Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-15T02:40:14.475Z Has data issue: false hasContentIssue false

10 - Evolution of Human Reproduction, Ageing and Longevity

Published online by Cambridge University Press:  14 November 2024

Jean-François Lemaître
Affiliation:
Centre National de la Recherche Scientifique (CNRS)
Samuel Pavard
Affiliation:
National Museum of Natural History, Paris
Get access

Summary

Lifespan is just one component of a species life history. To understand human longevity from an evolutionary perspective, it is important to consider the human species’ phylogenetic history and the evolution of the entire human life cycle. This chapter extends previous fundamental reviews in the light of recent findings, and with particular emphasis on the evolution of longevity of the human species. It first compares the primate life cycle to that of other terrestrial mammals, and highlights the evolution of the slow pace of life observed in primates. It then compares the life cycles of humans and other primates, emphasizing the peculiarities of the human life cycle. The chapter outlines the main theories explaining the evolution of these peculiar life history traits that occurred since the human-chimpanzee divergence, linking these to the evolution of human reproduction, ontogenesis, diet and cognition. It then emphasizes the pivotal roles of sociality and intergenerational transfers for understanding the joint evolution of the human life cycle, biology and cognitive, linguistic and social capabilities. Together, this finally allows a contemplation of the most probable scenario joint evolution of human reproduction, ageing and longevity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ronget, V., Lemaître, J.-F., Tidière, M., Gaillard, J.-M. 2020. Assessing the diversity of the form of age-specific changes in adult mortality from captive mammalian populations. Diversity 12, 112.CrossRefGoogle Scholar
Jones, O.R. et al. 2014. Diversity of ageing across the tree of life. Nature 505, 169173.CrossRefGoogle ScholarPubMed
Western, D. 1979. Size, life-history and ecology in mammals. Afr. J. Ecol. 17, 185204.CrossRefGoogle Scholar
Gaillard, J.M., Pontier, D., Allaine, D., Lebreton, J.D., Trouvilliez, J., Clobert, J. 1989. An analysis of demographic tactics in birds and mammals. Oikos 56, 5976.CrossRefGoogle Scholar
Gaillard, J.-M., Lemaître, J., Berger, V., Bonenfant, C., Devillard, S., Douhard, M., Gamelon, M., Plard, F., Lebreton, J.-D. 2016. Life histories, axes of variation in. In Encyclopedia of Evolutionary Biology (ed. Kilman, R.M.), pp. 312323. Academic Press.CrossRefGoogle Scholar
Sibly, R.M., Brown, J.H. 2007. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl. Acad. Sci. USA 104, 1770717712.CrossRefGoogle ScholarPubMed
Pavard, S., Coste, C.F.D. 2020. Evolution of the human life cycle. In Encyclopedia of Biomedical Gerontology (ed. Rattan, S.I.S.), pp. 4656. Academic Press.Google Scholar
Harvey, P.H., Zammuto, R.M. 1985. Patterns of mortality and age at first reproduction in natural populations of mammals. Nature 315, 319320.CrossRefGoogle ScholarPubMed
Promislow, D.E.L., Harvey, P.H. 1990. Living fast and dying young: a comparative-analysis of life-history variation among mammals. J. Zool. 220, 417437.CrossRefGoogle Scholar
Healy, K., Ezard, T.H.G., Jones, O.R., Salguero-Gómez, R., Buckley, Y.M. 2019. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat. Ecol. Evol. 3, 12171224.CrossRefGoogle ScholarPubMed
Péron, G., Lemaître, J.-F., Ronget, V., Tidière, M., Gaillard, J.-M. 2019. Variation in actuarial senescence does not reflect life span variation across mammals. PLoS Biol. 17, e3000432 (doi:10.1371/journal.pbio.3000432).CrossRefGoogle Scholar
