijbers, MG, Querol, LA, Niks, EH, et al. The expanding field of IgG4-mediated neurological autoimmune disorders. Eur J Neurol 2015;22:11511161.CrossRefGoogle ScholarPubMed
Kelleher, E, McNamara, P, Dunne, J, et al. Prevalence of N-Methyl-d-Aspartate Receptor antibody (NMDAR-Ab) encephalitis in patients with first episode psychosis and treatment resistant schizophrenia on clozapine, a population based study. Schizophr Res 2020;222:455461.CrossRefGoogle ScholarPubMed
Pathmanandavel, K, Starling, J, Merheb, V, et al. Antibodies to surface dopamine-2 receptor and N-methyl-D-aspartate receptor in the first episode of acute psychosis in children. Biol Psychiatry 2015;77:537547.Google Scholar
Jézéquel, J, Johansson, EM, Dupuis, JP, et al. Dynamic disorganization of synaptic NMDA receptors triggered by autoantibodies from psychotic patients. Nat Commun 2017;8:1791.Google Scholar
Zandi, MS, Irani, SR, Lang, B, et al. Disease-relevant autoantibodies in first episode schizophrenia. J Neurol 2011;258:686688.Google Scholar
Lennox, BR, Palmer-Cooper, EC, Pollak, T, et al. Prevalence and clinical characteristics of serum neuronal cell surface antibodies in first-episode psychosis: a case–control study. Lancet Psychiatry 2017;4:4248.Google Scholar
Jezequel, J, Rogemond, V, Pollak, T, et al. Cell- and single molecule-based methods to detect anti-N-methyl-D-aspartate receptor autoantibodies in patients with first-episode psychosis from the OPTiMiSE project. Biol Psychiatry 2017;82:766772.Google Scholar
Engen, K, Wortinger, LA, Jorgensen, KN, et al. Autoantibodies to the N-methyl-D-aspartate receptor in adolescents with early onset psychosis and healthy controls. Front Psychiatry 2020;11:666.Google Scholar
Zandi, MS, Paterson, RW, Ellul, MA, et al. Clinical relevance of serum antibodies to extracellular N-methyl-d-aspartate receptor epitopes. J Neurol Neurosurg Psychiatry 2015;86:708713.Google Scholar
Kumakura, A, Miyajima, T, Fujii, T, Takahashi, Y, Ito, M. A patient with epilepsia partialis continua with anti-glutamate receptor epsilon 2 antibodies. Pediatr Neurol 2003;29:160163.Google Scholar
Takahashi, Y, Mori, H, Mishina, M, et al. Autoantibodies to NMDA receptor in patients with chronic forms of epilepsia partialis continua. Neurology 2003;61:891896.Google Scholar
Takahashi, Y, Mori, H, Mishina, M, et al. Autoantibodies and cell-mediated autoimmunity to NMDA-type GluRepsilon2 in patients with Rasmussen’s encephalitis and chronic progressive epilepsia partialis continua. Epilepsia 2005;46:152158.Google Scholar
Fujita, K, Yuasa, T, Takahashi, Y, et al. Detection of anti-glutamate receptor epsilon2 and anti-N-methyl-D-aspartate receptor antibodies in a patient with sporadic Creutzfeldt–Jakob disease. J Neurol 2012;259:985988.Google Scholar
Tani, M, Konishi, Y, Nishida, T, Takahashi, Y, Kusaka, T. A case of Kleine–Levin syndrome with positive anti-NMDA-type glutamate receptor antibodies. Pediatr Int 2020;62:409410.Google Scholar
Dickerson, F, Stallings, C, Vaughan, C, et al. Antibodies to the glutamate receptor in mania. Bipolar Disord 2012;14:547553.Google Scholar
Yoshino, M, Muneuchi, J, Terashi, E, et al., Limbic encephalitis following guillain-barré syndrome associated with mycoplasma infection. Case Rep Neurol 2019;11:1723.Google Scholar
Fujita, K, Yuasa, T, Takahashi, Y, et al. Antibodies to N-methyl-D-aspartate glutamate receptors in Creutzfeldt–Jakob disease patients. J Neuroimmunol 2012;251:9093.Google Scholar
DeGiorgio, LA, Konstantinov, KN, Lee, SC, et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 2001;7:11891193.Google Scholar
Hanly, JG, Urowitz, MB, Su, L, et al. Autoantibodies as biomarkers for the prediction of neuropsychiatric events in systemic lupus erythematosus. Ann Rheum Dis 2011;70:17261732.Google Scholar
Hanly, JG, Li, Q, Su, L, et al. Psychosis in systemic lupus erythematosus: results from an international inception cohort study. Arthritis Rheumatol 2019;71:281289.Google Scholar
Sciascia, S, Bertolaccini, ML, Roccatello, D, Khamashta, MA, Sanna, G. Autoantibodies involved in neuropsychiatric manifestations associated with systemic lupus erythematosus: a systematic review. J Neurol 2014;261:17061714.Google Scholar
Graus, F, Dalmau, J. Neuronal antibodies in Creutzfeldt–Jakob disease: reply. JAMA Neurol 2014;71:514515.Google Scholar
Ohkawa, T, Satake, S, Yokoi, N, et al. Identification and characterization of GABA(A) receptor autoantibodies in autoimmune encephalitis. J Neurosci 2014;34:81518163.CrossRefGoogle ScholarPubMed
Joubert, B, Saint-Martin, M, Noraz, N, et al. Characterization of a subtype of autoimmune encephalitis with anti-contactin-associated protein-like 2 antibodies in the cerebrospinal fluid, prominent limbic symptoms, and seizures. JAMA Neurol 2016;73:11151124.Google Scholar
McConville, J, Farrugia, ME, Beeson, D, et al. Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Ann Neurol 2004;55:580584.Google Scholar
Niks, EH, van Leeuwen, Y, Leite, MI, et al. Clinical fluctuations in MuSK myasthenia gravis are related to antigen-specific IgG4 instead of IgG1. J Neuroimmunol 2008;195:151156.Google Scholar
Huijbers, MG, Zhang, W, Klooster, R, et al. MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proc Natl Acad Sci USA 2013;110:2078320788.Google Scholar
Querol, L, Nogales-Gadea, G, Rojas-Garcia, R, et al. Neurofascin IgG4 antibodies in CIDP associate with disabling tremor and poor response to IVIg. Neurology 2014;82:879886.CrossRefGoogle ScholarPubMed
Rock, B, Martins, CR, Theofilopoulos, AN, et al. The pathogenic effect of IgG4 autoantibodies in endemic pemphigus foliaceus (fogo selvagem). N Engl J Med 1989;320:14631469.Google Scholar
Niks, EH, Kuks, JB, Roep, BO, et al. Strong association of MuSK antibody-positive myasthenia gravis and HLA-DR14-DQ5. Neurology 2006;66:17721774.CrossRefGoogle ScholarPubMed
Alahgholi-Hajibehzad, M, Yilmaz, V, Gulsen-Parman, Y, et al. Association of HLA-DRB1 *14, -DRB1 *16 and -DQB1 *05 with MuSK-myasthenia gravis in patients from Turkey. Hum Immunol 2013;74:16331635.CrossRefGoogle ScholarPubMed
Tron, F, Gilbert, D, Mouquet, H, et al. Genetic factors in pemphigus. J Autoimmun 2005;24:319328.CrossRefGoogle ScholarPubMed
Gaig, C, Ercilla, G, Daura, X, et al. HLA and microtubule-associated protein tau H1 haplotype associations in anti-IgLON5 disease. Neurol Neuroimmunol Neuroinflamm 2019;6:e605.Google Scholar
Pugliese, A, Solimena, M, Awdeh, ZL, et al. Association of HLA-DQB1*0201 with stiff-man syndrome. J Clin Endocrinol Metab 1993;77:15501553.Google Scholar
Muniz-Castrillo, S, Ambati, A, Dubois, V, et al. Primary DQ effect in the association between HLA and neurological syndromes with anti-GAD65 antibodies. J Neurol 2020;267:19061911.Google Scholar
Irani, SR, Bera, K, Waters, P, et al. N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain 2010;133:16551667.Google Scholar
Martinez-Hernandez, E, Horvath, J, Shiloh-Malawsky, Y, et al. Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis. Neurology 2011;77:589593.CrossRefGoogle ScholarPubMed
Hinson, SR, Roemer, SF, Lucchinetti, CF, et al. Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J Exp Med 2008;205:24732481.Google Scholar
Kortvelyessy, P, Bauer, J, Stoppel, CM, et al. Complement-associated neuronal loss in a patient with CASPR2 antibody-associated encephalitis. Neurol Neuroimmunol Neuroinflamm 2015;2:e75.Google Scholar
Veerhuis, R, Nielsen, HM, Tenner, AJ. Complement in the brain. Mol Immunol 2011;48:15921603.Google Scholar
Ma, J, Zhang, T, Jiang, L. Japanese encephalitis can trigger anti-N-methyl-D-aspartate receptor encephalitis. J Neurol 2017;264:11271131.Google Scholar
Malviya, M, Barman, S, Golombeck, KS, et al. NMDAR encephalitis: passive transfer from man to mouse by a recombinant antibody. Ann Clin Transl Neurol 2017;4:768783.Google Scholar
Titulaer, MJ, Soffietti, R, Dalmau, J, et al. Screening for tumours in paraneoplastic syndromes: report of an EFNS Task Force. Eur J Neurol 2011;18:19-e13.Google Scholar
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Late-onset anti-NMDA receptor encephalitis. Neurology 2013;81:10581063.Google Scholar
DeLuca, I, Blachere, NE, Santomasso, B, Darnell, RB. Tolerance to the neuron-specific paraneoplastic HuD antigen. PLoS One 2009;4:e5739.Google Scholar
