Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T10:36:31.052Z Has data issue: false hasContentIssue false

9 - Disrupted Circadian Rhythms and Neuroendocrine Function in Fertility

Published online by Cambridge University Press:  07 October 2023

Laura K. Fonken
Affiliation:
University of Texas, Austin
Randy J. Nelson
Affiliation:
West Virginia University
Get access

Summary

The physiological and mental impact of impaired fertility is recognized by the National Institute of Health, who identified fertility status as an overall marker of health. Reduced fertility is often linked with other physiological or genetic conditions, and precise alignment of physiological processes is essential to maintaining reproductive success. Reproductive function is closely linked with the circadian system, where studies in both humans and rodent research models have demonstrated that neuroendocrine mechanisms are sensitive to circadian disruption. Circadian rhythms throughout the body synchronize reproductive tissue function to the time of day by aligning hormone release with increased target tissue sensitivity to hormones. This chapter will review the current understanding of the neuroendocrine circuit regulating male and female fertility, and how light and genetic disruption of circadian rhythms impairs fertility.

Type
Chapter
Information
Biological Implications of Circadian Disruption
A Modern Health Challenge
, pp. 206 - 222
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, J. D., Hansen, A., Ord, T., Bebas, P., Chappell, P. E., Giebultowicz, J. M., Williams, C., Moss, S., & Sehgal, A. (2008). The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J Biol Rhythms, 23(1), 2636.Google Scholar
Bahougne, T., Kretz, M., Angelopoulou, E., Jeandidier, N., & Simonneaux, V. (2020). Impact of circadian disruption on female mice reproductive function. Endocrinology, 161(4), bqaa028.Google Scholar
Davis, S., Mirick, D. K., Chen, C., & Stanczyk, F. Z. (2012). Night shift work and hormone levels in women. Cancer Epidemiol Biomarkers Prev, 21(4), 609618.Google Scholar
Deng, N., Kohn, T. P., Lipshultz, L. I., & Pastuszak, A. W. (2018). The relationship between shift work and men’s health. Sex Med Rev, 6(3), 446456.CrossRefGoogle ScholarPubMed
Drake, C. L., & Wright, K. P. (2011). Shift work, shift-work disorder, and jet lag. In Kryger, M. H., Roth, T., & Dement, W. C. (eds.), Principles and practice of sleep medicine (5th ed., pp. 784798). Philadelphia: Elsevier.Google Scholar
Duong, T. V. Q., Yaw, A., Nguyen, D., & Hoffmann, H. M. (2021). The circadian clock gene Bmal1 modulates myometrium contractile function in pregnant mice. J Endocrine Soc, 5(Suppl_1), A754A755.Google Scholar
Esquirol, Y., Perret, B., Ruidavets, J. B., Marquie, J. C., Dienne, E., Niezborala, M., & Ferrieres, J. (2011). Shift work and cardiovascular risk factors: New knowledge from the past decade. Arch Cardiovasc Dis, 104(12), 636668.CrossRefGoogle ScholarPubMed
Fernandez, R. C., Marino, J. L., Varcoe, T. J., Davis, S., Moran, L. J., Rumbold, A. R., Brown, H. M., Whitrow, M. J., Davies, M. J., & Moore, V. M. (2016). Fixed or rotating night shift work undertaken by women: Implications for fertility and miscarriage. Semin Reprod Med, 34, 7482.Google ScholarPubMed
Fernandez, R. C., Moore, V. M., Marino, J. L., Whitrow, M. J., & Davies, M. J. (2020). Night shift among women: Is it associated with difficulty conceiving a first birth? Front Public Health, 8, 676.Google Scholar
