Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T13:03:41.847Z Has data issue: false hasContentIssue false

11 - Disrupted Circadian Rhythms, Time Restricted Feeding, and Blood Pressure Regulation

Published online by Cambridge University Press:  07 October 2023

Laura K. Fonken
Affiliation:
University of Texas, Austin
Randy J. Nelson
Affiliation:
West Virginia University
Get access

Summary

Typical blood pressure (BP) manifests a circadian rhythm, which is often disrupted in hypertension, type 2 diabetes mellitus, kidney disease, and sleep apnea. Disrupted circadian rhythm of BP is emerging as an index for detrimental cardiovascular outcomes. Time-restricted feeding or eating (TRF or TRE) involves restraining the daily food intake time window to 4–12 hours, mostly during the active phase. In addition to the well-documented numerous metabolic benefits of active phase-TRF, emerging evidence indicates profound effects of active phase-TRF on BP circadian rhythm. This chapter reviews the evidence and the underlying mechanisms via which the timing of food intake profoundly affects BP circadian rhythm and briefly discusses the potential of active phase-TRF as a novel behavioral intervention to reduce cardiometabolic risk.

Type
Chapter
Information
Biological Implications of Circadian Disruption
A Modern Health Challenge
, pp. 238 - 255
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ando, H., Takamura, T., Matsuzawa-Nagata, N., Shima, K. R., Eto, T., Misu, H., Shiramoto, M., Tsuru, T., Irie, S., Fujimura, A., & Kaneko, S. (2009). Clock gene expression in peripheral leucocytes of patients with type 2 diabetes. Diabetologia, 52(2), 329335.Google Scholar
Ayala, D. E., Moyá, A., Crespo, J. J., Castiñeira, C., Domínguez-Sardiña, M., Gomara, S., Sineiro, E., Mojón, A., Fontao, M. J., Hermida, R. C., & Hygia Project Investigators (2013). Circadian pattern of ambulatory blood pressure in hypertensive patients with and without type 2 diabetes. Chronobiol Int, 30(1–2), 99115.CrossRefGoogle ScholarPubMed
Baudrie, V., Laude, D., & Elghozi, J. L. (2007). Optimal frequency ranges for extracting information on cardiovascular autonomic control from the blood pressure and pulse interval spectrograms in mice. Am J Physiol Regul Integr Comp Physiol, 292(2), R904R912.Google Scholar
Berg, C., Lappas, G., Wolk, A., Strandhagen, E., Torén, K., Rosengren, A., Thelle, D., & Lissner, L. (2009). Eating patterns and portion size associated with obesity in a Swedish population. Appetite, 52(1), 2126.Google Scholar
van den Buuse, M. (1999). Circadian rhythms of blood pressure and heart rate in conscious rats: Effects of light cycle shift and timed feeding. Physiol Behav, 68(1–2), 915.CrossRefGoogle ScholarPubMed
van den Buuse, M., & Malpas, S. C. (1997). 24-hour recordings of blood pressure, heart rate and behavioural activity in rabbits by radio-telemetry: Effects of feeding and hypertension. Physiol Behav, 62(1), 8389.Google Scholar
Chaix, A., Manoogian, E. N. C., Melkani, G. C., & Panda, S. (2019). Time-restricted eating to prevent and manage chronic metabolic diseases. Annu Rev Nutr, 39, 291315.CrossRefGoogle ScholarPubMed
Chang, L., Xiong, W., Zhao, X., Fan, Y., Guo, Y., Garcia-Barrio, M., Zhang, J., Jiang, Z., Lin, J. D., & Chen, Y. E. (2018). Bmal1 in perivascular adipose tissue regulates resting-phase blood pressure through transcriptional regulation of angiotensinogen. Circulation, 138(1), 6779.Google Scholar
Chen, H., Charlat, O., Tartaglia, L. A., Woolf, E. A., Weng, X., Ellis, S. J., Lakey, N. D., Culpepper, J., Moore, K. J., Breitbart, R. E., Duyk, G. M., Tepper, R. I., & Morgenstern, J. P. (1996). Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell, 84(3), 491495.Google Scholar
Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. (2018). IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract, 138, 271281.Google Scholar
Cohen, M. C., Rohtla, K. M., Lavery, C. E., Muller, J. E., & Mittleman, M. A. (1997). Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. Am J Cardiol, 79(11), 15121516.Google Scholar
Coote, J. H., Hilton, S. M., & Perez-Gonzalez, J. F. (1971). The reflex nature of the pressor response to muscular exercise. J Physiol, 215(3), 789804.Google Scholar
Costello, H. M., & Gumz, M. L. (2021). Circadian rhythm, clock genes, and hypertension: Recent advances in hypertension. Hypertension, 78(5), 11851196.Google Scholar
Cowley, A. W. Jr., Liard, J. F., & Guyton, A. C. (1973). Role of baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circ Res, 32(5), 564576.CrossRefGoogle ScholarPubMed
Crislip, G. R., Douma, L. G., Masten, S. H., Cheng, K. Y., Lynch, I. J., Johnston, J. G., Barral, D., Glasford, K. B., Holzworth, M. R., Verlander, J. W., Wingo, C. S., & Gumz, M. L. (2020). Differences in renal BMAL1 contribution to Na(+) homeostasis and blood pressure control in male and female mice. Am J Physiol Renal Physiol, 318(6), F1463F1477.Google Scholar
Cugini, P., Murano, G., Lucia, P., Letizia, C., Scavo, D., Halberg, F., Cornelissen, G., & Sothern, R. B. (1985). Circadian rhythms of plasma renin activity and aldosterone: Changes related to age, sex, recumbency and sodium restriction. Chronobiologic specification for reference values. Chronobiol Int, 2(4), 267276.Google Scholar
Cugini, P., Scavo, D., Halberg, F., Sothern, R. B., Cornelissen, G., Meucci, T., Salandi, E., & Massimiani, F. (1981). Ageing and circadian rhythm of plasma renin and aldosterone. Maturitas, 3(2), 173182.Google Scholar
Cui, H., Kohsaka, A., Waki, H., Bhuiyan, M. E., Gouraud, S. S., & Maeda, M. (2011). Metabolic cycles are linked to the cardiovascular diurnal rhythm in rats with essential hypertension. PLoS One, 6(2), e17339.CrossRefGoogle Scholar
Curtis, A.M., Cheng, Y., Kapoor, S., Reilly, D., Price, T. S., & Fitzgerald, G. A. (2007). Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc Natl Acad Sci USA, 104(9), 34503455.Google Scholar
Cuspidi, C., Sala, C., Tadic, M., Gherbesi, E., De Giorgi, A., Grassi, G., & Mancia, G. (2017). Clinical and prognostic significance of a reverse dipping pattern on ambulatory monitoring: An updated review. J Clin Hypertens (Greenwich), 19(7), 713721.Google Scholar
Diedrich, A., Jordan, J., Tank, J., Shannon, J. R., Robertson, R., Luft, F. C., Robertson, D., & Biaggioni, I. (2003). The sympathetic nervous system in hypertension: Assessment by blood pressure variability and ganglionic blockade. J Hypertens, 21(9), 16771686.CrossRefGoogle ScholarPubMed
Doi, M., Takahashi, Y., Komatsu, R., Yamazaki, F., Yamada, H., Haraguchi, S., Emoto, N., Okuno, Y., Tsujimoto, G., Kanematsu, A., Ogawa, O., Todo, T., Tsutsui, K., van der Horst, G. T., & Okamura, H. (2010). Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat Med, 16(1), 6774.Google Scholar
Douma, L. G., & Gumz, M. L. (2018). Circadian clock-mediated regulation of blood pressure. Free Radic Biol Med, 119, 108114.CrossRefGoogle ScholarPubMed
Douma, L. G., Solocinski, K., Holzworth, M. R., Crislip, G. R., Masten, S. H., Miller, A. H., Cheng, K. Y., Lynch, I. J., Cain, B. D., Wingo, C. S., & Gumz, M. L. (2019). Female C57BL/6J mice lacking the circadian clock protein PER1 are protected from nondipping hypertension. Am J Physiol Regul Integr Comp Physiol, 316(1), R50R58.Google Scholar
