Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T02:31:34.034Z Has data issue: false hasContentIssue false

5 - The Inevitability of Senescence

Published online by Cambridge University Press:  14 November 2024

Jean-François Lemaître
Affiliation:
Centre National de la Recherche Scientifique (CNRS)
Samuel Pavard
Affiliation:
National Museum of Natural History, Paris
Get access

Summary

Humans age. Domestic animals age. But is that true for all species? Is ageing a necessary consequence of evolution? Yes - for a long time, this was the undisputed answer of classic evolutionary theories of ageing. This chapter tells the story about how this paradigm of inevitable ageing has been challenged and refuted. Thanks to decades of monitoring individual survival and death across species in captivity and in the wild, researchers have been able to study patterns of the ageing process’s ultimate consequence - age trajectories of mortality. Though ageing is a complex, multiscale process, increasing mortality with age is, overall, indicative of a loss of functioning with age - senescence. Constant or declining mortality with adult age is indicative of maintained or improved functioning - negligible or negative senescence. Evidence supports that ageing patterns across the tree of life are diverse. Whether current evidence for negligible or negative senescence truly reflects an absence of senescence or just an absence of evidence is an open challenge. Similarly, why certain types of species show certain types of senescence patterns is an open research question. Future evolutionary theories of ageing will have to include trade-offs justified by structural arguments - genetic structure, physiological structure, social structure, ecological structure - to explain types of ageing patterns across types of species.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pearl, R. 1928. The Rate of Living. Knopf.Google Scholar
Finch, C.E. 1990. Longevity, Senescence, and the Genome. University of Chicago Press.Google Scholar
Graunt J., Benjamin B. 1964. John Graunt’s ‘Observations’. J. Inst. Actuar. 90, 161 (doi:10.1017/S002026810001564X).Google Scholar
Pearl, R., Miner, J.R. 1935. Experimental studies on the duration of life. XIV. The comparative mortality of certain lower organisms. Q. Rev. Biol. 10, 6079 (doi:10.1086/394476).CrossRefGoogle Scholar
Hase, A. 1909. Ueber die deutsche Suesswasser-Polypen Hydra Fusca L., Hydra grisea L., und Hydra viridis L. Arch. f. Rass.- u Gesellsch. Biol., 6, 721753.Google Scholar
Szabó, I., Szabó, M. 1929. Lebensdauer, Wach stum und Altern, studiert bei der Nackt schneckenart Agriolimax agrestis L. Biologia Generalis Bd. 5, 95118.Google Scholar
Bidder, G.P. 1932. Senescence. BMJ 115, 5831.Google Scholar
Calow, P. 1978. Bidder’s hypothesis revisited. GER 24, 448458 (doi:10.1159/000212285).Google ScholarPubMed
Medawar, P.B. 1981. The Uniqueness of the Individual, second revised edition. Dover Publications.Google Scholar
Finch, C.E. 1990. Longevity, Senescence, and the Genome. University of Chicago Press.Google Scholar
Finch, C.E. 1998. Variations in senescence and longevity include the possibility of negligible senescence. J. Geront.: Ser. A 53A, B235B239 (doi:10.1093/gerona/53A.4.B235).CrossRefGoogle Scholar