Gan, Y., Yang, C., Tong, X., Sun, H., Cong, Y., Yin, X., Li, L., Cao, S., Dong, X., Gong, Y., Shi, O., Deng, J., Bi, H., & Lu, Z. (2015). Shift work and diabetes mellitus: A meta-analysis of observational studies. Occup Environ Med, 72(1), 7278.Google Scholar
Garde, A. H., Begtrup, L., Bjorvatn, B., Bonde, J. P., Hansen, J., Hansen, Å. M., Härmä, M., Jensen, M. A., Kecklund, G., Kolstad, H. A., Larsen, A. D., Lie, J. A., Moreno, C. R., Nabe-Nielsen, K., & Sallinen, M. (2020). How to schedule night shift work in order to reduce health and safety risks. Scand J Work Environ Health, 46(6), 557569.Google Scholar
Gómez-Acebo, I., Dierssen-Sotos, T., Papantoniou, K., García-Unzueta, M. T., Santos-Benito, M. F., & Llorca, J. (2015). Association between exposure to rotating night shift versus day shift using levels of 6-sulfatoxymelatonin and cortisol and other sex hormones in women. Chronobiol Int, 32(1), 128135.Google Scholar
Harding, B. N., Castaño-Vinyals, G., Palomar-Cros, A., Papantoniou, K., Espinosa, A., Skene, D. J., Middleton, B., Gomez-Gomez, A., Navarrete, J. M., Such, P., Torrejón, A., Kogevinas, M., & Pozo, O. J. (2022). Changes in melatonin and sex steroid hormone production among men as a result of rotating night shift work: The HORMONIT study. Scand J Work Environ Health, 48(1), 4151.CrossRefGoogle ScholarPubMed
Hoffmann, H. M., Meadows, J. D., Breuer, J. A., Yaw, A. M., Nguyen, D., Tonsfeldt, K. J., Chin, A. Y., Devries, B. M., Trang, C., Oosterhouse, H. J., Lee, J. S., Doser, J. W., Gorman, M. R., Welsh, D. K., & Mellon, P. L. (2021). The transcription factors SIX3 and VAX1 are required for suprachiasmatic nucleus circadian output and fertility in female mice. J Neurosci Res, 99(10), 26252645.Google Scholar
Li, C., & Zhou, X. (2015). Melatonin and male reproduction. Clin Chim Acta, 446, 175180.Google Scholar
Lin, Y.-C., Chen, M.-H., Hsieh, C.-J., & Chen, P.-C. (2011). Effect of rotating shift work on childbearing and birth weight: a study of women working in a semiconductor manufacturing factory. W J Pediat, 7(2), 129135.CrossRefGoogle Scholar
Mahoney, M. M. (2010). Shift work, jet lag, and female reproduction. Int J Endocrinol, 2010, 813764.CrossRefGoogle ScholarPubMed
Marino, J. L., Holt, V. L., Chen, C., & Davis, S. (2008). Shift work, hCLOCK T3111C polymorphism, and endometriosis risk. Epidemiology, 19(3), 477.Google Scholar
McCarthy, R. T., Jungheim, E. S., Fay, J. C., Bates, K., Herzog, E. D., & England, S. K. (2019). Riding the rhythm of melatonin through pregnancy to deliver on time. Front Endocrinol, 10, 616.Google Scholar
Mereness, A. L., Murphy, Z. C., Forrestel, A. C., Butler, S., Ko, C. M., Richards, J. A. S., & Sellix, M. T. (2016). Conditional deletion of Bmal1 in ovarian theca cells disrupts ovulation in female mice. Endocrinology, 157(2), 913927.Google Scholar
Michels, K. A., Mendola, P., Schliep, K. C., Yeung, E. H., Ye, A., Dunietz, G. L., Wactawski-Wende, J., Kim, K., Freeman, J. R., Schisterman, E. F., Schisterman, E. F., & Mumford, S. L. (2020). The influences of sleep duration, chronotype, and nightwork on the ovarian cycle. Chronobiol Int, 37(2), 260271.Google Scholar
Miller, B. H., Olson, S. L., Turek, F. W., Levine, J. E., Horton, T. H., & Takahashi, J. S. (2004). Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Curr Biol, 14(15), 13671373.Google Scholar