Small, M, Treilleux, I, Couillault, C, et al. Genetic alterations and tumor immune attack in Yo paraneoplastic cerebellar degeneration. Acta Neuropathol 2018;135:569579.Google Scholar
Rojas-Marcos, I, Picard, G, Chinchon, D, et al. Human epidermal growth factor receptor 2 overexpression in breast cancer of patients with anti-Yo-associated paraneoplastic cerebellar degeneration. Neuro Oncol 2012;14:506510.CrossRefGoogle ScholarPubMed
Dalmau, J, Furneaux, HM, Gralla, RJ, Kris, MG, Posner, JB. Detection of the anti-Hu antibody in the serum of patients with small cell lung cancer: a quantitative western blot analysis. Ann Neurol 1990;27:544552.Google Scholar
Monstad, SE, Knudsen, A, Salvesen, HB, Aarseth, JH, Vedeler, CA. Onconeural antibodies in sera from patients with various types of tumours. Cancer Immunol Immunother 2009;58:17951800.Google Scholar
Graus, F, Dalmau, J, Rene, R, et al. Anti-Hu antibodies in patients with small-cell lung cancer: association with complete response to therapy and improved survival. J Clin Oncol 1997;15:28662872.Google Scholar
Monstad, SE, Drivsholm, L, Storstein, A, et al. Hu and voltage-gated calcium channel (VGCC) antibodies related to the prognosis of small-cell lung cancer. J Clin Oncol 2004;22:795800.CrossRefGoogle Scholar
Blumenthal, DT, Salzman, KL, Digre, KB, et al. Early pathologic findings and long-term improvement in anti-Ma2-associated encephalitis. Neurology 2006;67:146149.Google Scholar
Sansing, LH, Tuzun, E, Ko, MW, et al. A patient with encephalitis associated with NMDA receptor antibodies. Nat Clin Pract Neurol 2007;3:291296.Google Scholar
Chefdeville, A, Treilleux, I, Mayeur, ME, et al. Immunopathological characterization of ovarian teratomas associated with anti-N-methyl-D-aspartate receptor encephalitis. Acta Neuropathol Commun 2019;7:38.Google Scholar
Makuch, M, Wilson, R, Al-Diwani, A, et al. N-methyl-D-aspartate receptor antibody production from germinal center reactions: therapeutic implications. Ann Neurol 2018;83:553561.Google Scholar
Hoffacker, V, Schultz, A, Tiesinga, JJ, et al. Thymomas alter the T-cell subset composition in the blood: a potential mechanism for thymoma-associated autoimmune disease. Blood 2000;96:38723879.Google Scholar
Sun, L, Li, H, Luo, H, Zhao, Y. Thymic epithelial cell development and its dysfunction in human diseases. Biomed Res Int 2014;2014:206929.Google Scholar
Vernino, S, Lennon, VA. Autoantibody profiles and neurological correlations of thymoma. Clin Cancer Res 2004;10:72707275.Google Scholar
Guasp, M, Landa, J, Martinez-Hernandez, E, et al. Thymoma and autoimmune encephalitis: clinical manifestations and antibodies. Neurol Neuroimmunol Neuroinflamm. 2021;8:e1053.Google Scholar
Shelly, S, Agmon-Levin, N, Altman, A, Shoenfeld, Y. Thymoma and autoimmunity. Cell Mol Immunol 2011;8:199202.Google Scholar
Meager, A, Peterson, P, Willcox, N. Hypothetical review: thymic aberrations and type-I interferons; attempts to deduce autoimmunizing mechanisms from unexpected clues in monogenic and paraneoplastic syndromes. Clin Exp Immunol 2008;154:141151.Google Scholar
Cheng, MH, Fan, U, Grewal, N, et al. Acquired autoimmune polyglandular syndrome, thymoma, and an AIRE defect. N Engl J Med 2010;362:764766.Google Scholar
Vialatte de Pemille, C, Berzero, G, Small, M, et al. Transcriptomic immune profiling of ovarian cancers in paraneoplastic cerebellar degeneration associated with anti-Yo antibodies. Br J Cancer 2018;119:105113.Google Scholar
Lancaster, E, Lai, M, Peng, X, et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol 2010;9:6776.Google Scholar
Arino, H, Hoftberger, R, Gresa-Arribas, N, et al. Paraneoplastic neurological syndromes and glutamic acid decarboxylase antibodies. JAMA Neurol 2015;72:874881.Google Scholar
Lancaster, E, Martinez-Hernandez, E, Titulaer, MJ, et al. Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome. Neurology 2011;77:16981701.Google Scholar
Kristinsson, SY, Landgren, O, Sjoberg, J, et al. Autoimmunity and risk for Hodgkin’s lymphoma by subtype. Haematologica 2009;94:14681469.Google Scholar
Carr, I. The Ophelia syndrome: memory loss in Hodgkin’s disease. Lancet 1982;1:844845.Google Scholar
Leach, DR, Krummel, MF, Allison, JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996;271:17341736.Google Scholar
Boussiotis, VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 2016;375:17671778.Google Scholar
Ribas, A, Wolchok, JD. Cancer immunotherapy using checkpoint blockade. Science 2018;359:13501355.Google Scholar
Yshii, LM, Hohlfeld, R, Liblau, RS. Inflammatory CNS disease caused by immune checkpoint inhibitors: status and perspectives. Nat Rev Neurol 2017;13:755763.Google Scholar
Nersesjan, V, McWilliam, O, Krarup, LH, Kondziella, D. Autoimmune encephalitis related to cancer treatment with immune checkpoint inhibitors: a systematic review. Neurology 2021;97:e191e202.Google Scholar
Graus, F, Dalmau, J. Paraneoplastic neurological syndromes in the era of immune-checkpoint inhibitors. Nat Rev Clin Oncol 2019;16:535548.Google Scholar
Yshii, LM, Gebauer, CM, Pignolet, B, et al. CTLA4 blockade elicits paraneoplastic neurological disease in a mouse model. Brain 2016;139:29232934.Google Scholar
Vogrig, A, Fouret, M, Joubert, B, et al. Increased frequency of anti-Ma2 encephalitis associated with immune checkpoint inhibitors. Neurol Neuroimmunol Neuroinflamm 2019;6;e604.Google Scholar
Mammen, AL, Rajan, A, Pak, K, et al. Pre-existing antiacetylcholine receptor autoantibodies and B cell lymphopaenia are associated with the development of myositis in patients with thymoma treated with avelumab, an immune checkpoint inhibitor targeting programmed death-ligand 1. Ann Rheum Dis 2019;78:150152.Google Scholar
Vogrig, A, Muniz-Castrillo, S, Desestret, V, Joubert, B, Honnorat, J. Pathophysiology of paraneoplastic and autoimmune encephalitis: genes, infections, and checkpoint inhibitors. Ther Adv Neurol Disord 2020;13:1756286420932797.Google Scholar
Posner, JB, Dalmau, J. Paraneoplastic syndromes. Curr Opin Immunol 1997;9:723729.Google Scholar
Darnell, RB, DeAngelis, LM. Regression of small-cell lung carcinoma in patients with paraneoplastic neuronal antibodies. Lancet 1993;341:2122.Google Scholar
Dalmau, J, Graus, F, Rosenblum, MK, Posner, JB. Anti-Hu-associated paraneoplastic encephalomyelitis/sensory neuronopathy: a clinical study of 71 patients. Medicine (Baltimore) 1992;71:5972.Google Scholar
Bernal, F, Graus, F, Pifarre, A, et al. Immunohistochemical analysis of anti-Hu-associated paraneoplastic encephalomyelitis. Acta Neuropathol (Berl) 2002;103:509515.Google Scholar
Dalmau, J, Graus, F, Villarejo, A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004;127:18311844.Google Scholar
Williams, TJ, Benavides, DR, Patrice, KA, et al. Association of autoimmune encephalitis with combined immune checkpoint inhibitor treatment for metastatic cancer. JAMA Neurol 2016;73:928933.Google Scholar
Gill, A, Perez, MA, Perrone, CM, et al. A case series of PD-1 inhibitor-associated paraneoplastic neurologic syndromes. J Neuroimmunol 2019;334:576980.Google Scholar
Brown, MP, Hissaria, P, Hsieh, AH, Kneebone, C, Vallat, W. Autoimmune limbic encephalitis with anti-contactin-associated protein-like 2 antibody secondary to pembrolizumab therapy. J Neuroimmunol 2017;305:1618.Google Scholar
Schneider, S, Potthast, S, Komminoth, P, Schwegler, G, Bohm, S. PD-1 checkpoint inhibitor associated autoimmune encephalitis. Case Rep Oncol 2017;10:473478.CrossRefGoogle ScholarPubMed
Shah, S, Dunn-Pirio, A, Luedke, M, et al. Nivolumab-induced autoimmune encephalitis in two patients with lung adenocarcinoma. Case Rep Neurol Med 2018;2018:2548528.Google ScholarPubMed
Niki, M, Nakaya, A, Kurata, T, et al. Pembrolizumab-induced autoimmune encephalitis in a patient with advanced non-small cell lung cancer: a case report. Mol Clin Oncol 2019;10:267269.Google Scholar
Dalakas, MC. Guillain–Barre syndrome: the first documented COVID-19-triggered autoimmune neurologic disease. More to come with myositis in the offing. Neurol Neuroimmunol Neuroinflamm 2020;7;e781.Google Scholar
Wakerley, BR, Yuki, N. Infectious and noninfectious triggers in Guillain–Barre syndrome. Expert Rev Clin Immunol 2013;9:627639.Google Scholar
Cao-Lormeau, VM, Blake, A, Mons, S, et al. Guillain–Barre syndrome outbreak associated with Zika virus infection in French Polynesia: a case–control study. Lancet 2016;387:15311539.Google Scholar