Equiluz-Bruck, S., Schnack, C., Kopp, H. P., & Schernthaner, G. (1996). Nondipping of nocturnal blood pressure is related to urinary albumin excretion rate in patients with type 2 diabetes mellitus. Am J Hypertens, 9(11), 11391143.Google Scholar
Fagard, R. H., Thijs, L., Staessen, J. A., Clement, D. L., De Buyzere, M. L., & De Bacquer, D. A. (2009). Night-day blood pressure ratio and dipping pattern as predictors of death and cardiovascular events in hypertension. J Hum Hypertens, 23(10), 645653.Google Scholar
Funato, Y., Yamazaki, D., Okuzaki, D., Yamamoto, N., & Miki, H. (2021). Importance of the renal ion channel TRPM6 in the circadian secretion of renin to raise blood pressure. Nat Commun, 12(1), 3683.Google Scholar
Furlan, R., Guzzetti, S., Crivellaro, W., Dassi, S., Tinelli, M., Baselli, G., Cerutti, S., Lombardi, F., Pagani, M., & Malliani, A. (1990). Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation, 81(2), 537547.CrossRefGoogle ScholarPubMed
Gill, S., & Panda, S. (2015). A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab, 22(5), 789798.Google Scholar
Goldberg, L., Bar-Aluma, B. E., Krauthammer, A., Efrati, O., & Sharabi, Y. (2018). Ambulatory blood pressure profiles in familial dysautonomia. Clin Auton Res, 28(4), 385390.Google Scholar
Goncalves, A. C., Tank, J., Diedrich, A., Hilzendeger, A., Plehm, R., Bader, M., Luft, F. C., Jordan, J., & Gross, V. (2009). Diabetic hypertensive leptin receptor-deficient db/db mice develop cardioregulatory autonomic dysfunction. Hypertension, 53(2), 387392.Google Scholar
Gordon, C. R., & Lavie, P. (1985). Day-night variations in urine excretions and hormones in dogs: Role of autonomic innervation. Physiol Behav, 35(2), 175181.CrossRefGoogle ScholarPubMed
Grassi, G., Bombelli, M., Seravalle, G., Dell’Oro, R., & Quarti-Trevano, F. (2010). Diurnal blood pressure variation and sympathetic activity. Hypertens Res, 33(5), 381385.Google Scholar
Grosbellet, E., Dumont, S., Schuster-Klein, C., Guardiola-Lemaitre, B., Pevet, P., Criscuolo, F., & Challet, E. (2015). Leptin modulates the daily rhythmicity of blood glucose. Chronobiol Int, 32(5), 637649.Google Scholar
Henry, R., Casto, R., & Printz, M. P. (1990). Diurnal cardiovascular patterns in spontaneously hypertensive and Wistar-Kyoto rats. Hypertension, 16(4), 422428.CrossRefGoogle ScholarPubMed
Hou, T., Guo, Z., & Gong, M. C. (2021). Circadian variations of vasoconstriction and blood pressure in physiology and diabetes. Curr Opin Pharmacol, 57, 125131.Google Scholar
Hou, T., Su, W., Duncan, M. J., Olga, V. A., Guo, Z., & Gong, M. C. (2021). Time-restricted feeding protects the blood pressure circadian rhythm in diabetic mice. Proc Natl Acad Sci USA, 118(25), e2015873118.Google Scholar
Hou, T., Su, W., Guo, Z., & Gong, M. C. (2019). A novel diabetic mouse model for real-time monitoring of clock gene oscillation and blood pressure circadian rhythm. J Biol Rhythms, 34(1), 5168.Google Scholar
Hou, T., Wang, C., Joshi, S., O’Hara, B. F., Gong, M. C., & Guo, Z. (2019). Active time-restricted feeding improved sleep–wake cycle in db/db mice. Front Neurosci, 13, 969.CrossRefGoogle ScholarPubMed
Kalsbeek, A., Perreau-Lenz, S., & Buijs, R. M. (2006). A network of (autonomic) clock outputs. Chronobiol Int, 23(3), 521535.Google Scholar
Kanbay, M., Turgut, F., Uyar, M. E., Akcay, A., & Covic, A. (2008). Causes and mechanisms of nondipping hypertension. Clin Exp Hypertens, 30(7), 585597.Google Scholar
Kario, K., Mitsuhashi, T., & Shimada, K. (2002). Neurohumoral characteristics of older hypertensive patients with abnormal nocturnal blood pressure dipping. Am J Hypertens, 15(6), 531537.Google Scholar
