Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T17:30:18.430Z Has data issue: false hasContentIssue false

13 - Health Transition and Population Ageing

Challenges for the Global South

Published online by Cambridge University Press:  14 November 2024

Jean-François Lemaître
Affiliation:
Centre National de la Recherche Scientifique (CNRS)
Samuel Pavard
Affiliation:
National Museum of Natural History, Paris
Get access

Summary

The Global South, that groups together low- or middle- income countries mainly located in Africa, Asia and Latin America, concentrates most of the world population. Population ageing, caused by the demographic transition and a large decrease in fertility and mortality rates, make these countries face numerous challenges. Among regions in the Global South, the differences in life expectancy at birth were still large in 2022: almost 74 years in Latin America and the Caribbean but only 60 years in sub-Saharan Africa, with some countries barely exceeding 50. Due to many factors that play on health transition, high mortality countries suffer a cumulative burden from both infectious and non-communicable diseases (NCDs). In addition, the lack of old-age mortality data is a dramatic issue when studying longevity in these countries.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carinnes, M., Alejandria-Gonzalez, P., Subharati, G., Sacco, N.J.C., eds. 2019. Aging in Global South: Challenges and Opportunities. Lexington Books.Google Scholar
Setel, P.W., Macfarlane, S.B., Szreter, S., Mikkelsen, L., Jha, P., Stout, S., AbouZahr, C. 2007. A scandal of invisibility: making everyone count by counting everyone. Lancet 370, 15691577 (doi:10.1016/S0140-6736(07)61307-5).CrossRefGoogle ScholarPubMed
Mikkelsen, L., Phillips, D.E., AbouZahr, C., Setel, P.W., de Savigny, D., Lozano, R., Lopez, A.D. 2015. A global assessment of civil registration and vital statistics systems: monitoring data quality and progress. Lancet Lond. Engl. 386, 13951406 (doi:10.1016/S0140-6736(15)60171-4).CrossRefGoogle ScholarPubMed
Karlinsky, A. 2022. International completeness of death registration 2015–2019. medRxiv (doi:10.1101/2021.08.12.21261978).Google Scholar
Guillot, M., Gavrilova, N., Pudrovska, T. 2011. Understanding the ‘Russian mortality paradox’ in Central Asia: evidence from Kyrgyzstan. Demography 48, 10811104 (doi:10.1007/s13524-011-0036-1).CrossRefGoogle ScholarPubMed
Meslé, F., Vallin, J., Hertrich, V., Andreev, E., Shkolnikov, V. 2003. Causes of death in Russia: assessing trends since the 50s. In Population of Central and Eastern Europe: Challenges and Opportunities (eds Kotowska, I.E., Józwiak, J.), pp. 389414. Statistical Publishing Establishment.Google Scholar
Masquelier, B., Reniers, G., Pison, G. 2014. Divergences in trends in child and adult mortality in sub-Saharan Africa: survey evidence on the survival of children and siblings. Popul. Stud. 68, 161177 (doi:10.1080/00324728.2013.856458).CrossRefGoogle ScholarPubMed
Alvarez, J.-A., Aburto, J.M., Canudas-Romo, V. 2020. Latin American convergence and divergence towards the mortality profiles of developed countries. Popul. Stud. 74, 7592 (doi:10.1080/00324728.2019.1614651).CrossRefGoogle ScholarPubMed
Garcia, J. 2020. Urban bias in Latin American Causes Of Death Patterns. PhD thesis, Ined.Google Scholar
World Health Organization. 2022. 14.9 million excess deaths associated with the COVID-19 pandemic in 2020 and 2021. News. www.who.int/news/item/05-05-2022-14.9-million-excess-deaths-were-associated-with-the-covid-19-pandemic-in-2020-and-2021.Google Scholar
World Health Organization. 2022. WHO launches new mortality database visualization portal. News. www.who.int/news/item/13-05-2022-who-launches-new-mortality-database-visualization-portal.Google Scholar
World Health Organization. 2020. The top 10 causes of death. WHO Fact Sheets. www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.Google Scholar