Kirvan, CA, Swedo, SE, Kurahara, D, Cunningham, MW. Streptococcal mimicry and antibody-mediated cell signaling in the pathogenesis of Sydenham’s chorea. Autoimmunity 2006;39:2129.Google Scholar
Leake, JA, Albani, S, Kao, AS, et al. Acute disseminated encephalomyelitis in childhood: epidemiologic, clinical and laboratory features. Pediatr Infect Dis J 2004;23:756764.Google Scholar
Dale, RC, Church, AJ, Cardoso, F, et al. Poststreptococcal acute disseminated encephalomyelitis with basal ganglia involvement and auto-reactive antibasal ganglia antibodies. Ann Neurol 2001;50:588595.CrossRefGoogle ScholarPubMed
De Tiege, X, Rozenberg, F, Des Portes, V, et al. Herpes simplex encephalitis relapses in children: differentiation of two neurologic entities. Neurology 2003;61:241243.Google Scholar
Armangue, T, Leypoldt, F, Malaga, I, et al. Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Ann Neurol 2014;75:317323.Google Scholar
Armangue, T, Moris, G, Cantarin-Extremera, V, et al. Autoimmune post-herpes simplex encephalitis of adults and teenagers. Neurology 2015;85:17361743.Google Scholar
Hacohen, Y, Deiva, K, Pettingill, P, et al. N-methyl-D-aspartate receptor antibodies in post-herpes simplex virus encephalitis neurological relapse. Mov Disord 2014;29:9096.Google Scholar
Leypoldt, F, Titulaer, MJ, Aguilar, E, et al. Herpes simplex virus-1 encephalitis can trigger anti-NMDA receptor encephalitis: case report. Neurology 2013;81:16371639.Google Scholar
Linnoila, JJ, Binnicker, MJ, Majed, M, Klein, CJ, McKeon, A. CSF herpes virus and autoantibody profiles in the evaluation of encephalitis. Neurol Neuroimmunol Neuroinflamm 2016;3:e245.Google Scholar
Ransohoff, RM, Engelhardt, B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012;12:623635.Google Scholar
Louveau, A, Smirnov, I, Keyes, TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523:337341.Google Scholar
Linnoila, J, Pulli, B, Armangue, T, et al. Mouse model of anti-NMDA receptor post-herpes simplex encephalitis. Neurol Neuroimmunol Neuroinflamm 2019;6:e529.Google Scholar
Salovin, A, Glanzman, J, Roslin, K, et al. Anti-NMDA receptor encephalitis and nonencephalitic HSV-1 infection. Neurol Neuroimmunol Neuroinflamm 2018;5:e458.Google Scholar
Ma, J, Han, W, Jiang, L. Japanese encephalitis-induced anti-N-methyl-d-aspartate receptor encephalitis: a hospital-based prospective study. Brain Dev 2020;42:179184.Google Scholar
Shaik, RS, Netravathi, M, Nitish, LK, et al. A rare case of Japanese encephalitis-induced anti-N-methyl-d-aspartate receptor encephalitis. Neurol India 2018;66:14951496.Google Scholar
Tian, M, Li, J, Lei, W, Shu, X. Japanese encephalitis virus-induced anti-N-methyl-D-aspartate receptor encephalitis: a case report and review of literature. Neuropediatrics 2019;50:111115.Google Scholar
Pastel, H, Chakrabarty, B, Saini, L, Kumar, A, Gulati, S. A case of anti-N-methyl-D-aspartate (NMDA) receptor encephalitis possibly triggered by an episode of Japanese B encephalitis. Neurol India 2017;65:895897.Google Scholar
Schabitz, WR, Rogalewski, A, Hagemeister, C, Bien, CG. VZV brainstem encephalitis triggers NMDA receptor immunoreaction. Neurology 2014;83:23092311.Google Scholar
Cavaliere, E, Nosadini, M, Pelizza, MF, et al. Anti-NMDAR encephalitis preceded by non-herpetic central nervous system infection: systematic literature review and first case of tick-borne encephalitis triggering anti-NMDAR encephalitis. J Neuroimmunol 2019;332:17.Google Scholar
Haneche, F, Demeret, S, Psimaras, D, Katlama, C, Pourcher, V. An anti-NMDA receptor encephalitis mimicking an HIV encephalitis. Clin Immunol 2018;193:1011.Google Scholar
Tyler, KL. Herpes simplex virus infections of the central nervous system: encephalitis and meningitis, including Mollaret’s. Herpes 2004;11:57A64A.Google Scholar
Kleines, M, Scheithauer, S, Schiefer, J, Hausler, M. Clinical application of viral cerebrospinal fluid PCR testing for diagnosis of central nervous system disorders: a retrospective 11-year experience. Diagn Microbiol Infect Dis 2014;80:207215.Google Scholar
Sunden, B, Larsson, M, Falkeborn, T, et al. Real-time PCR detection of human herpesvirus 1–5 in patients lacking clinical signs of a viral CNS infection. BMC Infect Dis 2011;11:220.Google Scholar
Vaughn, DW, Hoke, CH Jr. The epidemiology of Japanese encephalitis: prospects for prevention. Epidemiol Rev 1992;14:197221.Google Scholar
Pradhan, S, Gupta, RK, Singh, MB, Mathur, A. Biphasic illness pattern due to early relapse in Japanese-B virus encephalitis. J Neurol Sci 2001;183:1318.Google Scholar
Peng, Y, Liu, X, Pan, S, Xie, Z, Wang, H. Anti-N-methyl-D-aspartate receptor encephalitis associated with intracranial Angiostrongylus cantonensis infection: a case report. Neurol Sci 2017;38:703706.Google Scholar
Panda, PK, Sharawat, IK, Bolia, R. Leptospira triggered anti-N-Methyl-d-Aspartate receptor encephalitis. J Trop Pediatr 2020;67:fmaa067Google Scholar
Li, XY, Shi, ZH, Guan, YL, Ji, Y. Anti-N-methyl-D-aspartate-receptor antibody encephalitis combined with syphilis: a case report. World J Clin Cases 2020;8:26032609.Google Scholar
Gable, MS, Gavali, S, Radner, A, et al. Anti-NMDA receptor encephalitis: report of ten cases and comparison with viral encephalitis. Eur J Clin Microbiol Infect Dis 2009;28:14211429.CrossRefGoogle ScholarPubMed
Goenka, A, Jain, V, Nariai, H, Spiro, A, Steinschneider, M. Extended clinical spectrum of anti-N-methyl-d-aspartate receptor encephalitis in children: a case series. Pediatr Neurol 2017;72:5155.Google Scholar
Tonooka, A, Kubo, T, Ichimiya, S, et al. Wild-type AIRE cooperates with p63 in HLA class II expression of medullary thymic stromal cells. Biochem Biophys Res Commun 2009;379:765770.Google Scholar
Smith, MJ, Rihanek, M, Wasserfall, C, et al. Loss of B-cell anergy in type 1 diabetes is associated with high-risk HLA and non-HLA disease susceptibility alleles. Diabetes 2018;67:697703.Google Scholar
Bodis, G, Toth, V, Schwarting, A. Role of human leukocyte antigens (HLA) in autoimmune diseases. Rheumatol Ther 2018;5:520.Google Scholar
Rudwaleit, M, van der Heijde, D, Landewe, R, et al. The development of Assessment of SpondyloArthritis International Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann Rheum Dis 2009;68:777783.Google Scholar
Rudwaleit, M, Listing, J, Brandt, J, Braun, J, Sieper, J. Prediction of a major clinical response (BASDAI 50) to tumour necrosis factor alpha blockers in ankylosing spondylitis. Ann Rheum Dis 2004;63:665670.Google Scholar
Serena, G, Lima, R, Fasano, A. Genetic and environmental contributors for celiac disease. Curr Allergy Asthma Rep 2019;19:40.Google Scholar
Vader, W, Stepniak, D, Kooy, Y, et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc Natl Acad Sci USA 2003;100:1239012395.Google Scholar
Abraham, G, Rohmer, A, Tye-Din, JA, Inouye, M. Genomic prediction of celiac disease targeting HLA-positive individuals. Genome Med 2015;7:72.Google Scholar
Sollid, LM, Lie, BA. Celiac disease genetics: current concepts and practical applications. Clin Gastroenterol Hepatol 2005;3:843851.CrossRefGoogle ScholarPubMed
Miyagawa, T, Tokunaga, K. Genetics of narcolepsy. Hum Genome Var 2019;6:4.Google Scholar
Juvodden, HT, Viken, MK, Nordstrand, SEH, et al. HLA and sleep parameter associations in post-H1N1 narcolepsy type 1 patients and first-degree relatives. Sleep 2020;43;zsz239.Google Scholar
Titulaer, MJ, Verschuuren, JJ. Lambert–Eaton myasthenic syndrome: tumor versus nontumor forms. Ann N Y Acad Sci 2008;1132:129134.Google Scholar
Buchhalter, JR, Dichter, MA. Electrophysiological comparison of pyramidal and stellate nonpyramidal neurons in dissociated cell culture of rat hippocampus. Brain Res Bull 1991;26:333338.Google Scholar
Kreye, J, Wenke, NK, Chayka, M, et al. Human cerebrospinal fluid monoclonal N-methyl-D-aspartate receptor autoantibodies are sufficient for encephalitis pathogenesis. Brain 2016;139:26412652.CrossRefGoogle ScholarPubMed
Ladepeche, L, Planaguma, J, Thakur, S, et al. NMDA receptor autoantibodies in autoimmune encephalitis cause a subunit-specific nanoscale redistribution of NMDA receptors. Cell Rep 2018;23:37593768.Google Scholar
Moscato, EH, Peng, X, Jain, A, et al. Acute mechanisms underlying antibody effects in anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 2014;76:108119.Google Scholar
