Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T20:46:02.545Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  30 September 2019

Giuseppe Fusco
Affiliation:
Università degli Studi di Padova, Italy
Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aanen, D., Beekman, M. & Kokko, H. (eds.) (2016). Weird sex: the underappreciated diversity of sexual reproduction. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371 (1706).Google Scholar
Abbott, J. K., Norde, A. K. & Hansson, B. (2017). Sex chromosome evolution: historical insights and future perspectives. Proceedings of the Royal Society of London. Series B, Biological Sciences, 284: 20162806.Google Scholar
Ackermann, M., Stearns, S. & Jenal, U. (2003). Senescence in a bacterium with asymmetric division. Science, 300: 1920.Google Scholar
Adamson, M. & Ludwig, D. (1993). Oedipal mating as a factor in sex allocation in haplodiploids. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 341: 195202.Google Scholar
Adamson, M. L. (1989). Evolutionary biology of the Oxyurida (Nematoda): biofacies of a haplodiploid taxon. Advances in Parasitology, 28: 175228.Google Scholar
Adler, L. & Jarms, G. (2009). New insights into reproductive traits of scyphozoans: special methods of propagation in Sanderia malayensis Goette, 1886 (Pelagiidae, Semaeostomeae) enable establishing a new classification of asexual reproduction in the class Scyphozoa. Marine Biology, 156: 14111420.Google Scholar
Adolfsson, S., Michalakis, Y., Paczesniak, D. et al. (2010). Evaluation of elevated ploidy and asexual reproduction as alternative explanations for geographic parthenogenesis in Eucypris virens ostracods. Evolution, 64: 986997.Google Scholar
Agrawal, A. F. (2001). Sexual selection and the maintenance of sexual reproduction. Nature, 411: 692695.Google Scholar
Agrawal, S. C. (2012). Factors controlling induction of reproduction in algae – review: the text. Folia Microbiologica, 57: 387407.Google Scholar
Aisenberg, A. & Peretti, A. V. (2011). Sexual dimorphism in immune response, fat reserve and muscle mass in a sex role reversed spider. Zoology, 114: 272275.Google Scholar
Ajzenberg, D., Bañuls, A. L., Su, C. et al. (2004). Genetic diversity, clonality and sexuality in Toxoplasma gondii. International Journal of Parasitology, 34: 11851196.Google Scholar
Alberts, B., Johnson, A., Lewis, J. et al. (2015). Molecular Biology of the Cell, 6th edn. New York, NY: Garland Science.Google Scholar
Alby, K., Schaefer, D. & Bennett, R. J. (2009). Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature, 460: 890893.Google Scholar
Alcock, J. (2013). Animal Behavior: an Evolutionary Approach, 10th edn. Sunderland, MA: Sinauer Associates.Google Scholar
Andrade, M. C. B. (1996). Sexual selection for male sacrifice in the Australian redback spider. Science, 271: 7072.Google Scholar
Archibald, J. M., Simpson, A. G. B. & Slamovits, C. H. (eds.) (2017). Handbook of the Protists. Cham: Springer International.Google Scholar
Arnold, A. P. (2012). The end of gonad-centric sex determination in mammals. Trends in Genetics, 28: 5561.Google Scholar
Aron, S., de Menten, L., Van Bockstaele, D. R., Blank, S. M. & Roisin, Y. (2005). When hymenopteran males reinvented diploidy. Current Biology, 15: 824827.Google Scholar
Arroyo, M. T. K. & Uslar, P. (1993). Breeding systems in a temperate Mediterranean-type climate montane sclerophyllous forest in central Chile. Botanical Journal of the Linnean Society, 111: 83102.Google Scholar
Asplen, M. K., Whitefield, J. B., De Boer, J. G. & Heimpel, G. E. (2009). Ancestral state reconstruction analysis of hymenopteran sex determination mechanisms. Journal of Evolutionary Biology, 22: 17621769.Google Scholar