Charnov, E.L., Berrigan, D. 1993. Why do female Primates have such long lifespans and so few babies? Or life in the slow lane. Evol. Anthropol. Issues News Rev. 1, 191194.CrossRefGoogle Scholar
Auer, S.K., Dick, C.A., Metcalfe, N.B., Reznick, D.N. 2018. Metabolic rate evolves rapidly and in parallel with the pace of life history. Nat. Commun. 9, 14 (doi:10.1038/s41467-017-02514-z).CrossRefGoogle Scholar
Pontzer, H. et al. 2014. Primate energy expenditure and life history. Proc. Natl. Acad. Sci. USA 111, 14331437.CrossRefGoogle ScholarPubMed
Harvey, P.H., Clutton-Brock, T.H. 1985. Life history variation in Primates. Evolution 39, 559581.CrossRefGoogle ScholarPubMed
Vinicius, L., Mumby, H.S. 2013. Comparative analysis of animal growth: a primate continuum revealed by a new dimensionless growth rate coefficient. Evolution 67, 14851492.Google ScholarPubMed
Rilling, J.K., Insel, T.R. 1999. The primate neocortex in comparative perspective using magnetic resonance imaging. J. Hum. Evol. 37, 191223.CrossRefGoogle ScholarPubMed
Isler, K., van Schaik, C.P. 2006. Metabolic costs of brain size evolution. Biol. Lett. 2, 557560.CrossRefGoogle ScholarPubMed
Weisbecker, V., Goswami, A. 2010. Brain size, life history, and metabolism at the marsupial/placental dichotomy. Proc. Natl. Acad. Sci. USA 107, 1621616221.CrossRefGoogle ScholarPubMed
Finarelli, J.A., Flynn, J.J. 2009. Brain-size evolution and sociality in Carnivora. Proc. Natl. Acad. Sci. USA 106, 93459349.CrossRefGoogle ScholarPubMed
Finarelli, J.A. 2010. Does encephalization correlate with life history or metabolic rate in Carnivora? Biol. Lett. 6, 350353.CrossRefGoogle ScholarPubMed
Isler, K., van Schaik, C.P. 2009. The expensive brain: a framework for explaining evolutionary changes in brain size. J. Hum. Evol. 57, 392400.CrossRefGoogle Scholar
Isler, K., van Schaik, C.P. 2012. Allomaternal care, life history and brain size evolution in mammals. J. Hum. Evol. 63, 5263.CrossRefGoogle ScholarPubMed
Austad, S.N., Fischer, K.E. 1992. Primate longevity: its place in the mammalian scheme. Am. J. Primatol. 28, 251261.CrossRefGoogle ScholarPubMed
Allman, J., McLaughlin, T., Hakeem, A. 1993. Brain weight and life-span in primate species. Proc. Natl. Acad. Sci. USA 90, 118122.CrossRefGoogle ScholarPubMed
Walker, R., Burger, O., Wagner, J., Von Rueden, C.R. 2006. Evolution of brain size and juvenile periods in Primates. J. Hum. Evol. 51, 480489.CrossRefGoogle ScholarPubMed
Barrickman, N.L., Bastian, M.L., Isler, K., van Schaik, C.P. 2008. Life history costs and benefits of encephalization: a comparative test using data from long-term studies of Primates in the wild. J. Hum. Evol. 54, 568590.CrossRefGoogle ScholarPubMed
Gonzalez-Lagos, C., Sol, D., Reader, S.M. 2010. Large-brained mammals live longer. J. Evol. Biol. 23, 10641074.CrossRefGoogle ScholarPubMed
Sacher, G.A. 1982. The role of brain maturation in the evolution of the Primates. In Primate Brain Evolution: Methods and Concepts (eds Armstrong, E., Falk, D.), pp. 97112. Springer US (doi:10.1007/978-1-4684-4148-2_8).CrossRefGoogle Scholar
Martin, R. 1996. Scaling of the mammalian brain: the maternal energy hypothesis. Physiology 11, 149156.CrossRefGoogle Scholar
Mink, J.W., Blumenschine, R.J., Adams, D.B. 1981. Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am. J. Physiol. 241, R203R212.Google Scholar
Casey, B.J., Galvan, A., Hare, T.A. 2005. Changes in cerebral functional organization during cognitive development. Curr. Opin. Neurobiol. 15, 239244.CrossRefGoogle ScholarPubMed
Johnson, M.H. 2001. Functional brain development in humans. Nat. Rev. Neurosci. 2, 475.CrossRefGoogle ScholarPubMed
Clutton-Brock, T.H., Harvey, P.H. 1980. Primates, brains and ecology. J. Zool. 190, 309323.CrossRefGoogle Scholar
DeCasien, A.R., Williams, S.A., Higham, J.P. 2017. Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 0112.CrossRefGoogle Scholar