Finch, C.E., Pike, M.C., Witten, M. 1990. Slow mortality rate accelerations during aging in some animals approximate that of humans. Science 249, 902905.CrossRefGoogle ScholarPubMed
Martínez, D.E. 1998. Mortality patterns suggest lack of senescence in hydra. Exp. Geront. 33, 217225.CrossRefGoogle ScholarPubMed
Schaible, R., Scheuerlein, A., Dańko, M.J., Gampe, J., Martínez, D.E., Vaupel, J.W. 2015. Constant mortality and fertility over age in hydra. Proc. Nat. Acad. Sci. USA 112, 1570115706 (doi:10.1073/pnas.1521002112).CrossRefGoogle ScholarPubMed
Hamilton, W.D. 1966. The moulding of senescence by natural selection. J. Theor. Biol. 12, 1245 (doi:10.1016/0022-5193(66)90184-6).CrossRefGoogle ScholarPubMed
Roach, D.A., Gampe, J. 2004. Age-specific demography in plantago: uncovering age-dependent mortality in a natural population. Am. Nat. 164, 6069 (doi:10.1086/421301).CrossRefGoogle Scholar
Vaupel, J.W., Baudisch, A., Dölling, M., Roach, D.A., Gampe, J. 2004. The case for negative senescence. Theor. Popul. Biol. 65, 339351 (doi:10.1016/j.tpb.2003.12.003).CrossRefGoogle ScholarPubMed
Abrams, P.A. 1993. Does increased mortality favor the evolution of more rapid senescence? Evolution 47, 877887 (doi:10.1111/j.1558-5646.1993.tb01241.x).CrossRefGoogle ScholarPubMed
Bryant, M.J., Reznick, D., Rowe, A.E.L. 2004. Comparative studies of senescence in natural populations of guppies. Am. Nat. 163, 5568 (doi:10.1086/380650).CrossRefGoogle ScholarPubMed
Charmantier, A., Perrins, C., McCleery, R.H., Sheldon, B.C. 2006. Quantitative genetics of age at reproduction in wild swans: support for antagonistic pleiotropy models of senescence. PNAS 103, 65876592 (doi:10.1073/pnas.0511123103).CrossRefGoogle ScholarPubMed
Hendry, A.P., Morbey, Y.E., Berg, O.K., Wenburg, J.K. 2004. Adaptive variation in senescence: reproductive lifespan in a wild salmon population. Proc. Biol. Sci. 271, 259266.CrossRefGoogle Scholar
Williams, P.D., Day, T., Fletcher, Q., Rowe, L. 2006. The shaping of senescence in the wild. Trends Ecol. Evol. 21, 458463 (doi:10.1016/j.tree.2006.05.008).CrossRefGoogle ScholarPubMed
Williams, P.D., Day, T. 2003. Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence. Evolution 57, 14781488 (doi:10.1111/j.0014-3820.2003.tb00356.x).Google ScholarPubMed
Medawar, P.B. 1952. An Unsolved Problem of Biology. H.K. Lewis & Co. Ltd.Google Scholar
Monaghan, P., Charmantier, A., Nussey, D.H., Ricklefs, R.E. 2008. The evolutionary ecology of senescence. Func. Ecol. 22, 371378 (doi:10.1111/j.1365-2435.2008.01418.x).CrossRefGoogle Scholar
Nussey, D.H, Coulson, T., Festa-Bianchet, M., Gaillard, J.-M. 2008. Measuring senescence in wild animal populations: towards a longitudinal approach. Func. Ecol. 22, 393406.CrossRefGoogle Scholar
Jones, O.R. et al. 2008. Senescence rates are determined by ranking on the fast–slow life-history continuum. Ecol. Lett. 11, 664673 (doi:10.1111/j.1461-0248.2008.01187.x).CrossRefGoogle ScholarPubMed
Nussey, D.H., Froy, H., Lemaître, J.-F., Gaillard, J.-M., Austad, S.N. 2013. Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214225.CrossRefGoogle ScholarPubMed