Avise, J. C. (2008). Clonality: the Genetics, Ecology and Evolution of Sexual Abstinence in Vertebrate Animals. New York, NY: Oxford University Press.Google Scholar
Avise, J. C. (2011). Hermaphroditism: a Primer on the Biology, Ecology, and Evolution of Dual Sexuality. New York, NY: Columbia University Press.Google Scholar
Bachtrog, D., Kirkpatrick, M., Mank, J. E. et al. (2011). Are all sex chromosomes created equal? Trends in Genetics, 27: 350357.Google Scholar
Balon, E. K. (1975). Reproductive guilds in fishes: a proposal and definition. Journal of the Fisheries Research Board of Canada, 32: 821864.Google Scholar
Balon, E. K. (1984). Patterns in the evolution of reproductive styles in fishes. In Fish Reproduction: Strategies and Tactics, ed. Potts, G. W. & Wootton, R. J.. London: Academic Press, pp. 3553.Google Scholar
Barske, L. A. & Capel, B. (2010). Sex determination: an avian sexual revolution. Nature, 464: 171172.Google Scholar
Bauer, R. T. (1986). Sex change and life history pattern in the shrimp Thor manningi (Decapoda: Caridea): a novel case of partial protandric hermaphroditism. Biological Bulletin, 170: 1131.Google Scholar
Bauer, R. T. (2000). Simultaneous hermaphroditism in caridean shrimps: a unique and puzzling sexual system in the Decapoda. Journal of Crustacean Biology, 20 (Special Number 2): 116128.Google Scholar
Bauer, R. T. & Newman, W. A. (2004). Protandric simultaneous hermaphroditism in the marine shrimp Lysmata californica (Caridea: Hippolytidae). Journal of Crustacean Biology, 24: 131139.Google Scholar
Baurain, D., Brinkmann, H., Petersen, J. et al. (2010). Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Molecular Biology and Evolution, 27: 16981709.Google Scholar
Bell, G. (1980). The costs of reproduction and their consequences. American Naturalist, 116: 4576.Google Scholar
Bell, G. (1982). The Masterpiece of Nature: the Evolution and Genetics of Sexuality. London: Croom Helm.Google Scholar
Bell, G. (1988). Sex and Death in Protozoa: the History of an Obsession. Cambridge: Cambridge University Press.Google Scholar
Bell, G. & Praiss, M. (1986). Optimality and constraint in a self-fertilized alga. Evolution, 40: 194198.Google Scholar
Benazzi, M. & Benazzi Lentati, G. (1992). Pseudogamy (gynogenesis) in planarians: annotations some forty years on. In Sex: Origin and Evolution, ed. Dallai, R.. Selected Symposia and Monographs U.Z.I., 6. Modena: Mucchi, pp. 87102.Google Scholar
Beukeboom, L. W. & Perrin, N. (2014). The Evolution of Sex Determination. Oxford: Oxford University Press.Google Scholar
Beukeboom, L. W. & van de Zande, L. (2010). Genetics of sex determination in the haplodiploid wasp Nasonia vitripennis (Hymenoptera: Chalcidoidea). Journal of Genetics, 89: 333339.Google Scholar
Beukeboom, L. W. & Vrijenhoek, R. C. (1998). Evolutionary genetics and ecology of sperm-dependent parthenogenesis. Journal of Evolutionary Biology, 11: 755782.Google Scholar
Beukeboom, L. W., Weinzierl, R. P., Reed, K. M. & Michiels, N. K. (1996). Distribution and origin of chromosomal races in the freshwater planarian Dugesia polychroa (Turbellaria: Tricladida). Hereditas, 124: 715.Google Scholar
Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M. & Nonogaki, H. (2013). Seeds: Physiology of Development, Germination and Dormancy. New York, NY: Springer.Google Scholar
Bickel, R. D., Cleveland, H. C., Barkas, J. et al. (2013). The pea aphid uses a version of the terminal system during oviparous, but not viviparous, development. EvoDevo, 4: 10.Google Scholar
Biddle, F. G., Eden, S. A., Rossler, J. S. & Eales, B. A. (1997). Sex and death in the mouse: genetically delayed reproduction and senescence. Genome, 40: 229235.Google Scholar