Jones, J.H. 2011. Primates and the evolution of long, slow life histories. Curr. Biol. 21, R708R717.CrossRefGoogle ScholarPubMed
Aiello, L.C., Wheeler, P. 1995. The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr. Anthropol. 36, 199221.CrossRefGoogle Scholar
Navarrete, A., van Schaik, C.P., Isler, K. 2011. Energetics and the evolution of human brain size. Nature 480, 9193 (doi:10.1038/nature10629).CrossRefGoogle ScholarPubMed
Moll, H., Tomasello, M. 2007. Cooperation and human cognition: the Vygotskian intelligence hypothesis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362, 639648.CrossRefGoogle ScholarPubMed
Reader, S.M., Laland, K.N. 2002. Social intelligence, innovation, and enhanced brain size in Primates. Proc. Natl. Acad. Sci. USA 99, 44364441.CrossRefGoogle ScholarPubMed
Reader, S.M., Hager, Y., Laland, K.N. 2011. The evolution of primate general and cultural intelligence. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 366, 10171027.CrossRefGoogle ScholarPubMed
Dunbar, R.I.M. 1998. The social brain hypothesis. Evol. Anthropol. Issues News Rev. 6, 178190.3.0.CO;2-8>CrossRefGoogle Scholar
Dunbar, R.I. 2009. The social brain hypothesis and its implications for social evolution. Ann. Hum. Biol. 36, 562572.CrossRefGoogle ScholarPubMed
Dunbar, R.I.M., Shultz, S. 2017. Why are there so many explanations for primate brain evolution? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 372, 20160244.CrossRefGoogle ScholarPubMed
Kaplan, H.S., Gangestad, S.W., Gurven, M., Lancaster, J., Mueller, T., Robson, A. 2007. The evolution of diet, brain and life history among Primates and humans. In Guts and Brains: An Integrative Approach to the Hominin Record (ed. Roebroek, W.), pp. 4781. Leiden University Press.Google Scholar
Kaplan, H.S., Gurven, M., Lancaster, J. 2007. Brain evolution and the human adaptive complex: an ecological and social theory. In The Evolution of Mind: Fundamental Questions and Controversies (eds Gangestad, S.W., Simpson, J.A.), pp. 269279. Guilford Press.Google Scholar
Bourke, A.F.G. 2011. The validity and value of inclusive fitness theory. Proc. R. Soc. Biol. Sci. 278, 33133320.CrossRefGoogle ScholarPubMed
Hamilton, W.D. 1964. Genetical evolution of social behaviour I. J. Theor. Biol. 7, 116.CrossRefGoogle Scholar
Hamilton, W.D. 1964. Genetical evolution of social behaviour 2. J. Theor. Biol. 7, 1752.CrossRefGoogle Scholar
Clutton-Brock, T. 2002. Breeding together: kin selection and mutualism in cooperative vertebrates. Science 296, 6972.CrossRefGoogle ScholarPubMed
Bourke, A.F.G. 2007. Kin selection and the evolutionary theory of aging. Annu. Rev. Ecol. Evol. Syst. 38, 103128.CrossRefGoogle Scholar
Lee, R.D. 2003. Rethinking the evolutionary theory of aging: transfers, not births, shape senescence in social species. Proc. Natl. Acad. Sci. USA 100, 96379642.CrossRefGoogle Scholar
Clutton-Brock, T.H. 1991. The Evolution of Parental Care. Princeton University Press.CrossRefGoogle Scholar
Péron, G., Bonenfant, C., Lemaitre, J.-F., Ronget, V., Tidiere, M., Gaillard, J.-M. 2019. Does grandparental care select for a longer lifespan in non-human mammals? Biol. J. Linn. Soc. 128, 360372 (doi:10.1093/biolinnean/blz078).Google Scholar
Allman, J., Rosin, A., Kumar, R., Hasenstaub, A. 1998. Parenting and survival in anthropoid Primates: caretakers live longer. Proc. Natl. Acad. Sci. USA 95, 68666869.CrossRefGoogle ScholarPubMed
Beauchamp, G. 2014. Do avian cooperative breeders live longer? Proc. R. Soc. 281, 20140844.Google ScholarPubMed
Thorley, J. 2020. The case for extended lifespan in cooperatively breeding mammals: a re-appraisal. PeerJ. 8, e9214e9214.CrossRefGoogle ScholarPubMed
Gurven, M., Kaplan, H. 2007. Longevity among hunter-gatherers: a cross-cultural examination. Popul. Dev. Rev. 33, 321365.CrossRefGoogle Scholar