Katayama, T., Sueta, D., Kataoka, K., Hasegawa, Y., Koibuchi, N., Toyama, K., Uekawa, K., Mingjie, M., Nakagawa, T., Maeda, M., Ogawa, H., & Kim-Mitsuyama, S. (2013). Long-term renal denervation normalizes disrupted blood pressure circadian rhythm and ameliorates cardiovascular injury in a rat model of metabolic syndrome. J Am Heart Assoc, 2(4), e000197.CrossRefGoogle Scholar
Kaufman, M. P., & Hayes, S. G. (2002). The exercise pressor reflex. Clin Auton Res, 12(6), 429439.CrossRefGoogle ScholarPubMed
Kudo, T., Akiyama, M., Kuriyama, K., Sudo, M., Moriya, T., & Shibata, S. (2004). Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver. Diabetologia, 47(8), 14251436.Google Scholar
Kutsuma, A., Nakajima, K., & Suwa, K. (2014). Potential association between breakfast skipping and concomitant late-night-dinner eating with metabolic syndrome and proteinuria in the Japanese population. Scientifica (Cairo), 2014, 253581.Google Scholar
Lemmer, B., Witte, K., Schänzer, A., & Findeisen, A. (2000). Circadian rhythms in the renin-angiotensin system and adrenal steroids may contribute to the inverse blood pressure rhythm in hypertensive TGR(mREN-2)27 rats. Chronobiol Int, 17(5), 645658.Google Scholar
Longhurst, J. C., Spilker, H. L., & Ordway, G. A. (1981). Cardiovascular reflexes elicited by passive gastric distension in anesthetized cats. Am J Physiol, 240(4), H539H545.Google ScholarPubMed
Lowden, A., Moreno, C., Holmbäck, U., Lennernäs, M., & Tucker, P. (2010). Eating and shift work: Effects on habits, metabolism and performance. Scand J Work Environ Health, 36(2), 150162.CrossRefGoogle ScholarPubMed
Mager, D.E., Wan, R., Brown, M., Cheng, A., Wareski, P., Abernethy, D. R., & Mattson, M. P. (2006). Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats. FASEB J, 20(6), 631637.Google Scholar
Makarem, N., Shechter, A., Carnethon, M. R., Mullington, J. M., Hall, M. H., & Abdalla, M. (2019). Sleep duration and blood pressure: Recent advances and future directions. Curr Hypertens Rep, 21(5), 33.Google Scholar
Mann, S., Altman, D. G., Raftery, E. B., & Bannister, R. (1983). Circadian variation of blood pressure in autonomic failure. Circulation, 68(3), 477483.Google Scholar
Melkani, G. C., & Panda, S. (2017). Time-restricted feeding for prevention and treatment of cardiometabolic disorders. J Physiol, 595(12), 36913700.Google Scholar
Millar-Craig, M. W., Bishop, C. N., & Raftery, E. B. (1978). Circadian variation of blood-pressure. Lancet, 1(8068), 795797.Google Scholar
Mochel, J. P., & Danhof, M. (2015). Chronobiology and pharmacologic modulation of the renin-angiotensin-aldosterone system in dogs: What have we learned? Rev Physiol Biochem Pharmacol, 169, 4369.Google Scholar
Mochel, J. P., Fink, M., Bon, C., Peyrou, M., Bieth, B., Desevaux, C., Deurinck, M., Giraudel, J. M., & Danhof, M. (2014). Influence of feeding schedules on the chronobiology of renin activity, urinary electrolytes and blood pressure in dogs. Chronobiol Int, 31(5), 715730.Google Scholar
Moon, S., Kang, J., Kim, S. H., Chung, H. S., Kim, Y. J., Yu, J. M., Cho, S. T., Oh, C. M., & Kim, T. (2020). Beneficial effects of time-restricted eating on metabolic diseases: A systemic review and meta-analysis. Nutrients, 12(5), 1267.Google Scholar
Morse, S. A., Ciechanowski, P. S., Katon, W. J., & Hirsch, I. B. (2006). Isn’t this just bedtime snacking? The potential adverse effects of night-eating symptoms on treatment adherence and outcomes in patients with diabetes. Diabetes Care, 29(8), 18001804.Google Scholar