Tabutin, D., Masquelier, B. 2017. Tendances et inégalités de mortalité de 1990 à 2015 dans les pays à revenu faible et intermédiaire. Population 72, 225 (doi:10.3917/popu.1702.0225).CrossRefGoogle Scholar
Murray, C.J.L. et al. 2020. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet 396, 12231249 (doi:10.1016/S0140-6736(20)30752-2).CrossRefGoogle Scholar
Frenk, J., Bobadilla, J.L., Sepuúlveda, J., Cervantes, M.L. 1989. Health transition in middle-income countries: new challenges for health care. Health Policy Plan. 4, 2939 (doi:10.1093/heapol/4.1.29).CrossRefGoogle Scholar
Omran, A.R. 1971. The epidemiologic transition: a theory of the epidemiology of population change. Milbank Mem. Fund Q. 49, 509538.CrossRefGoogle ScholarPubMed
Caldwell, J., Caldwell, P. 1991. What have we learnt about the cultural, social and behavioural determinants of health? From selected readings to the first health transition workshop. Health Transit. Rev. 1, 319.Google Scholar
Omran, A.R. 1998. The epidemiologic transition theory revisited thirty years later. World Health Stat. Q. 53, 99119.Google Scholar
Marshall, S.J. 2004. Developing countries face double burden of disease. Bull. World Health Organ. 82, 556556.Google ScholarPubMed
Vallin, J., Meslé, F. 2004. Convergences and divergences in mortality: a new approach to health transition. Demogr. Res. 10, 1144 (doi:10.4054/demres.2004.s2.2).CrossRefGoogle Scholar
Tabutin, D., Schoumaker, B. 2020. The demography of Sub-Saharan Africa in the 21st century. Transformations since 2000, outlook to 2050. Population 75, 165286.Google Scholar
Gu, D., Gerland, P., Andreev, K.F., Li, N., Spoorenberg, T., Heilig, G. 2013. Old age mortality in Eastern and South-Eastern Asia. Demogr. Res. 29, 9991038 (doi:10.4054/demres.2013.29.38).CrossRefGoogle Scholar
Caselli, G., Meslé, F., Vallin, J. 2002. Epidemiologic transition theory exceptions. Genus 58, 951.Google Scholar
Langford, C.M. 1996. Reasons for the decline in mortality in Sri Lanka immediately after the Second World War: a re-examination of the evidence. Health Transit. Rev. 6, 323.Google Scholar
World Health Organization. 2021. Global progress report on HIV, viral hepatitis and sexually transmitted infections, 2021; accountability for the global health sector strategies 2016–2021: actions for impact; World Health Organization. Global report. www.who.int/publications/i/item/9789240027077.Google Scholar
Trape, J.-F.F. et al. 1998. Impact of chloroquine resistance on malaria mortality. Comptes Rendus Académie Sci. – Ser. III – Sci. Vie 321, 689697 (doi:10.1016/S0764-4469(98)80009-7).Google ScholarPubMed
Institute for Health Metrics and Evaluation. 2022. GBD compare – Viz hub – GBD 2019. https://vizhub.healthdata.org.Google Scholar
United Nations, Department of Economic and Social Affairs, Population Division. 2022. World Population Prospects. Online Edition. https://population.un.org/wpp/.Google Scholar
Calazans, J.A., Queiroz, B.L. 2020. The adult mortality profile by cause of death in 10 Latin American countries (2000–2016). Rev. Panam. Salud PublicaPan Am. J. Public Health 44, 19 (doi:10.26633/RPSP.2020.1).CrossRefGoogle ScholarPubMed
Remais, J.V., Zeng, G., Li, G., Tian, L., Engelgau, M.M. 2013. Convergence of non-communicable and infectious diseases in low- and middle-income countries. Int. J. Epidemiol. 42, 221227 (doi:10.1093/ije/dys135).CrossRefGoogle ScholarPubMed
Zeba, A.N., Delisle, H.F., Renier, G., Savadogo, B., Baya, B. 2012. The double burden of malnutrition and cardiometabolic risk widens the gender and socio-economic health gap: a study among adults in Burkina Faso (West Africa). Public Health Nutr. 15, 22102219 (doi:10.1017/S1368980012000729).CrossRefGoogle Scholar
Kuate Defo, B. 2014. Demographic, epidemiological, and health transitions: are they relevant to population health patterns in Africa? Glob. Health Action 7, 22443 (doi:10.3402/gha.v7.22443).CrossRefGoogle ScholarPubMed