Birkhead, T. R., Hosken, D. J. & Pitnick, S. S. (eds.) (2008). Sperm Biology: an Evolutionary Perspective. London: Academic Press.Google Scholar
Bode, S. N., Adolfsson, S., Lamatsch, D. K. et al. (2010). Exceptional cryptic diversity and multiple origins of parthenogenesis in a freshwater ostracod. Molecular Phylogenetics and Evolution, 54: 542552.Google Scholar
Bogart, J., Bi, K., Fu, J., Noble, D. W. A. & Niedzwiecki, J. (2007). Unisexual salamanders (genus Ambystoma) present a new reproductive mode for eukaryotes. Genome, 50: 119136.Google Scholar
Boldrin, F., Martinucci, G., Holland, L. Z., Miller, R. L. & Burighel, P. (2009). Internal fertilization in the salp Thalia democratica. Canadian Journal of Zoology, 87: 928940.Google Scholar
Bonner, J. T. (2000). First Signals. Princeton, NJ: Princeton University Press.Google Scholar
Bonnet, X. (2011). The evolution of semelparity. In Reproductive Biology and Phylogeny of Snakes, ed. Aldridge, R. D., Jellen, B. C., Siegel, D. S. & Wisniewski, S. S.. Enfield, NH: Science Publishers, pp. 645672.Google Scholar
Boschetti, C., Leasi, F. & Ricci, C. (2011). Developmental stages in diapausing eggs: an investigation across monogonont rotifer species. Hydrobiologia, 662: 149155.Google Scholar
Bossinger, G., Spokevicius, A. V. (2011). Plant chimaeras and mosaics. In Encyclopedia of Life Sciences (ELS). Chichester: Wiley. doi: 10.1002/9780470015902.a0002090.pub2.Google Scholar
Bouillon, J., Gravili, C., Pagès, F., Gili, J.-M. & Boero, F. (2006). An Introduction to Hydrozoa. Mémoires du Muséum national d’Histoire naturelle, 194. Paris: Muséum national d’Histoire naturelle.Google Scholar
Bourlière, F. (1964). The Natural History of Mammals, 3rd edn. New York, NY: Knopf.Google Scholar
Bowman, J. L., Sakakibara, K., Furumizu, C. & Dierschke, T. (2016). Evolution in the cycles of life. Annual Review of Genetics, 50: 133154.Google Scholar
Boyden, A. (1950). Is parthenogenesis sexual or asexual reproduction? Nature, 166: 820.Google Scholar
Bradbury, J. W. & Vehrencamp, S. L. (2011). Principles of Animal Communication, 2nd edn. Sunderland, MA: Sinauer Associates.Google Scholar
Bradshaw, J. W. S., Baker, R., Lisk, J. C. (1983). Separate orientation and releaser components in a sex pheromone. Nature, 304: 265267.Google Scholar
Brakefield, P. M. & Zwaan, B. J. (2011). Seasonal polyphenisms and environmentally induced plasticity in the Lepidoptera – the coordinated evolution of many traits on multiple levels. In Mechanisms of Life History Evolution, ed. Flatt, T. & Heyland, A.. Oxford: Oxford University Press, pp. 243252.Google Scholar
Brien, P. (1973). Les démosponges: morphologie et reproduction. In Traité de Zoologie, 3 (1), ed. Grassé, P. P.. Paris: Masson, pp. 133461.Google Scholar
Brown, F. D. & Swalla, B. J. (2012). Evolution and development of budding by stem cells: ascidian coloniality as a case study. Developmental Biology, 369: 151162.Google Scholar
Bubley, W. J. & Pashuk, O. (2010). Life history of a simultaneously hermaphroditic fish, Diplectrum formosum. Journal of Fish Biology, 77: 676691.Google Scholar
Buckley, D., Alcobendas, M., García-París, M. & Wake, M. H. (2007). Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra. Evolution and Development, 9: 105115.Google Scholar
Bull, J. J. (1983). Evolution of Sex Determining Mechanisms. Menlo Park, CA: Benjamin/Cummings.Google Scholar
Bull, J. J. & Bulmer, M. G. (1981). The evolution of XY females in mammals. Heredity, 47: 347365.Google Scholar
Burke, N. W. & Bonduriansky, R. (2017). Sexual conflict, facultative asexuality, and the true paradox of sex. Trends in Ecology and Evolution, 32: 646652.Google Scholar