Wilmoth, J.R. 1995. The earliest centenarians: a statistical analysis. In Exceptional Longevity: From Prehistory to the Present (eds Jeune, B., Vaupel, J.), pp. 125169. Odense University Press.Google Scholar
Wyshak, G., Frisch, R.E. 1982. Evidence for a secular trend in age of menarche. N. Engl. J. Med. 306, 10331035.CrossRefGoogle ScholarPubMed
Zacharias, L., Wurtman, R.J. 1969. Age at menarche: genetic and environmental influences. N. Engl. J. Med. 280, 868875.CrossRefGoogle Scholar
Hochberg, Z., Gawlik, A., Walker, R.S. 2011. Evolutionary fitness as a function of pubertal age in 22 subsistence-based traditional societies. Int. J. Pediatr. Endocrinol. 2011, 22.CrossRefGoogle ScholarPubMed
Parsaeian, M. et al. 2017. An explanation for variation in age at menopause in developing countries based on the second national integrated micronutrient survey in Iran. Arch. Iran. Med. 20, 361367 (doi:0172006/AIM.008).Google ScholarPubMed
Peccei, J.S. 1999. First estimates of heritability in the age of menopause. Curr. Anthropol. 40, 553558.CrossRefGoogle Scholar
Mace, R. 2000. Evolutionary ecology of human life history. Anim. Behav. 59, 110.CrossRefGoogle ScholarPubMed
Caldwell, P., Caldwell, J.C. 1981. The function of child-spacing in traditional societies and the direction of change. In Child Spacing in Tropical Africa: Traditions and Change (eds Page, H.J., Lesthaeghe, R.), pp. 7392. New York Academic.Google Scholar
Pimentel, J., Ansari, U., Omer, K., Gidado, Y., Baba, M.C., Andersson, N., Cockcroft, A. 2020. Factors associated with short birth interval in low- and middle-income countries: a systematic review. BMC Pregnancy Childbirth 20, 156.CrossRefGoogle ScholarPubMed
Davison, R.J., Gurven, M.D. 2020. Human uniqueness illustrated by life history diversity among small-scale societies and chimpanzees. bioRxiv, 2020.09.02.280602.Google Scholar
Rozzi, F.V.R., Koudou, Y., Froment, A., Le Bouc, Y., Botton, J. 2015. Growth pattern from birth to adulthood in African pygmies of known age. Nat. Commun. 6, 7672.CrossRefGoogle ScholarPubMed
Davison, R.J., Gurven, M.D. 2021. Human uniqueness? Life history diversity among small-scale societies and chimpanzees. PLoS ONE 16, e0239170.CrossRefGoogle ScholarPubMed
Elder, J.H., Yerkes, R.M., Cushing, H.W. 1936. Chimpanzee births in captivity: a typical case history and report of sixTEEn births. Proc. R. Soc. Lond. Ser. B – Biol. Sci. 120, 409421.Google Scholar
Say, L., Chou, D., Gemmill, A., Tunçalp, Ö., Moller, A.-B., Daniels, J., Gülmezoglu, A.M., Temmerman, M., Alkema, L. 2014. Global causes of maternal death: a WHO systematic analysis. Lancet Glob. Health 2, e323e333.CrossRefGoogle ScholarPubMed
Chamberlain, G. 2006. British maternal mortality in the 19th and early 20th centuries. J. R. Soc. Med. 99, 559563 (doi:10.1258/jrsm.99.11.559).CrossRefGoogle ScholarPubMed
Walraven, G., Telfer, M., Rowley, J., Ronsmans, C. 2000. Maternal mortality in rural Gambia: levels, causes and contributing factors. Bull. World Health Organ. 78, 603613.Google ScholarPubMed
Wilmoth, J. 2009. The lifetime risk of maternal mortality: concept and measurement. Bull. World Health Organ., 87, 256262.CrossRefGoogle ScholarPubMed
Yao, M., Yin, L., Zhang, L., Liu, L., Qin, D., Pan, W. 2012. Parturitions in wild white-headed langurs (Trachypithecus leucocephalus) in the Nongguan Hills, China. Int. J. Primatol. 33, 888904.CrossRefGoogle Scholar
Bogin, B. 2015. Human growth and development. In Basics in Human Evolution (ed. Muehlenbein, M.P.), pp. 285293. Academic Press.CrossRefGoogle Scholar
DeSilva, J.M. 2011. A shift toward birthing relatively large infants early in human evolution. Proc. Natl. Acad. Sci. USA 108, 10221027.CrossRefGoogle ScholarPubMed