Rao, C., Bradshaw, D., Mathers, C.D. 2004. Improving death registration and statistics in developing countries: lessons from sub-Saharan Africa. South. Afr. J. Demogr. 9, 8199.Google Scholar
Pison, G., Ohadike, P.O. 2006. Errors and manipulations in age assessment. In Human Clocks: The Bio-Cultural Meaning of Age (eds Leridon, H., Mascie-Taylor, N.), pp. 313336. Peter Lang.Google Scholar
Economic Commission for Africa. 2017. Report on the status of civil registration and vital statistics in Africa. Ethiopian Communication Agency.Google Scholar
Gavrilov, L.A., Gavrilova, N.S. 2019. Late-life mortality is underestimated because of data errors. PLoS Biol. 17, e3000148 (doi:10.1371/journal.pbio.3000148).CrossRefGoogle ScholarPubMed
Bendavid, E., Seligman, B., Kubo, J. 2011. Comparative analysis of old-age mortality estimations in Africa. PLoS ONE 6, 17 (doi:10.1371/journal.pone.0026607).CrossRefGoogle ScholarPubMed
Pison, G. 2005. Population observatories as sources of information on mortality in developing countries. Demogr. Res. 13, 301334.CrossRefGoogle Scholar
World Health Organization. 2007. Verbal Autopsy Standards: Ascertaining and Attributing Cause of Death. World Health Organization. https://iris.who.int/handle/10665/43764.Google Scholar
Sankoh, O.A., Byass, P. 2012. The INDEPTH network: filling vital gaps in global epidemiology. Int. J. Epidemiol. 41, 579588 (doi:10.1093/ije/dys081).CrossRefGoogle ScholarPubMed
Ye, Y., Wamukoya, M., Ezeh, A., Emina, J.B.O., Sankoh, O. 2012. Health and demographic surveillance systems: a step towards full civil registration and vital statistics system in sub-Sahara Africa? BMC Public Health 12, 741 (doi:10.1186/1471-2458-12-741).CrossRefGoogle ScholarPubMed
Bendavid, E., Seligman, B., Kubo, J. 2011. Comparative analysis of old-age mortality estimations in Africa. PloS ONE 6, e26607.CrossRefGoogle ScholarPubMed
Li, N., Gerland, P. 2019. Evaluating the completeness of death registration at old ages: a new method and its application to developed and developing countries. Technical Paper, United Nations, Department of Economic and Social Affairs, Population Division. www.un.org/en/development/desa/population/publications/pdf/technical/TP2019-5.pdf.Google Scholar
Clark, S.J. 2015. A singular value decomposition-based factorization and parsimonious component model of demographic quantities correlated by age: predicting complete demographic age schedules with few parameters. ArXiv Prepr. ArXiv150402057. https://arxiv.org/abs/1504.02057.Google Scholar
Sharrow, D.J., Clark, S.J., Raftery, A.E. 2014. Modeling age-specific mortality for countries with generalized HIV epidemics. PloS ONE 9, e96447.CrossRefGoogle ScholarPubMed
Bijak, J., Bryant, J. 2016. Bayesian demography 250 years after Bayes. Popul. Stud. 70, 119.CrossRefGoogle ScholarPubMed
Bryant, J., Zhang, J. 2019. Bayesian Demographic Estimation and Forecasting: Statistics in the Social and Behavioral Sciences. CRC Press, Taylor & Francis Group.Google Scholar
Alexander, M., Zagheni, E., Barbieri, M. 2017. A flexible Bayesian model for estimating subnational mortality. Demography 54, 20252041.CrossRefGoogle ScholarPubMed
Schmertmann, C.P., Gonzaga, M.R. 2018. Bayesian estimation of age-specific mortality and life expectancy for small areas with defective vital records. Demography 55, 13631388.CrossRefGoogle ScholarPubMed
van Raalte, A.A. 2021. What have we learned about mortality patterns over the past 25 years? Popul. Stud. 75, 105132 (doi:10.1080/00324728.2021.1967430).CrossRefGoogle ScholarPubMed
Caselli, G. 1995. The key phases of the European health transition. Pol. Popul. Rev. 7, 73102.Google Scholar
Meslé, F., Vallin, J. 2006. The health transition: trends and prospects. In Demography: Analysis and Synthesis. A Treatise in Population Studies, vol. 2 (eds Caselli, G., Wunsch, G., Vallin, J.), pp. 247259. Elsevier/Academic Press.Google Scholar
Frenk, J., Bobadilla, J.L., Stern, C., Frejka, T., Lozano, R. 1991. Elements for a theory of the health transition. Health Transit. Rev. Cult. Soc. Behav. Determinants Health 1, 2138.Google ScholarPubMed