Jones, O.R. et al. 2014. Diversity of ageing across the tree of life. Nature 505, 169173 (doi:10.1038/nature12789).CrossRefGoogle ScholarPubMed
Barks, P.M., Laird, R.A. 2015. Senescence in duckweed: age-related declines in survival, reproduction and offspring quality. Func. Ecol. 29, 540548 (doi:10.1111/1365-2435.12359).CrossRefGoogle Scholar
Barthold, J.A., Loveridge, A.J., Macdonald, D.W., Packer, C., Colchero, F. 2016. Bayesian estimates of male and female African lion mortality for future use in population management. J. App. Ecol. 53, 295304 (doi:10.1111/1365-2664.12594).CrossRefGoogle Scholar
Berger, V., Lemaître, J.-F., Dupont, P., Allainé, D., Gaillard, J.-M., Cohas, A. 2016. Age-specific survival in the socially monogamous Alpine marmot (Marmota marmota): evidence of senescence. J. Mammalogy 97, 9921000 (doi:10.1093/jmammal/gyw028).CrossRefGoogle Scholar
Bernard, C., Compagnoni, A., Salguero-Gómez, R. 2020. Testing Finchs hypothesis: the role of organismal modularity on the escape from actuarial senescence. Func. Ecol. 34, 88106 (doi:10.1111/1365-2435.13486).CrossRefGoogle Scholar
Bouwhuis, S., Vedder, O. 2017. Avian escape artists? Patterns, processes and costs of senescence in wild birds. In The Evolution of Senescence in the Tree of Life (eds Shefferson, R.P., Jones, O.R., Salguero-Gomez, R.), pp. 156174. Cambridge University Press (doi:10.1017/9781139939867.008).CrossRefGoogle Scholar
Gaillard, J.-M., Lemaître, J.-F. 2020. An integrative view of senescence in nature. Func. Ecol. 34, 416 (doi:10.1111/1365-2435.13506).CrossRefGoogle Scholar
Hoekstra, L.A., Schwartz, T.S., Sparkman, A.M., Miller, D.A.W., Bronikowski, A.M. 2020. The untapped potential of reptile biodiversity for understanding how and why animals age. Func. Ecol. 34, 3854 (doi:10.1111/1365-2435.13450).CrossRefGoogle ScholarPubMed
Roach, D.A., Smith, E.F. 2020. Life-history trade-offs and senescence in plants. Func. Ecol. 34, 1725 (doi:10.1111/1365-2435.13461).CrossRefGoogle Scholar
Zajitschek, F., Zajitschek, S., Bonduriansky, R. 2020. Senescence in wild insects: key questions and challenges. Func. Ecol. 34, 2637 (doi:10.1111/1365-2435.13399).CrossRefGoogle Scholar
Austad, S.N., Fischer, K.E. 1991. Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials. J. Geront. 46, B47B53 (doi:10.1093/geronj/46.2.B47).CrossRefGoogle ScholarPubMed
Speakman, J.R. 2005. Body size, energy metabolism and lifespan. J. Exp. Biol. 208, 17171730 (doi:10.1242/jeb.01556).CrossRefGoogle ScholarPubMed
West, G.B., Brown, J.H. 2005. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208, 15751592 (doi:10.1242/jeb.01589).CrossRefGoogle Scholar
Colchero, F. et al. 2016. The emergence of longevous populations. Proc. Nat. Acad. Sci. USA 113, E7681E7690 (doi:10.1073/pnas.1612191113).CrossRefGoogle ScholarPubMed
Vaupel, J.W. 2010. Biodemography of human ageing. Nature 464, 536542 (doi:10.1038/nature08984).CrossRefGoogle ScholarPubMed
Burger, O., Baudisch, A., Vaupel, J.W. 2012. Human mortality improvement in evolutionary context. PNAS 109, 1821018214 (doi:10.1073/pnas.1215627109).CrossRefGoogle ScholarPubMed
Colchero, F. et al. 2021. The long lives of primates and the ‘invariant rate of ageing’ hypothesis. Nat. Commun. 12, 3666 (doi:10.1038/s41467-021-23894-3).CrossRefGoogle Scholar