Parker, S.T. 1977. Piaget’s sensorimotor period series in an infant macaquea: model for comparing non stereotyped behavior and intelligence in human and nonhuman Primates. In Primate Biosocial Development (ed. Chevalier-Skolnikoff, S., Poirier, F.), 43112. Garland.Google Scholar
Chevalier-Skolnikoff, S. 1983. Sensorimotor development in orang-utans and other Primates. J. Hum. Evol. 12, 545.CrossRefGoogle Scholar
Geary, D.C., Flinn, M.V. 2001. Evolution of human parental behavior and the human family. Parent. Sci. Pract. 1, 12.CrossRefGoogle Scholar
Bogin, B. 2021. Patterns of Human Growth (3rd ed.). Cambridge University Press.Google Scholar
de Beauvoir, S. 1949. Le Deuxième Sexe. Gallimard.Google Scholar
Gurven, M.D., Davison, R.J. 2019. Periodic catastrophes over human evolutionary history are necessary to explain the forager population paradox. Proc. Natl. Acad. Sci. 116, 12758 (doi:10.1073/pnas.1902406116).CrossRefGoogle ScholarPubMed
Levitis, D.A., Burger, O., Lackey, L.B. 2013. The human post-fertile lifespan in comparative evolutionary context. Evol Anthr. 22, 6679.CrossRefGoogle ScholarPubMed
Ellis, S., Franks, D.W., Nattrass, S., Cant, M.A., Bradley, D.L., Giles, D., Balcomb, K.C., Croft, D.P. 2018. Postreproductive lifespans are rare in mammals. Ecol. Evol. 8, 24822494.CrossRefGoogle ScholarPubMed
Tuljapurkar, S.D., Puleston, C.O., Gurven, M.D. 2007. Why men matter: mating patterns drive evolution of human lifespan. PLoS ONE 2, e785.CrossRefGoogle ScholarPubMed
Gurven, M., Walker, R. 2006. Energetic demand of multiple dependents and the evolution of slow human growth. Proc. R. Soc. B Biol. Sci. 273, 835841 (doi:10.1098/rspb.2005.3380).CrossRefGoogle ScholarPubMed
Bentley, G.R., Mace, R. 2009. Substitute Parents: Biological and Social Perspective on Alloparenting across Human Societies. Berghahn Books.CrossRefGoogle Scholar
Sear, R., Mace, R. 2008. Who keeps children alive? A review of the effects of kin on child survival. Evol. Hum. Behav. 29, 118.CrossRefGoogle Scholar
Helfrecht, C., Roulette, J.W., Lane, A., Sintayehu, B., Meehan, C.L. 2020. Life history and socioecology of infancy. Am. J. Phys. Anthropol. 173, 619629.CrossRefGoogle ScholarPubMed
Pavard, S., Gagnon, A., Desjardins, B., Heyer, E. 2005. Mother’s death and child survival: the case of early Quebec. J. Biosoc. Sci. 37, 209227.CrossRefGoogle ScholarPubMed
Morrison, R.E., Eckardt, W., Colchero, F., Vecellio, V., Stoinski, T.S. 2021. Social groups buffer maternal loss in mountain gorillas. eLife 10, e62939.CrossRefGoogle ScholarPubMed
Tokuyama, N., Toda, K., Poiret, M.-L., Iyokango, B., Bakaa, B., Ishizuka, S. 2021. Two wild female bonobos adopted infants from a different social group at Wamba. Sci. Rep. 11, 4967.CrossRefGoogle ScholarPubMed
Hill, K.R. et al. 2011. Co-residence patterns in hunter-gatherer societies show unique human social structure. Science 331, 12861289.CrossRefGoogle ScholarPubMed
Bogin, B., Bragg, J., Kuzawa, C. 2014. Humans are not cooperative breeders but practice biocultural reproduction. Ann. Hum. Biol. 41, 368380.CrossRefGoogle Scholar
Washburn, S.L. 1960. Tools and human evolution. Sci. Am. 203, 6375.CrossRefGoogle ScholarPubMed
Wittman, A.B., Wall, L.L. 2007. The evolutionary origins of obstructed labor: bipedalism, encephalization, and the human obstetric dilemma. Obstet. Gynecol. Surv. 62, 739748.CrossRefGoogle ScholarPubMed
Haeusler, M., Grunstra, N.D.S., Martin, R.D., Krenn, V.A., Fornai, C., Webb, N.M. 2021. The obstetrical dilemma hypothesis: there’s life in the old dog yet. Biol. Rev. Camb. Philos. Soc. 96, 20312057 (doi:10.1111/brv.12744).CrossRefGoogle ScholarPubMed
Hublin, J.J., Neubauer, S., Gunz, P. 2015. Brain ontogeny and life history in Pleistocene hominins. Philos. Trans. R. Soc. B-Biol. Sci. 370, 20140062CrossRefGoogle ScholarPubMed