Buss, L. (1987). The Evolution of Individuality. Princeton, NJ: Princeton University Press.Google Scholar
Butterfield, N. J. (2000). Bangiomorpha pubescens n. gen. n. sp.: implications for the evolution of sex, multicellularity and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26: 386404.Google Scholar
Casanova, J. P. (1985) Description de l’appareil génital primitif du genre Heterokrohnia et nouvelle classification des Chaetognathes. Comptes rendus de l'Académie des sciences Paris, Série III, 301: 397402.Google Scholar
Casselton, L. A. (2002). Mate recognition in fungi. Heredity, 88: 142147.Google Scholar
Cavallin, M. (1971). La polyembryonie substitutive et la problème de l’origine de la lignée germinale chez le phasme Carausius morosus Br. Comptes rendus de l’Académie des sciences Paris, 272: 462465.Google Scholar
Cavicchioli, R. (ed.) (2007). Archaea: Molecular and Cellular Biology. Washington, DC: ASM Press.Google Scholar
Cellerino, A., Valenzano, D. R. & Reichard, M. (2016). From the bush to the bench: the annual Nothobranchius fishes as a new model system in biology. Biological Reviews, 91: 511533.Google Scholar
Chang, E. S., Orive, M. E. & Cartwright, P. (2018). Nonclonal coloniality: genetically chimeric colonies through fusion of sexually produced polyps in the hydrozoan Ectopleura larynx. Evolution Letters, 2–4: 442455.Google Scholar
Chaparro, O. R., Schmidt, A. J., Pardo, L. M. et al. (2011). Reproductive strategy of the semelparous clam Gaimardia bahamondei (Bivalvia, Gaimardiidae). Invertebrate Zoology, 130: 4959.Google Scholar
Chapman, H., Houliston, G. J., Robson, B. & Iline, I. (2003). A case of reversal: the evolution and maintenance of sexuals from parthenogenetic clones in Hieracium pilosella. International Journal of Plant Sciences, 164: 719728.Google Scholar
Charlesworth, B. & Dempsey, N. D. (2001). A model of the evolution of the unusual sex chromosome system of Microtus oregoni. Heredity, 86: 387394.Google Scholar
Charlesworth, D. (2002). Plant sex determination and sex chromosomes. Heredity, 88: 94101.Google Scholar
Chemisquy, A. (2015). Peramorphic males and extreme sexual dimorphism in Monodelphis dimidiata (Didelphidae). Zoomorphology, 184: 587599.Google Scholar
Chen, B. Y. & Henen, W. K. (1989). Evidence for spontaneous diploid androgenesis in Brassica napus L. Sexual Plant Reproduction, 2: 1517.Google Scholar
Clark, J. R. (1983). Age-related changes in trees. Journal of Arboriculture, 9: 201205.Google Scholar
Clark, W. R. (1996). Sex and the Origin of Death. New York, NY: Oxford University Press.Google Scholar
Clifton, K. E. (1997). Mass spawning by green algae on coral reefs. Science, 275: 11161118.Google Scholar
Cohan, F. M. (1999). Genetic structure of prokaryotic populations. In Evolutionary Genetics: From Molecules to Morphology, ed. Singh, R. S. & Krimbas, C. B.. Cambridge: Cambridge University Press, pp. 475489.Google Scholar
Cook, J. M. (2002). Sex determination in invertebrates. In Sex Ratios: Concepts and Research Methods, ed. Hardy, I. C. W.. Cambridge: Cambridge University Press, pp. 178194.Google Scholar
Cordaux, R., Bouchon, D. & Grève, P. (2011). The impact of endosymbionts on the evolution of host sex-determination mechanisms. Trends in Genetics, 27: 332341.Google Scholar
Craig, S. F., Slobodkin, L. B., Wray, G. A. & Biermann, C. H. (1997). The ‘paradox’ of polyembryony: a review of the cases and a hypothesis for its evolution. Evolutionary Ecology, 11: 127143.Google Scholar
Crespi, B. J. (1992). Cannibalism and trophic eggs in subsocial and eusocial insects. In Cannibalism: Ecology and Evolution Among Diverse Taxa, ed. Elgar, M. & Crespi, B. J.. Oxford: Oxford University Press, pp. 176213.Google Scholar