Stroustrup, N., Anthony, W.E., Nash, Z.M., Gowda, V., Gomez, A., López-Moyado, I.F., Apfeld, J., Fontana, W. 2016. The temporal scaling of Caenorhabditis elegans ageing. Nature 530, 103107 (doi:10.1038/nature16550).CrossRefGoogle ScholarPubMed
Kenyon, C., Chang, J., Gensch, E., Rudner, A., Tabtiang, R. 1993. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461464 (doi:10.1038/366461a0).CrossRefGoogle Scholar
Mair, W., Goymer, P., Pletcher, S.D., Partridge, L. 2003. Demography of dietary restriction and death in drosophila. Science 301, 17311733 (doi:10.1126/science.1086016).CrossRefGoogle ScholarPubMed
Carey, J.R., Liedo, P., Müller, H.-G., Wang, J.-L., Vaupel, J.W. 1998. Dual modes of aging in Mediterranean fruit fly females. Science 281, 996998 (doi:10.1126/science.281.5379.996).CrossRefGoogle ScholarPubMed
Purchase, C.F., Rooke, A.C., Gaudry, M.J., Treberg, J.R., Mittell, E.A., Morrissey, M.B., Rennie, M.D. 2022. A synthesis of senescence predictions for indeterminate growth, and support from multiple tests in wild lake trout. Proc. R. Soc. B: Biol. Sci. 289, 20212146 (doi:10.1098/rspb.2021.2146).CrossRefGoogle ScholarPubMed
Dammann, P. et al. 2019. Comment on ‘Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age’. eLife 8, e45415 (doi:10.7554/eLife.45415).CrossRefGoogle Scholar
Ruby, J.G., Smith, M., Buffenstein, R. 2018. Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age. eLife 7, e31157 (doi:10.7554/eLife.31157).CrossRefGoogle Scholar
Ruby, J.G., Smith, M., Buffenstein, R. 2019. Response to comment on ‘Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age’. eLife 8, e47047 (doi:10.7554/eLife.47047).CrossRefGoogle Scholar
Tully, T., Le Galliard, J.F., Baron, J.P. 2020. Micro-geographic shift between negligible and actuarial senescence in a wild snake. J. Anim. Ecol. 89, 27042716 (doi:10.1111/1365-2656.13317).CrossRefGoogle Scholar
Pearl, R. 1928. The Rate of Living. Alfred A. Knopf. http://archive.org/details/rateofliving031726mbp.Google Scholar
Schaible, R., Ringelhan, F., Kramer, B.H., Scheuerlein, A. 2017. Hydra: evolutionary and biological mechanisms for non-senescence. In The Evolution of Senescence in the Tree of Life (eds Shefferson, R.P., Jones, O.R., Salguero-Gomez, R.), pp. 238254. Cambridge University Press (doi:10.1017/9781139939867.012).CrossRefGoogle Scholar
Sun, S., White, R.R., Fischer, K.E., Zhang, Z., Austad, S.N., Vijg, J. 2020. Inducible aging in Hydra oligactis implicates sexual reproduction, loss of stem cells, and genome maintenance as major pathways. Geroscience 42, 11191132 (doi:10.1007/s11357-020-00214-z).CrossRefGoogle ScholarPubMed
Conde, D.A. et al. 2019. Data gaps and opportunities for comparative and conservation biology. PNAS 116, 96589664 (doi:10.1073/pnas.1816367116).CrossRefGoogle ScholarPubMed
DATLifeDatabase. 2019. DATLife – The Demography Across the Tree of Life – database. www.datlife.org.Google Scholar
Salguero-Gómez, R. et al. 2016. COMADRE: a global data base of animal demography. J. Anim. Ecol. 85, 371384 (doi:10.1111/1365-2656.12482).CrossRefGoogle ScholarPubMed