Gleichman, AJ, Spruce, LA, Dalmau, J, Seeholzer, SH, Lynch, DR. Anti-NMDA receptor encephalitis antibody binding is dependent on amino acid identity of a small region within the GluN1 amino terminal domain. J Neurosci 2012;32:1108211094.Google Scholar
Warikoo, N, Brunwasser, SJ, Benz, A, et al. Positive allosteric modulation as a potential therapeutic strategy in anti-NMDA receptor encephalitis. J Neurosci 2018;38:32183229.Google Scholar
Rose, NR, Bona, C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today 1993;14:426430.Google Scholar
Garcia-Serra, A, Radosevic, M, Pupak, A, et al. Placental transfer of NMDAR antibodies causes reversible alterations in mice. Neurol Neuroimmunol Neuroinflamm 2020;8:e915.Google Scholar
Carceles-Cordon, M, Mannara, F, Aguilar, E, et al. NMDAR antibodies alter dopamine receptors and cause psychotic behavior in mice. Ann Neurol 2020;88:603613.Google Scholar
Yirmiya, R. Endotoxin produces a depressive-like episode in rats. Brain Res 1996;711:163174.Google Scholar
Sayyah, M, Javad-Pour, M, Ghazi-Khansari, M. The bacterial endotoxin lipopolysaccharide enhances seizure susceptibility in mice: involvement of proinflammatory factors – nitric oxide and prostaglandins. Neuroscience 2003;122:10731080.Google Scholar
Ohkawa, T, Fukata, Y, Yamasaki, M, et al. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors. J Neurosci 2013;33:1816118174.Google Scholar
Ramberger, M, Berretta, A, Tan, JMM, et al. Distinctive binding properties of human monoclonal LGI1 autoantibodies determine pathogenic mechanisms. Brain 2020;143:17311745.Google Scholar
Ding, Y, Zhou, Z, Chen, J, et al. Anti-NMDAR encephalitis induced in mice by active immunization with a peptide from the amino-terminal domain of the GluN1 subunit. J Neuroinflammation 2021;18:53.Google Scholar
Dingledine, R, Borges, K, Bowie, D, Traynelis, SF. The glutamate receptor ion channels. Pharmacol Rev 1999;51:761.Google Scholar
Cull-Candy, SG, Leszkiewicz, DN. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE 2004;2004:re16.Google Scholar
Dalmau, J, Gleichman, AJ, Hughes, EG, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008;7:10911098.Google Scholar
Shepherd, JD, Huganir, RL. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol 2007;23:613643.Google Scholar
Palmer, CL, Cotton, L, Henley, JM. The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacol Rev 2005;57:253277.Google Scholar
Contractor, A, Mulle, C, Swanson, GT. Kainate receptors coming of age: milestones of two decades of research. Trends Neurosci 2011;34:154163.Google Scholar
Fisher, MT, Fisher, JL. Contributions of different kainate receptor subunits to the properties of recombinant homomeric and heteromeric receptors. Neuroscience 2014;278:7080.Google Scholar
Landa, J, Guasp, M, Míguez-Cabello, F, et al. Encephalitis with autoantibodies against the glutamate kainate receptors GluK2. Ann Neurol 2021;90:101117.Google Scholar
Macdonald, RL, Olsen, RW. GABAA receptor channels. Annu Rev Neurosci 1994;17:569602.Google Scholar
Sigel, E, Steinmann, ME. Structure, function, and modulation of GABA(A) receptors. J Biol Chem 2012;287:4022440231.Google Scholar
Pettingill, P, Kramer, HB, Coebergh, JA, et al. Antibodies to GABAA receptor alpha1 and gamma2 subunits: clinical and serologic characterization. Neurology 2015;84:12331241.Google Scholar
Bettler, B, Kaupmann, K, Mosbacher, J, Gassmann, M. Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 2004;84:835867.Google Scholar
Vigot, R, Barbieri, S, Brauner-Osborne, H, et al. Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 2006;50:589601.Google Scholar
Nicoletti, F, Bockaert, J, Collingridge, GL, et al. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 2011;60:10171041.Google Scholar
Coesmans, M, Smitt, PA, Linden, DJ, et al. Mechanisms underlying cerebellar motor deficits due to mGluR1-autoantibodies. Ann Neurol 2003;53:325336.Google Scholar
Martel, JC, Gatti McArthur, S. Dopamine receptor subtypes, physiology and pharmacology: new ligands and concepts in schizophrenia. Front Pharmacol 2020;11:1003.Google Scholar
Carli, M, Kolachalam, S, Aringhieri, S, et al. Dopamine D2 receptors dimers: how can we pharmacologically target them? Curr Neuropharmacol 2018;16:222230.Google Scholar
Sinmaz, N, Tea, F, Pilli, D, et al. Dopamine-2 receptor extracellular N-terminus regulates receptor surface availability and is the target of human pathogenic antibodies from children with movement and psychiatric disorders. Acta Neuropathol Commun 2016;4:126.Google Scholar
Kuhse, J, Betz, H, Kirsch, J. The inhibitory glycine receptor: architecture, synaptic localization and molecular pathology of a postsynaptic ion-channel complex. Curr Opin Neurobiol 1995;5:318323.Google Scholar
Kuhse, J, Laube, B, Magalei, D, Betz, H. Assembly of the inhibitory glycine receptor: identification of amino acid sequence motifs governing subunit stoichiometry. Neuron 1993;11:10491056.Google Scholar
Fukata, Y, Lovero, KL, Iwanaga, T, et al. Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and epilepsy. Proc Natl Acad Sci USA 2010;107:37993804.Google Scholar
Lalic, T, Pettingill, P, Vincent, A, Capogna, M. Human limbic encephalitis serum enhances hippocampal mossy fiber-CA3 pyramidal cell synaptic transmission. Epilepsia 2011;52:121131.Google Scholar
Saint-Martin, M, Joubert, B, Pellier-Monnin, V, et al. Contactin-associated protein-like 2, a protein of the neurexin family involved in several human diseases. Eur J Neurosci 2018;48:19061923.Google Scholar
Olsen, AL, Lai, Y, Dalmau, J, Scherer, SS, Lancaster, E. Caspr2 autoantibodies target multiple epitopes. Neurol Neuroimmunol Neuroinflamm 2015;2:e127.Google Scholar
Liang, W, Zhang, J, Saint-Martin, M, et al. Structural mapping of hot spots within human CASPR2 discoidin domain for autoantibody recognition. J Autoimmun 2019;96:168177.Google Scholar
Fernandes, D, Santos, SD, Coutinho, E, et al. Disrupted AMPA receptor function upon genetic- or antibody-mediated loss of autism-associated CASPR2. Cereb Cortex 2019;29:49194931.Google Scholar
Nadal, MS, Ozaita, A, Amarillo, Y, et al. The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 2003;37:449461.Google Scholar
Boronat, A, Gelfand, JM, Gresa-Arribas, N, et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol 2013;73:120128.Google Scholar
Piepgras, J, Holtje, M, Michel, K, et al. Anti-DPPX encephalitis: pathogenic effects of antibodies on gut and brain neurons. Neurology 2015;85:890897.Google Scholar
Sudhof, TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 2008;455:903911.Google Scholar
Karagogeos, D. Neural GPI-anchored cell adhesion molecules. Front Biosci 2003;8:s1304s1320.Google Scholar
Landa, J, Gaig, C, Plaguma, J, et al. Effects of IgLON5 antibodies on neuronal cytoskeleton: a link between autoimmunity and neurodegeneration. Ann Neurol 2020;88:10231027.CrossRefGoogle ScholarPubMed
Miyazaki, T, Hashimoto, K, Uda, A, et al. Disturbance of cerebellar synaptic maturation in mutant mice lacking BSRPs, a novel brain-specific receptor-like protein family. FEBS Lett 2006;580:40574064.Google Scholar
Yaguchi, H, Yabe, I, Takahashi, H, et al. Sez6l2 regulates phosphorylation of ADD and neuritogenesis. Biochem Biophys Res Commun 2017;494:234241.Google Scholar
Ishikawa, N, Daigo, Y, Takano, A, et al. Characterization of SEZ6L2 cell-surface protein as a novel prognostic marker for lung cancer. Cancer Sci 2006;97:737745.Google Scholar
Eiraku, M, Tohgo, A, Ono, K, et al. DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nat Neurosci 2005;8:873880.Google Scholar
Catterall, WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 2011;3:a003947.Google Scholar
Pellkofer, HL, Armbruster, L, Krumbholz, M, et al. Lambert–Eaton myasthenic syndrome differential reactivity of tumor versus non-tumor patients to subunits of the voltage-gated calcium channel. J Neuroimmunol 2008;204:136139.Google Scholar
Takamori, M, Iwasa, K, Komai, K. Antibodies to synthetic peptides of the a1A subunit of the voltage-gated calcium channel in Lambert–Eaton myasthenic syndrome. Neurology 1997;48:12611265.Google Scholar
Roberts, A, Perera, S, Lang, B, Vincent, A, Newsom-Davis, J. Paraneoplastic myasthenic syndrome IgG inhibits 45Ca2+ flux in a human small cell carcinoma line. Nature 1985;317:737739.Google Scholar