Cronberg, N., Natcheva, R. & Hedlund, K. (2006). Microarthropods mediate sperm transfer in mosses. Science, 313: 1255.Google Scholar
Dallai, R. (2014). Overview on spermatogenesis and sperm structure of Hexapoda. Arthropod Structure and Development, 43: 257290.Google Scholar
Dallai, R., Gottardo, M., Mercati, D. et al. (2014). Giant spermatozoa and a huge spermatheca: a case of coevolution of male and female reproductive organs in the ground louse Zorotypus impolitus (Insecta, Zoraptera). Arthropod Structure and Development, 43: 135151.Google Scholar
Danovaro, R., Dell’Anno, A., Pusceddu, A. et al. (2010). The first metazoa living in permanently anoxic conditions. BMC Biology, 8, 30.Google Scholar
Darwin, C. R. (1859). On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races on the Struggle for Life. London: Murray.Google Scholar
de Meeûs, T., Prugnolle, F. & Agnew, P. (2007). Asexual reproduction: genetics and evolutionary aspects. Cellular and Molecular Life Sciences, 64: 13551372.Google Scholar
de Reviers, B., Rousseau, F. & Silberfeld, T. (2015). Phaeophyceae. In Syllabus of Plant Families, 13th edn, ed. Frey, W.. Berlin; Stuttgart: Borntraeger, Vol. 2/1, pp. 139176.Google Scholar
Deakin, J. E., Hore, T. A., Koina, E. & Graves, J. A. M. (2008). The status of dosage compensation in the multiple X chromosomes of the platypus. PLOS Genetics, 4 (7): e1000140.Google Scholar
Debortoli, N., Li, X., Eyres, I., Fontaneto, D., Hespeels, B., Tang, C. Q. et al. (2016). Genetic exchange among bdelloid rotifers is more likely due to horizontal gene transfer than to meiotic sex. Current Biology, 26: 723732.Google Scholar
den Bakker, H. C., VanKuren, N. W., Morton, J. B. & Pawlowska, T. E. (2010). Clonality and recombination in the life history of an asexual arbuscular mycorrhizal fungus. Molecular Biology and Evolution, 27: 24742486.Google Scholar
Devlin, R. H. & Nagahama, Y. (2002). Sex determination and sex differentiation in fish: an overview of genetic, physiological and environmental influences. Aquaculture, 208: 191364.Google Scholar
Dournon, C., Houillon, C. & Pieau, C. (1990). Temperature sex-reversal in amphibians and reptiles. International Journal of Developmental Biology, 34: 8192.Google Scholar
Drago, L., Fusco, G., Garollo, E. & Minelli, A. (2011). Structural aspects of leg-to-gonopod metamorphosis in male helminthomorph millipedes (Diplopoda). Frontiers in Zoology, 8: 19.Google Scholar
Dreyer, N, Høeg, J. T., Hess, M. et al. (2017). When dwarf males and hermaphrodites copulate: First record of mating behaviour in a dwarf male using the androdioecious barnacle Scalpellum scalpellum (Crustacea: Cirripedia: Thoracica). Organisms Diversity and Evolution, 18: 115123.Google Scholar
D’Souza, T. G. & Michiels, N. K. (2010). The costs and benefits of occasional sex: theoretical predictions and a case study. Journal of Heredity, 101: S34S41.Google Scholar
Dupré, J. (2010). The polygenomic organism. The Sociological Review, 58 (Supplement 1): 1931.Google Scholar
Dutrillaux, A. M., Pluot-Sigwalt, D. & Dutrillaux, B. (2010). (Ovo-)viviparity in the darkling beetle, Alegoria castelnaui (Tenebrioninae: Ulomini), from Guadeloupe. European Journal of Entomology, 107: 481485.Google Scholar
Eisen, J. A., Coyne, R. S., Wu, M. et al. (2006). Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLOS Biology, 4 (9): e286.Google Scholar
Ellegren, H. (2008). Sex chromosomes: platypus genome suggests a recent origin for the human X. Current Biology, 18: R557R559.Google Scholar