Salguero-Gómez, R. et al. 2015. The COMPADRE Plant Matrix Database: an open online repository for plant demography. J. Ecol. 103, 202218 (doi:10.1111/1365-2745.12334).CrossRefGoogle Scholar
Species360 Zoological Information Management System (ZIMS) (2020) www.Species360.org.Google Scholar
HFD (Human Fertility Database). www.humanfertility.org.Google Scholar
HMD (Human Mortality Database). www.mortality.org/.Google Scholar
Wang, T., Gao, X., Jakovlić, I., Liu, H.-Z. 2017. Life-tables and elasticity analyses of Yangtze River fish species with implications for conservation and management. Rev. Fish Biol. Fisheries 27, 255266 (doi:10.1007/s11160-016-9464-8).CrossRefGoogle Scholar
Jones, O.R., Vaupel, J.W. 2017. Senescence is not inevitable. Biogerontology 18, 965971 (doi:10.1007/s10522-017-9727-3).CrossRefGoogle Scholar
Baudisch, A., Vaupel, J.W. 2012. Getting to the root of aging. Science 338, 618619 (doi:10.1126/science.1226467).CrossRefGoogle Scholar
Nussey, D.H., Coulson, T., Festa-Bianchet, M., Gaillard, J.-M. 2008. Measuring senescence in wild animal populations: towards a longitudinal approach. Func. Ecol. 22, 393406 (doi:10.1111/j.1365-2435.2008.01408.x).CrossRefGoogle Scholar
Tacutu, R., Craig, T., Budovsky, A., Wuttke, D., Lehmann, G., Taranukha, D., Costa, J., Fraifeld, V.E., de Magalhães, J.P. 2013. Human ageing genomic resources: Integrated Databases and Tools for the Biology and Genetics of Ageing. Nucleic Acids Res. 41, D1027D1033 (doi:10.1093/nar/gks1155).CrossRefGoogle ScholarPubMed
Warner, D.A., Miller, D.A.W., Bronikowski, A.M., Janzen, F.J. 2016. Decades of field data reveal that turtles senesce in the wild. Proc. Nat. Acad. Sci. 113, 65026507 (doi:10.1073/pnas.1600035113).CrossRefGoogle ScholarPubMed
da Silva, R., Conde, D.A., Baudisch, A., Colchero, F. 2022. Slow and negligible senescence among Testudines challenges evolutionary theories of senescence. Science 376, 14661470.CrossRefGoogle ScholarPubMed
Reinke, B.A. et al. 2022. Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity. Science 376, 14591466 (doi:10.1126/science.abm0151).CrossRefGoogle ScholarPubMed
Austad, S.N., Finch, C.E. 2022. How ubiquitous is aging in vertebrates? Science 376, 13841385 (doi:10.1126/science.adc9442).CrossRefGoogle ScholarPubMed
Cayuela, H., Akani, G.C., Hema, E.M., Eniang, E.A., Amadi, N., Ajong, S.N., Dendi, D., Petrozzi, F., Luiselli, L. 2019. Life history and age-dependent mortality processes in tropical reptiles. Bio. J. Linn. Soc. 128, 251262 (doi:10.1093/biolinnean/blz103).Google Scholar
Kirkwood, T.B.L. 1977. Evolution of ageing. Nature 270, 301304 (doi:10.1038/270301a0).CrossRefGoogle ScholarPubMed
Altwegg, R., Schaub, M., Roulin, A. 2007. Age-specific fitness components and their temporal variation in the barn owl. Am. Nat. 169, 4761 (doi:10.1086/510215).CrossRefGoogle ScholarPubMed
Austad, S.N. 1997. Comparative aging and life histories in mammals. Exp. Geront. 32, 2338 (doi:10.1016/S0531-5565(96)00059-9).CrossRefGoogle ScholarPubMed
Baudisch, A. 2011. The pace and shape of ageing. Methods Ecol. Evol. 2, 375382 (doi:10.1111/j.2041-210X.2010.00087.x).CrossRefGoogle Scholar
Wrycza, T., Baudisch, A. 2014. The pace of aging: intrinsic time scales in demography. DemRes 30, 15711590 (doi:10.4054/DemRes.2014.30.57).CrossRefGoogle Scholar