Mossavar-Rahmani, Y., Weng, J., Wang, R., Shaw, P. A., Jung, M., Sotres-Alvarez, D., Castañeda, S. F., Gallo, L. C., Gellman, M. D., Qi, Q., Ramos, A. R., Reid, K. J., Van Horn, L., & Patel, S. R. (2017). Actigraphic sleep measures and diet quality in the Hispanic Community Health Study/Study of Latinos Sueno ancillary study. J Sleep Res, 26(6), 739746.Google Scholar
Mota, M. C., Silva, C. M., Balieiro, L. C. T., Gonçalves, B. F., Fahmy, W. M., & Crispim, C. A. (2019). Association between social jetlag food consumption and meal times in patients with obesity-related chronic diseases. PLoS One, 14(2), e0212126.Google Scholar
Oh, S. W., Han, S. Y., Han, K. H., Cha, R. H., Kim, S., Yoon, S. A., Rhu, D. R., Oh, J., Lee, E. Y., Kim, D. K., Kim, Y. S., & APrODiTe investigators (2015). Morning hypertension and night non-dipping in patients with diabetes and chronic kidney disease. Hypertens Res, 38(12), 889894.Google Scholar
Panda, S. (2016). Circadian physiology of metabolism. Science, 354(6315), 10081015.CrossRefGoogle ScholarPubMed
Park, S., Bivona, B. J., Feng, Y., Lazartigues, E., & Harrison-Bernard, L. M. (2008). Intact renal afferent arteriolar autoregulatory responsiveness in db/db mice. Am J Physiol Renal Physiol, 295(5), F1504F1511.Google Scholar
Pati, P., Valcin, J. A., Zhang, D., Neder, T. H., Millender-Swain, T., Allan, J. M., Sedaka, R., Jin, C., Becker, B. K., Pollock, D. M., Bailey, S. M., & Pollock, J. S. (2021). Liver circadian clock disruption alters perivascular adipose tissue gene expression and aortic function in mice. Am J Physiol Regul Integr Comp Physiol, 320(6), R960R971.Google Scholar
Pickel, L., & Sung, H. K. (2020). Feeding rhythms and the circadian regulation of metabolism. Front Nutr, 7, 39.Google Scholar
Pistrosch, F., Reissmann, E., Wildbrett, J., Koehler, C., & Hanefeld, M. (2007). Relationship between diurnal blood pressure variation and diurnal blood glucose levels in type 2 diabetic patients. Am J Hypertens, 20(5), 541545.Google Scholar
Prasad, M., Fine, K., Gee, A., Nair, N., Popp, C. J., Cheng, B., Manoogian, E. N. C., Panda, S., & Laferrère, B. (2021). A smartphone intervention to promote time restricted eating reduces body weight and blood pressure in adults with overweight and obesity: A pilot study. Nutrients, 13(7), 2148.CrossRefGoogle ScholarPubMed
Qin, L.Q., Li, J., Wang, Y., Wang, J., Xu, J. Y., & Kaneko, T. (2003). The effects of nocturnal life on endocrine circadian patterns in healthy adults. Life Sci, 73(19), 24672475.Google Scholar
Reinhardt, H. W., Seeliger, E., Lohmann, K., Corea, M., & Boemke, W. (1996). Changes of blood pressure, sodium excretion and sodium balance due to variations of the renin-angiotensin-aldosterone system. J Auton Nerv Syst, 57(3), 184187.Google Scholar
Rothschild, J., Hoddy, K. K., Jambazian, P., & Varady, K. A. (2014). Time-restricted feeding and risk of metabolic disease: A review of human and animal studies. Nutr Rev, 72(5), 308318.Google Scholar
Routledge, F. S., McFetridge-Durdle, J. A., Dean, C. R., & Canadian Hypertension Society (2007). Night-time blood pressure patterns and target organ damage: A review. Can J Cardiol, 23(2), 132138.Google Scholar
Rudic, R. D., & Fulton, D. J. (2009). Pressed for time: The circadian clock and hypertension. J Appl Physiol, 107(4), 13281338.CrossRefGoogle ScholarPubMed
Salles, G. F., Reboldi, G., Fagard, R. H., Cardoso, C. R., Pierdomenico, S. D., Verdecchia, P., Eguchi, K., Kario, K., Hoshide, S., Polonia, J., de la Sierra, A., Hermida, R. C., Dolan, E., O’Brien, E., Roush, G. C., & ABC-H Investigators (2016). Prognostic effect of the nocturnal blood pressure fall in hypertensive patients: The ambulatory blood pressure collaboration in patients with hypertension (ABC-H) meta-analysis. Hypertension, 67(4), 693700.Google Scholar