Embley, T. M. (2006). Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos. Trans. R. Soc. B, 361: 10551067.Google Scholar
Erickson, J. W. & Quintero, J. J. (2007). Indirect effects of ploidy suggest X chromosome dose, not the X:A ratio, signals sex in Drosophila. PLOS Biology, 5 (12): e332.Google Scholar
Evans, J. P., Kelley, J. L., Bisazza, A., Finazzo, E. & Pilastro, A. (2004). Sire attractiveness influences offspring performance in guppies. Proceedings of the Royal Society of London. Series B, Biological Sciences, 271: 20352042.Google Scholar
Evans, P. C., Lambert, N., Maloney, S. et al. (1999). Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood, 93: 20332037.Google Scholar
Extavour, C. G. & Akam, M. (2003). Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development, 130: 58695884.Google Scholar
Fahy, G. M. (2010). Precedents for the biological control of aging: experimental postponement, prevention, and reversal of aging processes. In The Future of Aging. Pathways to Human Life Extension, ed. Fahy, G. M.. Dordrecht: Springer, pp. 127225.Google Scholar
Farrar, D. R. (1990). Species and evolution in asexually reproducing independent fern gametophytes. Systematic Botany, 15: 98111.Google Scholar
Fautin, D. G. (1992). Cnidaria. In Reproductive Biology of Invertebrates, 5, ed. Adiyodi, K. G. & Adiyodi, R. G.. Chichester: Wiley, pp. 3152.Google Scholar
Fernando, D. D., Lazzaro, M. D. & Owens, J. N. (2005). Growth and development of conifer pollen tubes. Sexual Plant Reproduction, 18: 149162.Google Scholar
Fields, C. & Levin, M. (2018). Are planaria individuals? What regenerative biology is telling us about the nature of multicellularity. Evolutionary Biology, 45: 237247.Google Scholar
Finch, C. E. (1990). Longevity, Senescence, and the Genome. Chicago, IL: University of Chicago Press.Google Scholar
Fischer, E. (2009). Protracheophyta (Horneophytopsida), Tracheophyta p.p.: Rhyniophytina, Lycophytina, ‘Trimerophytina’, Moniliformopses (‘Pteridophyta’), Radiatopses (Progymnospermopsida). In Syllabus of Plant Families, 13th edn, ed. Frey, W.. Berlin; Stuttgart: Borntraeger, Vol. 3, pp. 264399.Google Scholar
Flatt, T. & Heyland, A. (eds.) (2011). Mechanisms of Life History Evolution. Oxford: Oxford University Press.Google Scholar
Flindt, R. (2003). Amazing Numbers in Biology. Berlin: Springer.Google Scholar
Flinn, K. M. (2006). Reproductive biology of three fern species may contribute to differential colonization success in post-agricultural forests. American Journal of Botany, 93: 12891294.Google Scholar
Flores-Renteria, L., Molina-Freaner, F., Whipple, A. V., Gehring, C. A. & Dominguez, C. A. (2013). Sexual stability in the nearly dioecious Pinus johannis (Pinaceae). American Journal of Botany, 100: 602612.Google Scholar
Fransson, T., Jansson, L., Kolehmainen, T., Kroon, C. & Wenninger, T. (2017). EURING list of longevity records for European birds. https://euring.org/data-and-codes/longevity-list (accessed April 2019).Google Scholar
Fraser, C., Hanage, W. P. & Spratt, B. G. (2007). Recombination and the nature of bacterial speciation. Science, 315: 476480.Google Scholar
Fraser, J. A. & Heitman, J. (2004). Evolution of fungal sex chromosomes. Molecular Microbiology, 51: 299306.Google Scholar
Freeman, D. C., Harper, K. T. & Charnov, E. L. (1980). Sex change in plants: old and new observations and new hypotheses. Oecologia (Berlin), 47: 222232.Google Scholar
Freeman, D. C., Wachocki, B. A., Stender, M. J., Goldschlag, D. E. & Michaels, H. J. (1994). Seed size and sex ratio in spinach: application of the Trivers–Willard hypothesis to plants. Ecoscience, 1: 5463.Google Scholar