Lang, B, Pinto, A, Giovannini, F, Newsom-Davis, J, Vincent, A. Pathogenic autoantibodies in the Lambert–Eaton myasthenic syndrome. Ann N Y Acad Sci 2003;998:187195.Google Scholar
Evergren, E, Marcucci, M, Tomilin, N, et al. Amphiphysin is a component of clathrin coats formed during synaptic vesicle recycling at the lamprey giant synapse. Traffic 2004;5:514528.Google Scholar
David, C, McPherson, PS, Mundigl, O, De Camilli, P. A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc Natl Acad Sci USA 1996;93:331335.Google Scholar
David, C, Solimena, M, De Camilli, P. Autoimmunity in Stiff-Man syndrome with breast cancer is targeted to the C-terminal region of human amphiphysin, a protein similar to the yeast proteins, Rvs167 and Rvs161. FEBS Letters 1994;351:7379.Google Scholar
Geis, C, Weishaupt, A, Hallermann, S, et al. Stiff person syndrome-associated autoantibodies to amphiphysin mediate reduced GABAergic inhibition. Brain 2010;133:31663180.Google Scholar
Wright, S, Hashemi, K, Stasiak, L, et al. Epileptogenic effects of NMDAR antibodies in a passive transfer mouse model. Brain 2015;138:31593167.CrossRefGoogle Scholar
Wurdemann, T, Kersten, M, Tokay, T, et al. Stereotactic injection of cerebrospinal fluid from anti-NMDA receptor encephalitis into rat dentate gyrus impairs NMDA receptor function. Brain Res 2015;1633:1018.Google Scholar
Li, Y, Tanaka, K, Wang, L, Ishigaki, Y, Kato, N. Induction of memory deficit in mice with chronic exposure to cerebrospinal fluid from patients with anti-N-methyl-D-aspartate receptor encephalitis. Tohoku J Exp Med 2015;237:329338.Google Scholar
Taraschenko, O, Fox, HS, Pittock, SJ, et al. A mouse model of seizures in anti-N-methyl-d-aspartate receptor encephalitis. Epilepsia 2019;60:452463.Google Scholar
Martin-Garcia, E, Mannara, F, Gutierrez-Cuesta, J, et al. Intrathecal injection of P/Q type voltage-gated calcium channel antibodies from paraneoplastic cerebellar degeneration cause ataxia in mice. J Neuroimmunol 2013;261:5359.Google Scholar
Dawes, JM, Weir, GA, Middleton, SJ, et al. Immune or genetic-mediated disruption of CASPR2 causes pain hypersensitivity due to enhanced primary afferent excitability. Neuron 2018;97:806-822.e10.Google Scholar
Giannoccaro, MP, Menassa, DA, Jacobson, L, et al. Behaviour and neuropathology in mice injected with human contactin-associated protein 2 antibodies. Brain 2019;142:20002012.Google Scholar
Liao, YJ, Safa, P, Chen, YR, et al. Anti-Ca2+ channel antibody attenuates Ca2+ currents and mimics cerebellar ataxia in vivo. Proc Natl Acad Sci USA 2008;105:27052710.Google Scholar
Sommer, C, Weishaupt, A, Brinkhoff, J, et al. Paraneoplastic stiff-person syndrome: passive transfer to rats by means of IgG antibodies to amphiphysin. Lancet 2005;365:14061411.Google Scholar
Geis, C, Grunewald, B, Weishaupt, A, et al. Human IgG directed against amphiphysin induces anxiety behavior in a rat model after intrathecal passive transfer. J Neural Transm (Vienna) 2012;119:981985.Google Scholar
Monyer, H, Burnashev, N, Laurie, DJ, Sakmann, B, Seeburg, PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994;12:529540.Google Scholar
Standaert, DG, Testa, CM, Young, AB, Penney, JB Jr. Organization of N-methyl-D-aspartate glutamate receptor gene expression in the basal ganglia of the rat. J Comp Neurol 1994;343:116.Google Scholar
Kehoe, LA, Bernardinelli, Y, Muller, D. GluN3A: an NMDA receptor subunit with exquisite properties and functions. Neural Plast 2013;2013:145387.Google Scholar
Karakas, E, Simorowski, N, Furukawa, H. Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J 2009;28:39103920.Google Scholar
Waxman, EA, Lynch, DR. N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 2005;11:3749.Google Scholar
Lynch, DR, Guttmann, RP. Excitotoxicity: perspectives based on N-methyl-D-aspartate receptor subtypes. J Pharmacol Exp Ther 2002;300:717723.Google Scholar
Forrest, D, Yuzaki, M, Soares, HD, et al. Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 1994;13:325338.Google Scholar
Huerta, PT, Sun, LD, Wilson, MA, Tonegawa, S. Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron 2000;25:473480.Google Scholar
Tsien, JZ, Huerta, PT, Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 1996;87:13271338.Google Scholar
Gresa-Arribas, N, Titulaer, MJ, Torrents, A, et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol 2014;13:167177.Google Scholar
Matute, C, Palma, A, Serrano-Regal, MP, et al. N-methyl-D-aspartate receptor antibodies in autoimmune encephalopathy alter oligodendrocyte function. Ann Neurol 2020;87:670676.Google Scholar
Saab, AS, Tzvetavona, ID, Trevisiol, A, et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 2016;91:119132.Google Scholar
Phillips, OR, Joshi, SH, Narr, KL, et al. Superficial white matter damage in anti-NMDA receptor encephalitis. J Neurol Neurosurg Psychiatry 2018;89:518525.Google Scholar
Finke, C, Kopp, UA, Scheel, M, et al. Functional and structural brain changes in anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 2013;74:284296.Google Scholar
Grea, H, Bouchet, D, Rogemond, V, et al. Human autoantibodies against N-methyl-D-aspartate receptor modestly alter dopamine D1 RECEPTOR SURFACE DYNAMICS. Front Psychiatry 2019;10:670.Google Scholar
Blome, R, Bach, W, Guli, X, et al. Differentially altered NMDAR dependent and independent long-term potentiation in the CA3 subfield in a model of anti-NMDAR encephalitis. Front Synaptic Neurosci 2018;10:26.Google Scholar
Sharma, R, Al-Saleem, FH, Panzer, J, et al. Monoclonal antibodies from a patient with anti-NMDA receptor encephalitis. Ann Clin Transl Neurol 2018;5:935951.Google Scholar
Pan, H, Oliveira, B, Saher, G, et al. Uncoupling the widespread occurrence of anti-NMDAR1 autoantibodies from neuropsychiatric disease in a novel autoimmune model. Mol Psychiatry 2019;24:14891501.Google Scholar
Viaccoz, A, Desestret, V, Ducray, F, et al. Clinical specificities of adult male patients with NMDA receptor antibodies encephalitis. Neurology 2014;82:556563.Google Scholar
Kumar, MA, Jain, A, Dechant, VE, et al. Anti-N-methyl-D-aspartate receptor encephalitis during pregnancy. Arch Neurol 2010;67:884887.Google Scholar
Joubert, B, Garcia-Serra, A, Planaguma, J, et al. Pregnancy outcomes in anti-NMDA receptor encephalitis: case series. Neurol Neuroimmunol Neuroinflamm 2020;7;e668.Google Scholar
Jurek, B, Chayka, M, Kreye, J, et al. Human gestational N-methyl-d-aspartate receptor autoantibodies impair neonatal murine brain function. Ann Neurol 2019;86:656670.Google Scholar
Jagota, P, Vincent, A, Bhidayasiri, R. Transplacental transfer of NMDA receptor antibodies in an infant with cortical dysplasia. Neurology 2014;82:16621663.Google Scholar
Sprengel, R. Role of AMPA receptors in synaptic plasticity. Cell Tissue Res 2006;326:447455.Google Scholar
Pachernegg, S, Munster, Y, Muth-Kohne, E, Fuhrmann, G, Hollmann, M. GluA2 is rapidly edited at the Q/R site during neural differentiation in vitro. Front Cell Neurosci 2015;9:69.Google Scholar
Bowie, D, Mayer, ML. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 1995;15:453462.Google Scholar
Isaac, JT, Ashby, MC, McBain, CJ. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 2007;54:859871.Google Scholar
Malinow, R, Malenka, RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 2002;25:103126.Google Scholar
Penn, AC, Zhang, CL, Georges, F, et al. Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors. Nature 2017;549:384388.Google Scholar
Hou, Q, Zhang, D, Jarzylo, L, Huganir, RL, Man, HY. Homeostatic regulation of AMPA receptor expression at single hippocampal synapses. Proc Natl Acad Sci USA 2008;105:775780.Google Scholar
Turrigiano, GG, Nelson, SB. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 2004;5:97107.Google Scholar
Gleichman, AJ, Panzer, JA, Baumann, BH, Dalmau, J, Lynch, DR. Antigenic and mechanistic characterization of anti-AMPA receptor encephalitis. Ann Clin Transl Neurol 2014;1:180189.Google Scholar
Pinheiro, PS, Mulle, C. Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci 2008;9:423436.Google Scholar
Lerma, J. Kainate receptor physiology. Curr Opin Pharmacol 2006;6:8997.Google Scholar
Contractor, A, Swanson, G, Heinemann, SF. Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 2001;29:209216.Google Scholar