Wrycza, T.F., Missov, T.I., Baudisch, A. 2015. Quantifying the shape of aging. PLoS ONE 10, e0119163 (doi:10.1371/journal.pone.0119163).CrossRefGoogle ScholarPubMed
Baudisch, A., Stott, I. 2019. A pace and shape perspective on fertility. Methods Ecol. Evol. 10, 19411951 (doi:10.1111/2041-210X.13289).CrossRefGoogle Scholar
Baudisch, A., Salguero‐Gómez, R., Jones, O.R., Wrycza, T., Mbeau‐Ache, C., Franco, M., Colchero, F. 2013. The pace and shape of senescence in angiosperms. J. Ecol. 101, 596606 (doi:10.1111/1365-2745.12084).CrossRefGoogle Scholar
Shefferson, R.P., Roach, D.A. 2013. Longitudinal analysis in plantago: strength of selection and reverse-age analysis reveal age-indeterminate senescence. J. Ecol. 101, 577584 (doi:10.1111/1365-2745.12079).CrossRefGoogle ScholarPubMed
Roach, D.A., Ridley, C.E., Dudycha, J.L. 2009. Longitudinal analysis of plantago: age-by-environment interactions reveal aging. Ecology 90, 14271433 (doi:10.1890/08-0981.1).CrossRefGoogle ScholarPubMed
Sauer, D.J., Heidinger, B.J., Kittilson, J.D., Lackmann, A.R., Clark, M.E. 2021. No evidence of physiological declines with age in an extremely long-lived fish. Sci. Rep. 11, 9065 (doi:10.1038/s41598-021-88626-5).CrossRefGoogle Scholar
Amir, Y., Insler, M., Giller, A., Gutman, D., Atzmon, G. 2020. Senescence and Longevity of Sea Urchins. Genes 11, 573 (doi:10.3390/genes11050573).CrossRefGoogle ScholarPubMed
Colchero, F., Schaible, R. 2014. Mortality as a bivariate function of age and size in indeterminate growers. Ecosphere 5, article 161 (doi:10.1890/ES14-00306.1).CrossRefGoogle Scholar
Vaupel, J.W., Manton, K.G., Stallard, E. 1979. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16, 439454 (doi:10.2307/2061224).CrossRefGoogle ScholarPubMed
Vaupel, J.W., Yashin, A.I. 1985. Heterogeneitys ruses: some surprising effects of selection on population dynamics. Am. Stat. 39, 176185 (doi:10.2307/2683925).CrossRefGoogle ScholarPubMed
Marzolin, G., Charmantier, A., Gimenez, O. 2011. Frailty in state-space models: application to actuarial senescence in the dipper. Ecology 92, 562567 (doi:10.1890/10-0306.1).CrossRefGoogle ScholarPubMed
Williams, G.C. 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398411 (doi:10.1111/j.1558-5646.1957.tb02911.x).CrossRefGoogle Scholar
Kirkwood, T.B.L., Rose, M.R., Harvey, P.H., Partridge, L., Southwood, S.R. 1991. Evolution of senescence: late survival sacrificed for reproduction. Philo. Trans. R. Soc. Lond. Ser. B: Bio. Sci. 332, 1524 (doi:10.1098/rstb.1991.0028).Google ScholarPubMed
Kirkwood, T.B.L., Austad, S.N. 2000. Why do we age? Nature 408, 233238 (doi:10.1038/35041682).CrossRefGoogle ScholarPubMed
Carlsson, H., Ivimey-Cook, E., Duxbury, E.M.L., Edden, N., Sales, K., Maklakov, A.A. 2021. Ageing as ‘early-life inertia’: disentangling life-history trade-offs along a lifetime of an individual. Evol. Lett. 5, 551564 (doi:10.1002/evl3.254).CrossRefGoogle ScholarPubMed
Maklakov, A.A., Chapman, T. 2019. Evolution of ageing as a tangle of trade-offs: energy versus function. Proc. Biol. Sci. 286, 20191604 (doi:10.1098/rspb.2019.1604).Google ScholarPubMed
McNamara, J.M., Houston, A.I. 1996. State-dependent life histories. Nature 380, 215221 (doi:10.1038/380215a0).CrossRefGoogle ScholarPubMed