Frey, W. & Stech, M. (2009). Marchantiophyta, Bryophyta, Anthocerotophyta. In Syllabus of Plant Families, 13th edn, ed. Frey, W.. Berlin; Stuttgart: Borntraeger, Vol. 3, pp. 9263.Google Scholar
Fritsch, F. E. (1935, 1945). The Structure and Reproduction of the Algae, 1 (1935), 2 (1945). London; New York, NY: Cambridge University Press.Google Scholar
Fryer, G. (1961). The developmental history of Mutela bourguignati (Ancey) Bourguignat (Mollusca: Bivalvia). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 244: 259298.Google Scholar
Funch, P. & Kristensen, R. M. (1995). Cycliophora is a new phylum with affinities to Entoprocta and Ectoprocta. Nature, 378: 711714.Google Scholar
Fusco, G. & Minelli, A. (2010). Phenotypic plasticity in development and evolution: facts and concepts. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365: 547556.Google Scholar
Futuyma, D. J. & Kirkpatrick, M. (2018). Evolution, international 4th edn. New York, NY: Oxford University Press, Sinauer Associates.Google Scholar
Galaktionov, K. V. & Dobrovolskij, A. A. (2003). The Biology and Evolution of Trematodes. Dordrecht: Kluwer Academic Publishers.Google Scholar
Gardner, S. N. & Mangel, M. (1997). When can a clonal organism escape senescence? American Naturalist, 150: 462490.Google Scholar
Gasparini, F., Manni, L., Cima, F. et al. (2015). Sexual and asexual reproduction in the colonial ascidian Botryllus schlosseri. Genesis, 53: 105120.Google Scholar
Georgiades, P., Watkins, M., Burton, G. J. & Ferguson-Smith, A. C. (2001). Roles for genomic imprinting and the zygotic genome in placental development. Proceedings of the National Academy of Sciences of the United States of America, 98: 45224527.Google Scholar
Ghirardelli, E. (1953). L’accoppiamento in Spadella cephaloptera Busch. Pubblicazioni della Stazione Zoologica di Napoli, 24: 345354.Google Scholar
Ghiselin, M. T. (1974a). The Economy of Nature and the Evolution of Sex. Berkeley, CA: University of California Press.Google Scholar
Ghiselin, M. T. (1974b). A radical solution to the species problem. Systematic Zoology, 23: 536544.Google Scholar
Gianasi, B. L., Hamel, J.-F. & Mercier, A. (2018). Full allogeneic fusion of embryos in a holothuroid echinoderm. Proceedings of the Royal Society of London. Series B, Biological Sciences, 285: 20180339.Google Scholar
Gilbert, S. F. & Barresi, J. F. (2016). Developmental Biology, 11th edn. Sunderland, MA: Sinauer Associates.Google Scholar
Gilbert, S. F. & Epel, D. (2015). Ecological Developmental Biology: the Environmental Regulation of Development, Health, and Evolution, 2nd edn. Sunderland, MA: Sinauer Associates.Google Scholar
Gilbert, S. F., Sapp, J. & Tauber, A. I. (2012). A symbiotic view of life: we have never been individuals. Quarterly Review of Biology, 87: 325341.Google Scholar
Gladyshev, E. A. & Arkhipova, I. R. (2010). Genome structure of bdelloid rotifers: shaped by asexuality or desiccation? Journal of Heredity, 101 (Supplement 1): S85S93.Google Scholar
Godfrey-Smith, P. (2009). Darwinian Populations and Natural Selection. New York, NY: Oxford University Press.Google Scholar
Gokhman, V. E. & Kuznetsova, V. G. (2018). Parthenogenesis in Hexapoda: Holometabolous insects. Journal of Zoological Systematics and Evolutionary Research, 56: 2334.Google Scholar
Gordon, J. L., Armisen, D., Proux-Wera, E. et al. (2011). Evolutionary erosion of yeast sex chromosomes by mating-type switching accidents. Proceedings of the National Academy of Sciences of the United States of America, 108: 2002420029.Google Scholar
Gorelik, R. (2012). Mitosis circumscribes individuals; sex creates new individuals. Biology and Philosophy, 27: 871890.Google Scholar
Goto, T. & Yoshida, M. (1985). The mating sequence of the benthic arrowworm Spadella schizoptera. Biological Bulletin, 169: 328333.Google Scholar