Mínguez-Alarcón, L., Souter, I., Williams, P. L., Ford, J. B., Hauser, R., Chavarro, J. E., & Gaskins, A. J. (2017). Occupational factors and markers of ovarian reserve and response among women at a fertility centre. Occupat Environ Med, 74(6), 426431.Google Scholar
Okada, H., Tsuzuki, T., & Murata, H. (2018). Decidualization of the human endometrium. Reprod Med Biol, 17(3), 220227.Google Scholar
Patel, A., Sharma, P., Kumar, P., & Binu, V. S. (2018). Sociocultural determinants of infertility stress in patients undergoing fertility treatments. J Hum Reprod Sci, 11(2), 172.Google Scholar
Pilorz, V., & Steinlechner, S. (2008). Low reproductive success in Per1 and Per2 mutant mouse females due to accelerated ageing? Reproduction, 135(4), 559568.Google Scholar
Prizant, H., Gleicher, N., & Sen, A. (2014). Androgen actions in the ovary: Balance is key. J Endocrinol, 222(3), R141R151.Google Scholar
Ratajczak, C. K., Asada, M., Allen, G. C., McMahon, D. G., Muglia, L. M., Smith, D., Bhattacharyya, S., & Muglia, L. J. (2012). Generation of myometrium-specific Bmal1 knockout mice for parturition analysis. Reprod Fertil Dev, 24(5), 759767.CrossRefGoogle ScholarPubMed
Ratajczak, C. K., Boehle, K. L., & Muglia, L. J. (2009). Impaired steroidogenesis and implantation failure in Bmal1 -/-mice. Endocrinology, 150(4), 18791885.Google Scholar
Schernhammer, E. S., Kroenke, C. H., Laden, F., & Hankinson, S. E. (2006). Night work and risk of breast cancer. Epidemiology, 17(1), 108111.Google Scholar
Schoeller, E. L., Clark, D. D., Dey, S., Cao, N. V., Semaan, S. J., Chao, L. W., Kauffman, A. S., Stowers, L., & Mellon, P. L. (2016). Bmal1 is required for normal reproductive behaviors in male mice. Endocrinology, 157(12), 49144929.CrossRefGoogle ScholarPubMed
Sen, A., & Hoffmann, H. M. H. M. (2020). Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis. Mol Cell Endocrinol, 501, 110655.Google Scholar
Tonsfeldt, K. J., Mellon, P. L., & Hoffmann, H. M. (2022). Circadian rhythms in the neuronal network timing the luteinizing hormone aurge. Endocrinology, 163(2), 110.CrossRefGoogle Scholar
Touitou, Y., Motohashi, Y., Reinberg, A., Touitou, C., Bourdeleau, P., Bogdan, A., & Auzéby, A. (1990). Effect of shift work on the night-time secretory patterns of melatonin, prolactin, cortisol and testosterone. Eur J Appl Physiol Occup Physiol, 60(4), 288292.Google Scholar
Voordouw, B. C., Euser, R., Verdonk, R. E., Alberda, B. T., de Jong, F. H., Drogendijk, A. C., Fauser, B. C., & Cohen, M. (1992). Melatonin and melatonin-progestin combinations alter pituitary-ovarian function in women and can inhibit ovulation. J Clin Endocrinol Metab, 74(1), 108117.Google ScholarPubMed
Wan, G., & Chung, F. (2012). Working conditions associated with ovarian cycle in a medical center nurses: A Taiwan study. Jap J Nursing Sci, 9(1), 112118.Google Scholar
Xu, Y., Wang, L., Cao, S., Hu, R., Liu, R., Hua, K., Guo, Z., Di, H.-J., & Hu, Z. (2020). Genipin improves reproductive health problems caused by circadian disruption in male mice. Reprod Biol Endocrinol, 18(1), 111.Google Scholar
Yaw, A. M., McLane-Svoboda, A. K., & Hoffmann, H. M. (2021). Shiftwork and light at night negatively impact molecular and endocrine timekeeping in the female reproductive axis in humans and rodents. Int J Mol Sci, 22(1), 128.Google Scholar
Zhou, G., Duong, T. V., Kasten, E. P., & Hoffmann, H. M. (2021). Low CLOCK and CRY2 in 2nd trimester human maternal blood and risk of preterm birth: A nested case-control study. Biol Reprod, 105(4), 827836.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×