World Health Organization and United Nations. 2021. Climate change and health: Fastfacts. WHO/UN Climate Fast Facts. www.un.org/sites/un2.un.org/files/2021/08/fastfacts-health.pdf.Google Scholar
Romanello, M. et al. 2021. The 2021 report of the Lancet countdown on health and climate change: code red for a healthy future. The Lancet 398, 16191662 (doi:10.1016/S0140-6736(21)01787-6).CrossRefGoogle ScholarPubMed
Horiuchi, S., Robine, J.-M. 2005. Increasing longevity: causes, trends, and prospects. Genus 61, 1117.Google Scholar
Guilmoto, C.Z. 2022. An alternative estimation of the death toll of the COVID-19 pandemic in India. PLoS ONE 17, e0263187 (doi:10.1371/journal.pone.0263187).CrossRefGoogle ScholarPubMed
Sullivan, D.F. 1971. A single index of mortality and morbidity. HSMHA Health Rep. 86, 347354 (doi:10.2307/4594169).CrossRefGoogle ScholarPubMed
Robine, J.-M., Romieu, I., Michel, J.-P. 2003. Trends in health expectancies. In Determining Health Expectancies (eds Robine, J.-M., Jagger, C., Mathers, C.D., Crimmins, E.M., Suzman, R.M.), pp. 75101. John Wiley & Sons.Google Scholar
Murray, C.J., Lopez, A.D., Jamison, D.T. 1994. The global burden of disease in 1990: summary results, sensitivity analysis and future directions. Bull. World Health Organ. 72, 495509.Google ScholarPubMed
Murray, C.J.L. et al. 2012. Disability-Adjusted Life Years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380, 21972223 (doi:10.1016/S0140-6736(12)61689-4).CrossRefGoogle ScholarPubMed
Forouzanfar, M.H. et al. 2015. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet 386, 22872323 (doi:10.1016/S0140-6736(15)00128-2).CrossRefGoogle ScholarPubMed
Payne, C.F. 2018. Aging in the Americas: disability-free life expectancy among adults aged 65 and older in the United States, Costa Rica, Mexico, and Puerto Rico. J. Gerontol. Ser. B 73, 337348 (doi:10.1093/geronb/gbv076).Google ScholarPubMed
Madans, J.H., Loeb, M., Eide, A.H. 2017. Measuring disability and inclusion in relation to the 2030 Agenda on Sustainable Development. Disability and the Global South 4, 11641179.Google Scholar
Prina, A.M. et al. 2020. Dependence- and disability-free life expectancy across eight low- and middle-income countries: a 10/66 study. J. Aging Health 32, 401409 (doi:10.1177/0898264319825767).CrossRefGoogle ScholarPubMed
Payne, C.F., Mkandawire, J., Kohler, H.-P. 2013. Disability transitions and health expectancies among adults 45 years and older in Malawi: a cohort-based model. PLoS Med. 10, e1001435 (doi:10.1371/journal.pmed.1001435).CrossRefGoogle ScholarPubMed
Bennett, R., Chepngeno-Langat, G., Evandrou, M., Falkingham, J. 2016. Gender differentials and old age survival in the Nairobi slums, Kenya. Soc. Sci. Med. 163, 107116 (doi:10.1016/j.socscimed.2016.07.002).CrossRefGoogle ScholarPubMed
Van Oyen, H., Nusselder, W., Jagger, C., Kolip, P., Cambois, E., Robine, J.-M. 2013. Gender differences in healthy life years within the EU: an exploration of the ‘health–survival’ paradox. Int. J. Public Health 58, 143155 (doi:10.1007/s00038-012-0361-1).CrossRefGoogle ScholarPubMed
Luy, M., Minagawa, Y. 2014. Gender gaps: life expectancy and proportion of life in poor health. Health Rep. 25, 1219.Google ScholarPubMed
Cambois, E., Duthé, G., Soura, A.B., Compaoré, Y. 2019. The patterns of disability in the peripheral neighborhoods of Ouagadougou, Burkina Faso, and the male–female health–survival paradox. Popul. Dev. Rev. 45, 835863 (doi:10.1111/padr.12294).CrossRefGoogle Scholar
World Health Organization. 2016. Burning Opportunity: Clean Household Energy for Health, Sustainable Development, and Wellbeing of Women and Children. World Health Organization.Google Scholar
Haddad, Z., Williams, K.N., Lewis, J.J., Prats, E.V., Adair-Rohani, H. 2021. Expanding data is critical to assessing gendered impacts of household energy use. BMJ 375, n2273 (doi:10.1136/bmj.n2273).CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×