Dunsworth, H.M., Warrener, A.G., Deacon, T., Ellison, P.T., Pontzer, H. 2012. Metabolic hypothesis for human altriciality. Proc. Natl. Acad. Sci. USA 109, 1521215216.CrossRefGoogle ScholarPubMed
Little, B.B. 1989. Gestation length, metabolic-rate, and body and brain weights in Primates: epigenetic effects. Am. J. Phys. Anthropol. 80, 213218.CrossRefGoogle ScholarPubMed
Butte, N.F., King, J.C. 2005. Energy requirements during pregnancy and lactation. Public Health Nutr. 8, 10101027.CrossRefGoogle ScholarPubMed
Garratt, M., Gaillard, J.-M., Brooks, R.C., Lemaître, J.-F. 2013. Diversification of the eutherian placenta is associated with changes in the pace of life. Proc. Natl. Acad. Sci. USA 110, 77607765.CrossRefGoogle ScholarPubMed
Zeldovich, V.B., Bakardjiev, A.I. 2012. Host defense and tolerance: unique challenges in the placenta. PLoS Pathog. 8, e1002804.CrossRefGoogle ScholarPubMed
Portmann, A. 1969. Biologische Fragmente zu einer Lehre vom Menschen [A Zoologist Looks at Humankind]. Schwabe.Google Scholar
Gould, S.J. 1977. Ontogeny and Phylogeny. Harvard University Press.Google Scholar
Bjorklund, D.F. 1997. The role of immaturity in human development. Psychol. Bull. 122, 153169.CrossRefGoogle ScholarPubMed
Jalley, E. 1981. Wallon, lecteur de Freud et Piaget. Editions Sociales.Google Scholar
Reissland, N., Francis, B., Mason, J., Lincoln, K. 2011. Do facial expressions develop before birth? PLoS ONE 6, e24081.CrossRefGoogle ScholarPubMed
Farroni, T., Chiarelli, A.M., Lloyd-Fox, S., Massaccesi, S., Merla, A., Di Gangi, V., Mattarello, T., Faraguna, D., Johnson, M.H. 2013. Infant cortex responds to other humans from shortly after birth. Sci. Rep. 3, 2851.CrossRefGoogle ScholarPubMed
Semaw, S., Renne, P., Harris, J.W.K., Feibel, C.S., Bernor, R.L., Fesseha, N., Mowbray, K. 1997. 2.5-million-year-old stone tools from Gona, Ethiopia. Nature 385, 333336 (doi:10.1038/385333a0).CrossRefGoogle ScholarPubMed
McPherron, S.P., Alemseged, Z., Marean, C.W., Wynn, J.G., Reed, D., Geraads, D., Bobe, R., Béarat, H.A. 2010. Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature 466, 857860 (doi:10.1038/nature09248).CrossRefGoogle ScholarPubMed
Harmand, S. et al. 2015. 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521, 310315.CrossRefGoogle ScholarPubMed
Pääbo, S. 2003. The mosaic that is our genome. Nature 421, 409412 (doi:10.1038/nature01400).CrossRefGoogle ScholarPubMed
Glazko, G.V., Nei, M. 2003. Estimation of divergence times for major lineages of primate species. Mol. Biol. Evol. 20, 424434 (doi:10.1093/molbev/msg050).CrossRefGoogle ScholarPubMed
Moorjani, P., Amorim, C.E.G., Arndt, P.F., Przeworski, M. 2016. Variation in the molecular clock of Primates. Proc. Natl. Acad. Sci. 113, 10607 (doi:10.1073/pnas.1600374113).CrossRefGoogle ScholarPubMed
Laland, K.N., Odling-Smee, J., Feldman, M.W. 2001. Cultural niche construction and human evolution. J. Evol. Biol. 14, 2233 (doi:10.1046/j.1420-9101.2001.00262.x).CrossRefGoogle ScholarPubMed
Wrangham, R.W., Jones, J.H., Laden, G., Pilbeam, D., Conklin-Brittain, N. 1999. The raw and the stolen: cooking and the ecology of human origins. Curr. Anthropol. 40, 567594.CrossRefGoogle ScholarPubMed
Pontzer, H. et al. 2016. Metabolic acceleration and the evolution of human brain size and life history. Nature 533, 390.CrossRefGoogle ScholarPubMed
Kraft Thomas, S. et al. 2021. The energetics of uniquely human subsistence strategies. Science 374, eabf0130 (doi:10.1126/science.abf0130).CrossRefGoogle ScholarPubMed
Fonseca-Azevedo, K., Herculano-Houzel, S. 2012. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution. Proc. Natl. Acad. Sci. 109, 1857118576.CrossRefGoogle ScholarPubMed
Nowell, A., Davidson, I. 2010. Stone Tools and the Evolution of Human Cognition. University Press of Colorado.Google Scholar