Sherwood, A., Steffen, P. R., Blumenthal, J. A., Kuhn, C., & Hinderliter, A. L. (2002). Nighttime blood pressure dipping: The role of the sympathetic nervous system. Am J Hypertens, 15(2 Pt 1), 111118.CrossRefGoogle ScholarPubMed
Sladek, M., Polidarová, L., Nováková, M., Parkanová, D., & Sumová, A. (2012). Early chronotype and tissue-specific alterations of circadian clock function in spontaneously hypertensive rats. PLoS One, 7(10), e46951.Google Scholar
Smolensky, M. H., Hermida, R. C., Castriotta, R. J., & Portaluppi, F. (2007). Role of sleep–wake cycle on blood pressure circadian rhythms and hypertension. Sleep Med, 8(6), 668680.Google Scholar
Solocinski, K., Holzworth, M., Wen, X., Cheng, K. Y., Lynch, I. J., Cain, B. D., Wingo, C. S., & Gumz, M. L. (2017). Desoxycorticosterone pivalate-salt treatment leads to non-dipping hypertension in Per1 knockout mice. Acta Physiol (Oxf), 220(1), 7282.Google Scholar
St-Onge, M. P., Ard, J., Baskin, M. L., Chiuve, S. E., Johnson, H. M., Kris-Etherton, P., Varady, K., American Heart Association Obesity Committee of the Council on Lifestyle and Cardiometabolic Health, Council on Cardiovascular Disease in the Young, Council on Clinical Cardiology, & Stroke Council (2017). Meal timing and frequency: Implications for cardiovascular disease prevention: A scientific statement from the American Heart Association. Circulation, 135(9), e96e121.Google Scholar
Stow, L. R., Richards, J., Cheng, K. Y., Lynch, I. J., Jeffers, L. A., Greenlee, M. M., Cain, B. D., Wingo, C. S., & Gumz, M. L. (2012). The circadian protein period 1 contributes to blood pressure control and coordinately regulates renal sodium transport genes. Hypertension, 59(6), 11511156.Google Scholar
Su, W., Guo, Z., Randall, D. C., Cassis, L., Brown, D. R., & Gong, M. C. (2008). Hypertension and disrupted blood pressure circadian rhythm in type 2 diabetic db/db mice. Am J Physiol Heart Circ Physiol, 295(4), H1634H1641.Google Scholar
Su, W., Xie, Z., Guo, Z., Duncan, M. J., Lutshumba, J., & Gong, M. C. (2012). Altered clock gene expression and vascular smooth muscle diurnal contractile variations in type 2 diabetic db/db mice. Am J Physiol Heart Circ Physiol, 302(3), H621H633.Google Scholar
Sunderram, J., Sofou, S., Kamisoglu, K., Karantza, V., & Androulakis, I. P. (2014). Time-restricted feeding and the realignment of biological rhythms: translational opportunities and challenges. J Transl Med, 12, 79.Google Scholar
Sutton, E. F., Beyl, R., Early, K. S., Cefalu, W. T., Ravussin, E., & Peterson, C. M. (2018). Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab, 27(6), 12121221 e3.Google Scholar
Takaya, K., Ogawa, Y., Hiraoka, J., Hosoda, K., Yamori, Y., Nakao, K., & Koletsky, R. J. (1996). Nonsense mutation of leptin receptor in the obese spontaneously hypertensive Koletsky rat. Nature Genetics, 14(2), 130131.Google Scholar
Tanaka, S., Ueno, T., Tsunemi, A., Nagura, C., Tahira, K., Fukuda, N., Soma, M., & Abe, M. (2019). The adrenal gland circadian clock exhibits a distinct phase advance in spontaneously hypertensive rats. Hypertens Res, 42(2), 165173.Google Scholar
Thireau, J., Zhang, B. L., Poisson, D., & Babuty, D. (2008). Heart rate variability in mice: a theoretical and practical guide. Exp Physiol, 93(1), 8394.Google Scholar
Tokonami, N., Mordasini, D., Pradervand, S., Centeno, G., Jouffe, C., Maillard, M., Bonny, O., Gachon, F., Gomez, R. A., Sequeira-Lopez, M. L., & Firsov, D. (2014). Local renal circadian clocks control fluid-electrolyte homeostasis and BP. J Am Soc Nephrol, 25(7), 14301439.Google Scholar