Schmitz, D, Mellor, J, Breustedt, J, Nicoll, RA. Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. Nat Neurosci 2003;6:10581063.Google Scholar
Lourenco, J, Cannich, A, Carta, M, et al. Synaptic activation of kainate receptors gates presynaptic CB(1) signaling at GABAergic synapses. Nat Neurosci 2010;13:197204.Google Scholar
Contractor, A, Swanson, GT. Kainate receptors. In: Gereau, RW, Swanson, GT, eds. The Glutamate Receptors. Totowa, NJ: Humana Press, 2008: 99158.Google Scholar
Egebjerg, J, Heinemann, SF. Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6. Proc Natl Acad Sci USA 1993;90:755759.Google Scholar
Burnashev, N, Villarroel, A, Sakmann, B. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. J Physiol 1996;496:165173.Google Scholar
Sommer, B, Kohler, M, Sprengel, R, Seeburg, PH. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 1991;67:1119.Google Scholar
Bettler, B, Egebjerg, J, Sharma, G, et al. Cloning of a putative glutamate receptor: a low affinity kainate-binding subunit. Neuron 1992;8:257265.Google Scholar
Tretter, V, Moss, SJ. GABA(A) receptor dynamics and constructing GABAergic synapses. Front Mol Neurosci 2008;1:7.Google Scholar
Gonzalez, MI. The possible role of GABAA receptors and gephyrin in epileptogenesis. Front Cell Neurosci 2013;7:113.Google Scholar
Zhou, C, Huang, Z, Ding, L, et al. Altered cortical GABAA receptor composition, physiology, and endocytosis in a mouse model of a human genetic absence epilepsy syndrome. J Biol Chem 2013;288:2145821472.Google Scholar
Kapur, J, Macdonald, RL. Rapid seizure-induced reduction of benzodiazepine and Zn2+ sensitivity of hippocampal dentate granule cell GABAA receptors. J Neurosci 1997;17:75327540.Google Scholar
Vazquez-Lopez, A, Sierra-Paredes, G, Sierra-Marcuno, G. Anticonvulsant effect of the calcineurin inhibitor ascomycin on seizures induced by picrotoxin microperfusion in the rat hippocampus. Pharmacol Biochem Behav 2006;84:511516.Google Scholar
Tanaka, M, Olsen, RW, Medina, MT, et al. Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. Am J Hum Genet 2008;82:12491261.Google Scholar
Robbins, MJ, Calver, AR, Filippov, AK, et al. GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer. J Neurosci 2001;21:80438052.Google Scholar
Schwenk, J, Metz, M, Zolles, G, et al. Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature 2010;465:231235.Google Scholar
Craig, MT, Mayne, EW, Bettler, B, Paulsen, O, McBain, CJ. Distinct roles of GABAB1a- and GABAB1b-containing GABAB receptors in spontaneous and evoked termination of persistent cortical activity. J Physiol 2013;591:835843.Google Scholar
Jain, A, Lancaster, E, Dalmau, J, Balice-Gordon, RJ. Autoantibodies in the CSF of anti-GABA receptor encephalitis patients block activation of GABA receptors in vitro. Ann Neurol 2015;78:S77.Google Scholar
Prosser, HM, Gill, CH, Hirst, WD, et al. Epileptogenesis and enhanced prepulse inhibition in GABA(B1)-deficient mice. Mol Cell Neurosci 2001;17:10591070.Google Scholar
Doumazane, E, Scholler, P, Zwier, JM, et al. A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J 2011;25:6677.Google Scholar
Shigemoto, R, Nakanishi, S, Mizuno, N. Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. J Comp Neurol 1992;322:121135.Google Scholar
Kano, M, Hashimoto, K, Tabata, T. Type-1 metabotropic glutamate receptor in cerebellar Purkinje cells: a key molecule responsible for long-term depression, endocannabinoid signalling and synapse elimination. Philos Trans R Soc Lond B Biol Sci 2008;363:21732186.Google Scholar
Kalivas, PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 2009;10:561572.Google Scholar
Altinbilek, B, Manahan-Vaughan, D. A specific role for group II metabotropic glutamate receptors in hippocampal long-term depression and spatial memory. Neuroscience 2009;158:149158.Google Scholar
Romano, C, van den Pol, AN, O’Malley, KL. Enhanced early developmental expression of the metabotropic glutamate receptor mGluR5 in rat brain: protein, mRNA splice variants, and regional distribution. J Comp Neurol 1996;367:403412.Google Scholar
Faas, GC, Adwanikar, H, Gereau, RW, Saggau, P. Modulation of presynaptic calcium transients by metabotropic glutamate receptor activation: a differential role in acute depression of synaptic transmission and long-term depression. J Neurosci 2002;22:68856890.Google Scholar
Kwag, J, Paulsen, O. Gating of NMDA receptor-mediated hippocampal spike timing-dependent potentiation by mGluR5. Neuropharmacology 2012;63:701709.Google Scholar
Abraham, WC. Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci 2008;9:387.Google Scholar
Reilmann, R, Rouzade-Dominguez, ML, Saft, C, et al. A randomized, placebo-controlled trial of AFQ056 for the treatment of chorea in Huntington’s disease. Mov Disord 2015;30:427431.Google Scholar
Kumar, A, Dhull, DK, Mishra, PS. Therapeutic potential of mGluR5 targeting in Alzheimer’s disease. Front Neurosci 2015;9:215.Google Scholar
Palucha, A, Branski, P, Szewczyk, B, Wieronska, JM, Klak, K, Pilc, A. Potential antidepressant-like effect of MTEP, a potent and highly selective mGluR5 antagonist. Pharmacol Biochem Behav 2005;81:901906.Google Scholar
Scharf, SH, Jaeschke, G, Wettstein, JG, Lindemann, L. Metabotropic glutamate receptor 5 as drug target for Fragile X syndrome. Curr Opin Pharmacol 2015;20:124134.Google Scholar
Kebabian, JW, Calne, DB. Multiple receptors for dopamine. Nature 1979;277:9396.Google Scholar
Beaulieu, JM, Gainetdinov, RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011;63:182217.Google Scholar
Klein, C, Brin, MF, Kramer, P, et al. Association of a missense change in the D2 dopamine receptor with myoclonus dystonia. Proc Natl Acad Sci USA 1999;96:51735176.Google Scholar
Dreyer, JK, Herrik, KF, Berg, RW, Hounsgaard, JD. Influence of phasic and tonic dopamine release on receptor activation. J Neurosci 2010;30:1427314283.Google Scholar
Caravaggio, F, Iwata, Y, Kim, J, et al. What proportion of striatal D2 receptors are occupied by endogenous dopamine at baseline? A meta-analysis with implications for understanding antipsychotic occupancy. Neuropharmacology 2020;163:107591.Google Scholar
Zuk, J, Bartuzi, D, Matosiuk, D, Kaczor, AA. Preferential coupling of dopamine D2S and D2L receptor isoforms with Gi1 and Gi2 proteins: in silico study. Int J Mol Sci 2020;21:436.Google Scholar
Lynch, JW. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 2004;84:10511095.Google Scholar
Feng, G, Tintrup, H, Kirsch, J, et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 1998;282:13211324.Google Scholar
Levi, S, Logan, SM, Tovar, KR, Craig, AM. Gephyrin is critical for glycine receptor clustering but not for the formation of functional GABAergic synapses in hippocampal neurons. J Neurosci 2004;24:207217.Google Scholar
Rajendra, S, Lynch, JW, Schofield, PR. The glycine receptor. Pharmacol Ther 1997;73:121146.Google Scholar
Tijssen, MA, Shiang, R, van Deutekom, J, et al. Molecular genetic reevaluation of the Dutch hyperekplexia family. Arch Neurol 1995;52:578582.Google Scholar
Hutchinson, M, Waters, P, McHugh, J, et al. Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody. Neurology 2008;71:12911292.Google Scholar
McKeon, A, Martinez-Hernandez, E, Lancaster, E, et al. Glycine receptor autoimmune spectrum with stiff-man syndrome phenotype. JAMA Neurol 2013;70:4450.Google Scholar
Martinez-Hernandez, E, Arino, H, McKeon, A, et al. Clinical and immunologic investigations in patients with stiff-person spectrum disorder. JAMA Neurol 2016;73:714720.Google Scholar
Mas, N, Saiz, A, Leite, MI, et al. Antiglycine-receptor encephalomyelitis with rigidity. J Neurol Neurosurg Psychiatry 2011;82:13991401.Google Scholar
Saul, B, Kuner, T, Sobetzko, D, et al. Novel GLRA1 missense mutation (P250T) in dominant hyperekplexia defines an intracellular determinant of glycine receptor channel gating. J Neurosci 1999;19:869877.Google Scholar
Bode, A, Wood, SE, Mullins, JG, et al. New hyperekplexia mutations provide insight into glycine receptor assembly, trafficking, and activation mechanisms. J Biol Chem 2013;288:3374533759.Google Scholar
Fukata, Y, Adesnik, H, Iwanaga, T, et al. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 2006;313:17921795.Google Scholar
Fukata, Y, Yokoi, N, Miyazaki, Y, Fukata, M. The LGI1–ADAM22 protein complex in synaptic transmission and synaptic disorders. Neurosci Res 2017;116:3945.Google Scholar