Baudisch, A. 2008. An optimization model based on vitality. In Inevitable Aging?, pp. 75122. Springer.Google Scholar
Baudisch, A. 2012. Birds do it, bees do it, we do it: contributions of theoretical modelling to understanding the shape of ageing across the tree of life. GER 58, 481489 (doi:10.1159/000341861).Google Scholar
Vural, D.C., Morrison, G., Mahadevan, L. 2013. Increased network interdependency leads to aging. arXiv:1301.6375 [q-bio.PE].Google Scholar
Baudisch, A., Vaupel, J. 2010. Senescence vs. sustenance: evolutionary-demographic models of aging. DemRes 23, 655668 (doi:10.4054/DemRes.2010.23.23).CrossRefGoogle Scholar
Wensink, M.J., Wrycza, T.F., Baudisch, A. 2014. No senescence despite declining selection pressure: Hamiltons result in broader perspective. J. Theor. Biol. 347, 176181 (doi:10.1016/j.jtbi.2013.11.016).CrossRefGoogle ScholarPubMed
Seymour, R.M., Doncaster, C.P. 2007. Density dependence triggers runaway selection of reduced senescence. PLoS Com. Bio. 3, 25802589 (doi:10.1371/journal.pcbi.0030256).Google ScholarPubMed
Dańko, M.J., Kozłowski, J., Vaupel, J.W., Baudisch, A. 2012. Mutation accumulation may be a minor force in shaping life history traits. PLoS ONE 7, e34146 (doi:10.1371/journal.pone.0034146).CrossRefGoogle ScholarPubMed
Lotka, A.J. 1924. Elements of Mathematical Biology. Dover Publications. http://archive.org/details/in.ernet.dli.2015.458876.Google Scholar
Baudisch, A. 2005. Hamiltons indicators of the force of selection. Proc. Acad. Sci. USA 102, 82638268 (doi:10.1073/pnas.0502155102).CrossRefGoogle ScholarPubMed
Giaimo, S., Traulsen, A. 2022. The selection force weakens with age because ageing evolves and not vice versa. Nat. Commun. 13, 686 (doi:10.1038/s41467-022-28254-3).CrossRefGoogle Scholar
Caswell, H., Salguero-Gómez, R. 2013. Age, stage and senescence in plants. J. Ecol. 101, 585595 (doi:10.1111/1365-2745.12088).CrossRefGoogle ScholarPubMed
Roper, M., Capdevila, P., Salguero-Gómez, R. 2021. Senescence: why and where selection gradients might not decline with age. Proc. Biol. Sci. 288, 20210851 (doi:10.1098/rspb.2021.0851).Google Scholar
Baudisch, A. 2008. Inevitable Aging? Contributions to Evolutionary-Demographic Theory. Springer-Verlag (doi:10.1007/978-3-540-76656-8).Google Scholar
Wensink, M.J., Caswell, H., Baudisch, A. 2017. The rarity of survival to old age does not drive the evolution of senescence. Evol. Biol. 44, 510 (doi:10.1007/s11692-016-9385-4).CrossRefGoogle Scholar
Colchero, F. et al. 2016. The emergence of longevous populations. Proc. Nat. Acad. Sci. 113, E7681E7690.CrossRefGoogle ScholarPubMed
Kirkwood, T.B.L., Holliday, R., Maynard Smith, J., Holliday, R. 1979. The evolution of ageing and longevity. Proc. R. Soc. Lond. Ser. B. Bio. Sci. 205, 531546 (doi:10.1098/rspb.1979.0083).Google ScholarPubMed
Lucas, E., Keller, L. 2017. Explaining extraordinary life spans: the proximate and ultimate causes of differential life span in social insects. In The Evolution of Senescence in the Tree of Life (eds Shefferson, R.P., Jones, O.R., Salguero-Gomez, R.), pp. 198219. Cambridge University Press (doi:10.1017/9781139939867.010).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×