Vukolic, A., Antic, V., Van Vliet, B. N., Yang, Z., Albrecht, U., & Montani, J. P. (2010). Role of mutation of the circadian clock gene Per2 in cardiovascular circadian rhythms. Am J Physiol Regul Integr Comp Physiol, 298(3), R627R634.CrossRefGoogle ScholarPubMed
Wang, J. B., Patterson, R. E., Ang, A., Emond, J. A., Shetty, N., & Arab, L. (2014). Timing of energy intake during the day is associated with the risk of obesity in adults. J Hum Nutr Diet, 27(Suppl 2), 255262.Google Scholar
Waterhouse, J., Buckley, P., Edwards, B., & Reilly, T. (2003). Measurement of, and some reasons for, differences in eating habits between night and day workers. Chronobiol Int, 20(6), 10751092.Google Scholar
Westgate, E. J., Cheng, Y., Reilly, D. F., Price, T. S., Walisser, J. A., Bradfield, C. A., & FitzGerald, G. A. (2008). Genetic components of the circadian clock regulate thrombogenesis in vivo. Circulation, 117(16), 20872095.Google Scholar
Wilkinson, M. J., Manoogian, E. N. C., Zadourian, A., Lo, H., Fakhouri, S., Shoghi, A., Wang, X., Fleischer, J. G., Navlakha, S., Panda, S., & Taub, P. R. (2020). Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab, 31(1), 92104 e5.Google Scholar
Xie, Z., Su, W., Liu, S., Zhao, G., Esser, K., Schroder, E. A., Lefta, M., Stauss, H. M., Guo, Z., & Gong, M. C. (2015). Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation. J Clin Invest, 125(1), 324336.CrossRefGoogle ScholarPubMed
Xin, H., Deng, F., Zhou, M., Huang, R., Ma, X., Tian, H., Tan, Y., Chen, X., Deng, D., Shui, G., Zhang, Z., & Li, M. D. (2021). A multi-tissue multi-omics analysis reveals distinct kinetics in entrainment of diurnal transcriptomes by inverted feeding. iScience, 24(4), 102335.Google Scholar
Yang, G., Chen, L., Grant, G. R., Paschos, G., Song, W. L., Musiek, E. S., Lee, V., McLoughlin, S. C., Grosser, T., Cotsarelis, G., & FitzGerald, G. A. (2016). Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. Sci Transl Med, 8(324), 324ra16.Google Scholar
Young, J. B., & Landsberg, L. (1977). Suppression of sympathetic nervous system during fasting. Science, 196(4297), 14731475.Google Scholar
Zeb, F., Wu, X., Fatima, S., Zaman, M. H., Khan, S. A., Safdar, M., Alam, I., & Feng, Q. (2021). Time-restricted feeding regulates molecular mechanisms with involvement of circadian rhythm to prevent metabolic diseases. Nutrition, 89, 111244.Google Scholar
Zhang, D., Colson, J. C., Jin, C., Becker, B. K., Rhoads, M. K., Pati, P., Neder, T. H., King, M. A., Valcin, J. A., Tao, B., Kasztan, M., Paul, J. R., Bailey, S. M., Pollock, J. S., Gamble, K. L., & Pollock, D. M. (2021). Timing of food intake drives the circadian rhythm of blood pressure. Function (Oxf), 2(1), zqaa034.Google Scholar
Zhang, D., Jin, C., Obi, I. E., Rhoads, M. K., Soliman, R. H., Sedaka, R. S., Allan, J. M., Tao, B., Speed, J. S., Pollock, J. S., & Pollock, D. M. (2020). Loss of circadian gene Bmal1 in the collecting duct lowers blood pressure in male, but not female, mice. Am J Physiol Renal Physiol, 318(3), F710F719.Google Scholar
Zimmet, P., Alberti, K. G. M. M., Stern, N., Bilu, C., El-Osta, A., Einat, H., & Kronfeld-Schor, N. (2019). The circadian syndrome: Is the metabolic syndrome and much more! J Intern Med, 286(2), 181191.CrossRefGoogle ScholarPubMed
Zuber, A. M., Centeno, G., Pradervand, S., Nikolaeva, S., Maquelin, L., Cardinaux, L., Bonny, O., & Firsov, D. (2009). Molecular clock is involved in predictive circadian adjustment of renal function. Proc Natl Acad Sci USA, 106(38), 1652316528.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×