Staub, E, Perez-Tur, J, Siebert, R, et al. The novel EPTP repeat defines a superfamily of proteins implicated in epileptic disorders. Trends Biochem Sci 2002;27:441444.Google Scholar
Scheel, H, Tomiuk, S, Hofmann, K. A common protein interaction domain links two recently identified epilepsy genes. Hum Mol Genet 2002;11:17571762.Google Scholar
Buchanan, SG, Gay, NJ. Structural and functional diversity in the leucine-rich repeat family of proteins. Prog Biophys Mol Biol 1996;65:144.Google Scholar
Lovero, KL, Fukata, Y, Granger, AJ, Fukata, M, Nicoll, RA. The LGI1–ADAM22 protein complex directs synapse maturation through regulation of PSD-95 function. Proc Natl Acad Sci USA 2015;112:E41294137.Google Scholar
Kalachikov, S, Evgrafov, O, Ross, B, et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat Genet 2002;30:335341.Google Scholar
Morante-Redolat, JM, Gorostidi-Pagola, A, Piquer-Sirerol, S, et al. Mutations in the LGI1/Epitempin gene on 10q24 cause autosomal dominant lateral temporal epilepsy. Hum Mol Genet 2002;11:11191128.Google Scholar
Nobile, C, Michelucci, R, Andreazza, S, et al. LGI1 mutations in autosomal dominant and sporadic lateral temporal epilepsy. Hum Mutat 2009;30:530536.Google Scholar
Yu, YE, Wen, L, Silva, J, et al. Lgi1 null mutant mice exhibit myoclonic seizures and CA1 neuronal hyperexcitability. Hum Mol Genet 2010;19:17021711.Google Scholar
Sagane, K, Hayakawa, K, Kai, J, et al. Ataxia and peripheral nerve hypomyelination in ADAM22-deficient mice. BMC Neurosci 2005;6:33.Google Scholar
Owuor, K, Harel, NY, Englot, DJ, et al. LGI1-associated epilepsy through altered ADAM23-dependent neuronal morphology. Mol Cell Neurosci 2009;42:448457.Google Scholar
Smart, SL, Lopantsev, V, Zhang, CL, et al. Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron 1998;20:809819.Google Scholar
Zhou, YD, Lee, S, Jin, Z, et al. Arrested maturation of excitatory synapses in autosomal dominant lateral temporal lobe epilepsy. Nat Med 2009;15:12081214.Google Scholar
Schulte, U, Thumfart, JO, Klocker, N, et al. The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvbeta1. Neuron 2006;49:697706.Google Scholar
Lu, Z, Reddy, MV, Liu, J, et al. Molecular architecture of contactin-associated protein-like 2 (CNTNAP2) and its interaction with contactin 2 (CNTN2). J Biol Chem 2016;291:2413324147.Google Scholar
Chatzopoulou, E, Miguez, A, Savvaki, M, et al. Structural requirement of TAG-1 for retinal ganglion cell axons and myelin in the mouse optic nerve. J Neurosci 2008;28:76247636.Google Scholar
Traka, M, Goutebroze, L, Denisenko, N, et al. Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers. J Cell Biol 2003;162:11611172.Google Scholar
Gu, C, Gu, Y. Clustering and activity tuning of Kv1 channels in myelinated hippocampal axons. J Biol Chem 2011;286:2583525847.Google Scholar
Horresh, I, Poliak, S, Grant, S, et al. Multiple molecular interactions determine the clustering of Caspr2 and Kv1 channels in myelinated axons. J Neurosci 2008;28:1421314222.Google Scholar
Zhou, L, Messing, A, Chiu, SY. Determinants of excitability at transition zones in Kv1.1-deficient myelinated nerves. J Neurosci 1999;19:57685781.Google Scholar
Pinatel, D, Hivert, B, Boucraut, J, et al. Inhibitory axons are targeted in hippocampal cell culture by anti-Caspr2 autoantibodies associated with limbic encephalitis. Front Cell Neurosci 2015;9:265.Google Scholar
Bel, C, Oguievetskaia, K, Pitaval, C, Goutebroze, L, Faivre-Sarrailh, C. Axonal targeting of Caspr2 in hippocampal neurons via selective somatodendritic endocytosis. J Cell Sci 2009;122:34033413.Google Scholar
Abrahams, BS, Tentler, D, Perederiy, JV, et al. Genome-wide analyses of human perisylvian cerebral cortical patterning. Proc Natl Acad Sci USA 2007;104:1784917854.Google Scholar
Verkerk, AJ, Mathews, CA, Joosse, M, et al. CNTNAP2 is disrupted in a family with Gilles de la Tourette syndrome and obsessive compulsive disorder. Genomics 2003;82:19.Google Scholar
Rodenas-Cuadrado, P, Ho, J, Vernes, SC. Shining a light on CNTNAP2: complex functions to complex disorders. Eur J Hum Genet 2014;22:171178.Google Scholar
Poot, M. Connecting the CNTNAP2 networks with neurodevelopmental disorders. Mol Syndromol 2015;6:722.Google Scholar
Coutinho, E, Menassa, DA, Jacobson, L, et al. Persistent microglial activation and synaptic loss with behavioral abnormalities in mouse offspring exposed to CASPR2-antibodies in utero. Acta Neuropathol 2017;134:567583.Google Scholar
Coutinho, E, Jacobson, L, Pedersen, MG, et al. CASPR2 autoantibodies are raised during pregnancy in mothers of children with mental retardation and disorders of psychological development but not autism. J Neurol Neurosurg Psychiatry 2017;88:718721.Google Scholar
Brimberg, L, Mader, S, Jeganathan, V, et al. Caspr2-reactive antibody cloned from a mother of an ASD child mediates an ASD-like phenotype in mice. Mol Psychiatry 2016;21:16631671.Google Scholar
Nadal, MS, Amarillo, Y, de Vega-Saenz, ME, Rudy, B. Evidence for the presence of a novel Kv4-mediated A-type K(+) channel-modifying factor. J Physiol 2001;537:801809.Google Scholar
Zagha, E, Ozaita, A, Chang, SY, et al. DPP10 modulates Kv4-mediated A-type potassium channels. J Biol Chem 2005;280:1885318861.Google Scholar
Qi, SY, Riviere, PJ, Trojnar, J, Junien, JL, Akinsanya, KO. Cloning and characterization of dipeptidyl peptidase 10, a new member of an emerging subgroup of serine proteases. Biochem J 2003;373:179189.Google Scholar
Wada, K, Yokotani, N, Hunter, C, et al. Differential expression of two distinct forms of mRNA encoding members of a dipeptidyl aminopeptidase family. Proc Natl Acad Sci USA 1992;89:197201.Google Scholar
Nadal, MS, Amarillo, Y, de Vega-Saenz, ME, Rudy, B. Differential characterization of three alternative spliced isoforms of DPPX. Brain Res 2006;1094:112.Google Scholar
Jerng, HH, Pfaffinger, PJ, Covarrubias, M. Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol Cell Neurosci 2004;27:343369.Google Scholar
Kim, J, Nadal, MS, Clemens, AM, et al. Kv4 accessory protein DPPX (DPP6) is a critical regulator of membrane excitability in hippocampal CA1 pyramidal neurons. J Neurophysiol 2008;100:18351847.Google Scholar
Johnston, D, Hoffman, DA, Magee, JC, et al. Dendritic potassium channels in hippocampal pyramidal neurons. J Physiol 2000;525:7581.Google Scholar
Johnston, D, Christie, BR, Frick, A, et al. Active dendrites, potassium channels and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 2003;358:667674.Google Scholar
Balint, B, Jarius, S, Nagel, S, et al. Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology 2014;82:15211528.Google Scholar
Kaulin, YA, De Santiago-Castillo, JA, Rocha, CA, et al. The dipeptidyl-peptidase-like protein DPP6 determines the unitary conductance of neuronal Kv4.2 channels. J Neurosci 2009;29:32423251.Google Scholar
Singh, B, Ogiwara, I, Kaneda, M, et al. A Kv4.2 truncation mutation in a patient with temporal lobe epilepsy. Neurobiol Dis 2006;24:245253.Google Scholar
Krueger, DD, Tuffy, LP, Papadopoulos, T, Brose, N. The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses. Curr Opin Neurobiol 2012;22:412422.Google Scholar
Aoto, J, Martinelli, DC, Malenka, RC, Tabuchi, K, Sudhof, TC. Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell 2013;154:7588.Google Scholar
Siddiqui, TJ, Pancaroglu, R, Kang, Y, Rooyakkers, A, Craig, AM. LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. J Neurosci 2010;30:74957506.Google Scholar
Missler, M, Zhang, W, Rohlmann, A, et al. Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 2003;423:939948.Google Scholar
Aoto, J, Foldy, C, Ilcus, SM, Tabuchi, K, Sudhof, TC. Distinct circuit-dependent functions of presynaptic neurexin-3 at GABAergic and glutamatergic synapses. Nat Neurosci 2015;18:9971007.Google Scholar
Scheiffele, P, Fan, J, Choih, J, Fetter, R, Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 2000;101:657669.Google Scholar
Levinson, JN, Chery, N, Huang, K, et al. Neuroligins mediate excitatory and inhibitory synapse formation: involvement of PSD-95 and neurexin-1beta in neuroligin-induced synaptic specificity. J Biol Chem 2005;280:1731217319.Google Scholar
Gauthier, J, Siddiqui, TJ, Huashan, P, et al. Truncating mutations in NRXN2 and NRXN1 in autism spectrum disorders and schizophrenia. Hum Genet 2011;130:563573.Google Scholar