Terashima, H., Hewlett, B.S., eds. 2016. Social Learning and Innovation in Contemporary Hunter-Gatherers: Evolutionary and Ethnographic Perspectives. Springer Japan (doi:10.1007/978-4-431-55997-9).CrossRefGoogle Scholar
Kaplan, H., Hill, K., Lancaster, J., Hurtado, A.M. 2000. A theory of human life history evolution: diet, intelligence, and longevity. Evol. Anthropol. 9, 156185.3.0.CO;2-7>CrossRefGoogle Scholar
Kuzawa, C.W. et al. 2014. Metabolic costs and evolutionary implications of human brain development. Proc. Natl. Acad. Sci. USA 111, 1301013015.CrossRefGoogle ScholarPubMed
Larke, A., Crews, D.E. 2006. Parental investment, late reproduction, and increased reserve capacity are associated with longevity in humans. J. Physiol. Anthropol. 25, 119131 (doi:10.2114/jpa2.25.119).CrossRefGoogle ScholarPubMed
Bogin, B. 2009. Childhood, adolescence, and longevity: a multilevel model of the evolution of reserve capacity in human life history. Am. J. Hum. Biol. 21, 567577 (doi:10.1002/ajhb.20895).CrossRefGoogle ScholarPubMed
Hrvoj-Mihic, B., Bienvenu, T., Stefanacci, L., Muotri, A., Semendeferi, K. 2013. Evolution, development, and plasticity of the human brain: from molecules to bones. Front. Hum. Neurosci. 7, 707 (doi:10.3389/fnhum.2013.00707).CrossRefGoogle ScholarPubMed
Bogin, B., Smith, B.H. 1996. Evolution of the human life cycle. Am. J. Hum. Biol. 8, 703716 (doi:10.1002/(SICI)1520-6300(1996)8:6<703::AID-AJHB2>3.0.CO;2-U).3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Allen, J.S., Bruss, J., Damasio, H. 2005. The aging brain: the cognitive reserve hypothesis and hominid evolution. Am. J. Hum. Biol. 17, 673689.CrossRefGoogle ScholarPubMed
Kaplan, H.S., Robson, A.J. 2002. The emergence of humans: the coevolution of intelligence and longevity with intergenerational transfers. Proc. Natl. Acad. Sci. USA 99, 1022110226.CrossRefGoogle ScholarPubMed
Hawkes, K., O’Connell, J.F., Jones, N.G.B., Alvarez, H., Charnov, E.L. 1998. Grandmothering, menopause, and the evolution of human life histories. Proc. Natl. Acad. Sci. USA 95, 13361339.CrossRefGoogle ScholarPubMed
Chu, C.Y., Lee, R.D. 2006. The co-evolution of intergenerational transfers and longevity: an optimal life history approach. Theor. Popul. Biol. 69, 193201.Google Scholar
Chu, C.Y.C., Lee, R.D. 2013. On the evolution of intergenerational division of labor, menopause and transfers among adults and offspring. J. Theor. Biol. 332, 171180.Google Scholar
Pavard, S., Koons, D.N., Heyer, E. 2007. The influence of maternal care in shaping human survival and fertility. Evolution 61, 28012810.CrossRefGoogle ScholarPubMed
Pavard, S., Sibert, A., Heyer, E. 2007. The effect of maternal care on child survival: a demographic, genetic, and evolutionary perspective. Evolution 61, 11531161.CrossRefGoogle ScholarPubMed
Pavard, S., Branger, F. 2012. Effect of maternal and grandmaternal care on population dynamics and human life-history evolution: a matrix projection model. Theor. Popul. Biol. 82, 364376.CrossRefGoogle ScholarPubMed
Pavard, S., Coste, C.F.D. 2021. Evolutionary demographic models reveal the strength of purifying selection on susceptibility alleles to late-onset diseases. Nat. Ecol. Evol. 5, 392400 (doi:10.1038/s41559-020-01355-2).CrossRefGoogle ScholarPubMed
Kim, P.S., McQueen, J.S., Coxworth, J.E., Hawkes, K. 2014. Grandmothering drives the evolution of longevity in a probabilistic model. J. Theor. Biol. 353, 8494 (doi:10.1016/j.jtbi.2014.03.011).CrossRefGoogle Scholar
Coste, C.F.D., Bienvenu, F., Ronget, V., Ramirez-Loza, J.-P., Cubaynes, S., Pavard, S. 2021. The kinship matrix: inferring the kinship structure of a population from its demography. Ecol. Lett. 24, 27502762 (doi:10.1111/ele.13854).CrossRefGoogle ScholarPubMed
Caswell, H. 2019. The formal demography of kinship: a matrix formulation. Demogr. Res. 41, 679712 (doi:10.4054/DemRes.2019.41.24).CrossRefGoogle Scholar