Ikeda, M, Aleksic, B, Kinoshita, Y, et al. Genome-wide association study of schizophrenia in a Japanese population. Biol Psychiatry 2011;69:472478.Google Scholar
Rujescu, D, Ingason, A, Cichon, S, et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 2009;18:988996.Google Scholar
Feng, J, Schroer, R, Yan, J, et al. High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neurosci Lett 2006;409:1013.Google Scholar
Vaags, AK, Lionel, AC, Sato, D, et al. Rare deletions at the neurexin 3 locus in autism spectrum disorder. Am J Hum Genet 2012;90:133141.Google Scholar
Gunnersen, JM, Kim, MH, Fuller, SJ, et al. Sez-6 proteins affect dendritic arborization patterns and excitability of cortical pyramidal neurons. Neuron 2007;56:621639.Google Scholar
Osaki, G, Mitsui, S, Yuri, K. The distribution of the seizure-related gene 6 (Sez-6) protein during postnatal development of the mouse forebrain suggests multiple functions for this protein: an analysis using a new antibody. Brain Res 2011;1386:5869.Google Scholar
Lein, ES, Hawrylycz, MJ, Ao, N, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 2007;445:168176.Google Scholar
Nash, A, Aumann, TD, Pigoni, M, et al. Lack of Sez6 family proteins impairs motor functions, short-term memory, and cognitive flexibility and alters dendritic spine properties. Cereb Cortex 2020;30:21672184.Google Scholar
Reisel, D, Bannerman, DM, Schmitt, WB, et al. Spatial memory dissociations in mice lacking GluR1. Nat Neurosci 2002;5:868873.Google Scholar
Pigoni, M, Hsia, HE, Hartmann, J, et al. Seizure protein 6 controls glycosylation and trafficking of kainate receptor subunits GluK2 and GluK3. EMBO J 2020;39:e103457.Google Scholar
Yaguchi, H, Yabe, I, Takahashi, H, et al. Identification of anti-Sez6l2 antibody in a patient with cerebellar ataxia and retinopathy. J Neurol 2014;261:224226.Google Scholar
Borsche, M, Hahn, S, Hanssen, H, et al. Sez6l2-antibody-associated progressive cerebellar ataxia: a differential diagnosis of atypical parkinsonism. J Neurol 2019;266:522524.Google Scholar
Yaguchi, H, Yabe, I, Takahashi, H, et al. Anti-Sez6l2 antibody detected in a patient with immune-mediated cerebellar ataxia inhibits complex formation of GluR1 and Sez6l2. J Neurol 2018;265:962965.Google Scholar
Chillakuri, CR, Sheppard, D, Lea, SM, Handford, PA. Notch receptor-ligand binding and activation: insights from molecular studies. Semin Cell Dev Biol 2012;23:421428.Google Scholar
Kopan, R, Ilagan, MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009;137:216233.Google Scholar
Tohgo, A, Eiraku, M, Miyazaki, T, et al. Impaired cerebellar functions in mutant mice lacking DNER. Mol Cell Neurosci 2006;31:326333.Google Scholar
Saito, SY, Takeshima, H. DNER as key molecule for cerebellar maturation. Cerebellum 2006;5:227231.Google Scholar
Graus, F, Dalmau, J, Valldeoriola, F, et al. Immunological characterization of a neuronal antibody (anti-Tr) associated with paraneoplastic cerebellar degeneration and Hodgkin’s disease. J Neuroimmunol 1997;74:5561.Google Scholar
Graus, F, Gultekin, SH, Ferrer, I, et al. Localization of the neuronal antigen recognized by anti-Tr antibodies from patients with paraneoplastic cerebellar degeneration and Hodgkin’s disease in the rat nervous system. Acta Neuropathol (Berl) 1998;96:17.Google Scholar
Greene, M, Lai, Y, Baella, N, Dalmau, J, Lancaster, E. Antibodies to Delta/notch-like epidermal growth factor-related receptor in patients with anti-Tr, paraneoplastic cerebellar degeneration, and Hodgkin lymphoma. JAMA Neurol 2014;71:10031008.Google Scholar
Benarroch, EE. Neuronal voltage-gated calcium channels: brief overview of their function and clinical implications in neurology. Neurology 2010;74:13101315.Google Scholar
Dolphin, AC. Calcium channel diversity: multiple roles of calcium channel subunits. Curr Opin Neurobiol 2009;19:237244.Google Scholar
Catterall, WA. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 2000;16:521555.Google Scholar
Rosenfeld, MR, Wong, E, Dalmau, J, et al. Sera from patients with Lambert–Eaton myasthenic syndrome recognize the beta-subunit of Ca2+ channel complexes. Ann N Y Acad Sci 1993;681:408411.Google Scholar
Fukunaga, H, Engel, AG, Osame, M, Lambert, EH. Paucity and disorganization of presynaptic membrane active zones in the Lambert–Eaton myasthenic syndrome. Muscle Nerve 1982;5:686697.Google Scholar
Fukuoka, T, Engel, AG, Lang, B, et al. Lambert–Eaton myasthenic syndrome: I. Early morphological effects of IgG on the presynaptic membrane active zones. Ann Neurol 1987;22:193199.Google Scholar
Fukuoka, T, Engel, AG, Lang, B, Newsom-Davis, J, Vincent, A. Lambert–Eaton myasthenic syndrome: II. Immunoelectron microscopy localization of IgG at the mouse motor end-plate. Ann Neurol 1987;22:200211.Google Scholar
Fukunaga, H, Engel, AG, Lang, B, Newsom-Davis, J, Vincent, A. Passive transfer of Lambert–Eaton myasthenic syndrome with IgG from man to mouse depletes the presynaptic membrane active zones. Proc Natl Acad Sci USA 1983;80:76367640.Google Scholar
Graus, F, Lang, B, Pozo-Rosich, P, et al. P/Q type calcium-channel antibodies in paraneoplastic cerebellar degeneration with lung cancer. Neurology 2002;59:764766.Google Scholar
Ramjaun, AR, Micheva, KD, Bouchelet, I, McPherson, PS. Identification and characterization of a nerve terminal-enriched amphiphysin isoform. J Biol Chem 1997;272:1670016706.Google Scholar
Grabs, D, Slepnev, VI, Songyang, Z, et al. The SH3 domain of amphiphysin binds the proline-rich domain of dynamin at a single site that defines a new SH3 binding consensus sequence. J Biol Chem 1997;272:1341913425.Google Scholar
Bauerfeind, R, Takei, K, De Camilli, P. Amphiphysin I is associated with coated endocytic intermediates and undergoes stimulation-dependent dephosphorylation in nerve terminals. J Biol Chem 1997;272:3098430992.Google Scholar
Micheva, KD, Kay, BK, McPherson, PS. Synaptojanin forms two separate complexes in the nerve terminal: interactions with endophilin and amphiphysin. J Biol Chem 1997;272:2723927245.Google Scholar
Milosevic, I, Giovedi, S, Lou, X, et al. Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron 2011;72:587601.Google Scholar
Di Paolo, G, Sankaranarayanan, S, Wenk, MR, et al. Decreased synaptic vesicle recycling efficiency and cognitive deficits in amphiphysin 1 knockout mice. Neuron 2002;33:789804.Google Scholar
McClure, SJ, Robinson, PJ. Dynamin, endocytosis and intracellular signalling. Mol Membr Biol 1996;13:189215.Google Scholar
Boettger, MK, Weishaupt, A, Geis, C, Toyka, KV, Sommer, C. Mild experimental autoimmune encephalitis as a tool to induce blood–brain barrier dysfunction. J Neural Transm (Vienna) 2010;117:165169.Google Scholar
Eccles, JC, Schmidt, RF, Willis, WD. Presynaptic inhibition of the spinal monosynaptic reflex pathway. J Physiol 1962;161:282297.Google Scholar
Grunewald, B, Geis, C. Measuring spinal presynaptic inhibition in mice by dorsal root potential recording in vivo. J Vis Exp 2014;85:51473.Google Scholar
Floeter, MK, Valls-Sole, J, Toro, C, Jacobowitz, D, Hallett, M. Physiologic studies of spinal inhibitory circuits in patients with stiff-person syndrome. Neurology 1998;51:8593.Google Scholar
Molloy, FM, Dalakas, MC, Floeter, MK. Increased brainstem excitability in stiff-person syndrome. Neurology 2002;59:449451.Google Scholar
Sandbrink, F, Syed, NA, Fujii, MD, Dalakas, MC, Floeter, MK. Motor cortex excitability in stiff-person syndrome. Brain 2000;123:22312239.Google Scholar
Murinson, BB, Guarnaccia, JB. Stiff-person syndrome with amphiphysin antibodies: distinctive features of a rare disease. Neurology 2008;71:19551958.Google Scholar
Wessig, C, Klein, R, Schneider, MF, et al. Neuropathology and binding studies in anti-amphiphysin-associated stiff-person syndrome. Neurology 2003;61:195198.Google Scholar
Wigge, P, McMahon, HT. The amphiphysin family of proteins and their role in endocytosis at the synapse. Trends Neurosci 1998;21:339344.Google Scholar
Martens, H, Weston, MC, Boulland, JL, et al. Unique luminal localization of VGAT-C terminus allows for selective labeling of active cortical GABAergic synapses. J Neurosci 2008;28:1312513131.Google Scholar
Flanagan, EP, McKeon, A, Lennon, VA, et al. Paraneoplastic isolated myelopathy: clinical course and neuroimaging clues. Neurology 2011;76:20892095.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×