Lee, R. 2008. Sociality, selection, and survival: simulated evolution of mortality with intergenerational transfers and food sharing. Proc. Natl. Acad. Sci. 105, 7124 (doi:10.1073/pnas.0710234105).CrossRefGoogle ScholarPubMed
Davison, R., Gurven, M. 2022. The importance of elders: extending Hamilton’s force of selection to include intergenerational transfers. Proc. Natl. Acad. Sci. 119, e2200073119 (doi:10.1073/pnas.2200073119).CrossRefGoogle ScholarPubMed
Alberts, S.C. et al. 2013. Reproductive aging patterns in Primates reveal that humans are distinct. Proc. Natl. Acad. Sci. USA 110, 1344013445.CrossRefGoogle ScholarPubMed
Peccei, J.S. 1995. The origin and evolution of menopause: the altriciality-lifespan hypothesis. Ethol. Sociobiol. 16, 425449.CrossRefGoogle Scholar
Peccei, J.S. 2001. Menopause: adaptation or epiphenomenon? Evol. Anthropol. 10, 4357.CrossRefGoogle Scholar
Shanley, D.P., Kirkwood, T.B. 2001. Evolution of the human menopause. Bioessays 23, 282287.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Shanley, D.P., Sear, R., Mace, R., Kirkwood, T.B. 2007. Testing evolutionary theories of menopause. Proc. R. Soc. Biol. Sci. 274, 29432949.CrossRefGoogle ScholarPubMed
Pavard, S., Metcalf, C.J.E., Heyer, E. 2008. Senescence of reproduction may explain adaptive menopause in humans: a test of the ‘mother’ hypothesis. Am. J. Phys. Anthropol. 136, 194203.CrossRefGoogle ScholarPubMed
Thouzeau, V., Raymond, M. 2017. Emergence and maintenance of menopause in humans: a game theory model. J. Theor. Biol. 430, 229236.CrossRefGoogle ScholarPubMed
Kaplan, H., Gurven, M., Winking, J., Hooper, P.L., Stieglitz, J. 2010. Learning, menopause, and the human adaptive complex. Ann. N. Y. Acad. Sci. 1204, 3042 (doi:10.1111/j.1749-6632.2010.05528.x).CrossRefGoogle ScholarPubMed
Rogers, A.R. 1993. Why menopause? Evol. Ecol. 7, 406420 (doi:10.1007/BF01237872).CrossRefGoogle Scholar
Hill, K., Hurtado, A.M. 1991. The evolution of premature reproductive senescence and menopause in human females. Hum. Nat. 2, 313350 (doi:10.1007/BF02692196).CrossRefGoogle ScholarPubMed
Cant, M.A., Johnstone, R.A. 2008. Reproductive conflict and the separation of reproductive generations in humans. Proc. Natl. Acad. Sci. 105, 5332 (doi:10.1073/pnas.0711911105).CrossRefGoogle ScholarPubMed
Lahdenperä, M., Gillespie, D.O.S., Lummaa, V., Russell, A.F. 2012. Severe intergenerational reproductive conflict and the evolution of menopause. Ecol. Lett. 15, 12831290 (doi:10.1111/j.1461-0248.2012.01851.x).CrossRefGoogle ScholarPubMed
Croft, D.P. et al. 2017. Reproductive conflict and the evolution of menopause in killer whales. Curr. Biol. 27, 298304 (doi:10.1016/j.cub.2016.12.015).CrossRefGoogle ScholarPubMed
Ellis, S., Franks, D.W., Nattrass, S., Cant, M.A., Bradley, D.L., Giles, D., Balcomb, K.C., Croft, D.P. 2018. Postreproductive lifespans are rare in mammals. Ecol. Evol. 8, 24822494.CrossRefGoogle ScholarPubMed
Sear, R. 2008. Kin and child survival in rural Malawi. Hum. Nat. 19, 277 (doi:10.1007/s12110-008-9042-4).CrossRefGoogle ScholarPubMed
Williams, G.C. 1957. Pleiotropy, natural-selection, and the evolution of senescence. Evolution 11, 398411.CrossRefGoogle Scholar
Robson, S.L., Wood, B. 2008. Hominin life history: reconstruction and evolution. J. Anat. 212, 394425.CrossRefGoogle ScholarPubMed
2023. Bonobo (Pan paniscus) fact sheet. San Diego Zoo Wildlife Alliance. http://ielc.libguides.com/sdzg/factsheets/bonobo.Google Scholar
de Magalhaes, J.P., Budovsky, A., Lehmann, G., Costa, J., Li, Y., Fraifeld, V., Church, G.M. 2009. The human ageing genomic resources: online databases and tools for biogerontologists. Aging Cell 8, 6572.CrossRefGoogle ScholarPubMed
Schultz, A.H. 1969. The Life of Primates. Universe Books.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×