Grbic, M., Ode, P. J. & Strand, M. R. (1992). Sibling rivalry and brood sex ratios in polyembryonic wasps. Nature, 360: 254256.Google Scholar
Green, R. F. & Noakes, D. L. G. (1995). Is a little bit of sex as good as a lot? Journal of Theoretical Biology, 174: 8796.Google Scholar
Greene, D. F. & Johnson, E. A. (1994). Estimating the mean annual seed production of trees. Ecology, 75: 642647.Google Scholar
Grosberg, R. K. & Strathmann, R. R. (1998). One cell, two cell, red cell, blue cell: the persistence of a unicellular stage in multicellular life histories. Trends in Ecology and Evolution, 13: 112116.Google Scholar
Grosse-Veldmann, B. & Weigend, M. (2018). The geometry of gender: hyper-diversification of sexual systems in Urtica L. (Urticaceae). Cladistics, 34: 131150.Google Scholar
Gunstream, S. E. & Chew, R. M. (1967). The ecology of Psorophora confinnis (Diptera: Culicidae) in southern California. II. Temperature and development. Annals of the Entomological Society of America, 60: 434439.Google Scholar
Haig, D. (2016). Living together and living apart: the sexual lives of bryophytes. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371: 20150535.Google Scholar
Halary, S., Malik, S. B., Lildhar, L. et al. (2011). Conserved meiotic machinery in Glomus spp., a putatively ancient asexual fungal lineage. Genome Biology and Evolution, 3: 950958.Google Scholar
Hanelt, B., Bolek, M. G. & Schmidt-Rhaesa, A. (2012). Going solo: discovery of the first parthenogenetic gordiid (Nematomorpha: Gordiida). PLOS One, 7 (4): e34472.Google Scholar
Hansen, K. (1984). Discrimination and production of disparlure enantiomers by the gypsy moth and the nun moth. Physiological Entomology, 9: 918.Google Scholar
Harada, Y., Takagaki, M., Saito, T. et al. (2008). Mechanism of self-sterility in a hermaphroditic chordate. Science, 320: 548550.Google Scholar
Harper, J. L. & White, J. (1974). The demography of plants. Annual Review of Ecology and Systematics, 5: 419463.Google Scholar
Harrath, A. H., Sluys, R., Zghal, F. & Tekaya, S. (2009). First report of adelphophagy in flatworms during the embryonic development of the planarian Schmidtea mediterranea (Benazzi, Baguñà, Ballester, Puccinelli & Del Papa, 1975) (Platyhelminthes, Tricladida). Invertebrate Reproduction and Development, 53: 117124.Google Scholar
Harrison, P. L. (2011). Sexual reproduction of scleractinian corals. In Coral Reefs: an Ecosystem in Transition, ed. Dubinsky, Z. & Stambler, N.. London; New York, NY: Springer, pp. 5985.Google Scholar
Hechinger, R. F., Wood, A. C. & Kuris, A. M. (2011). Social organization in a flatworm: trematode parasites form soldier and reproductive castes. Proceedings of the Royal Society of London. Series B, Biological Sciences, 278: 656665.Google Scholar
Hedtke, S. M., Stanger-Hall, K., Baker, R. J. & Hillis, D. M. (2008). All-male asexuality: origin and maintenance of androgenesis in the Asian clam Corbicula. Evolution, 62: 11191136.Google Scholar
Heiner, I. & Kristensen, R. M. (2008). Urnaloricus gadi nov. gen. et nov. sp. (Loricifera, Urnaloricidae nov. fam.), an aberrant Loricifera with a vivipaous pedogenetic life cycle. Journal of Morphology, 270: 129153.Google Scholar
Heming, B. S. (2003). Insect Development and Evolution. Ithaca, NY: Comstock.Google Scholar
Henderson, K. A. & Gottschling, D. E. (2008). A mother’s sacrifice: what is she keeping for herself? Current Opinion in Cell Biology, 20: 723728.Google Scholar
Hinman, V. & Cary, G. (2017). Conserved processes of metazoan whole-body regeneration identified in sea star larvae. bioRxiv preprint. doi: 10.1101/118232.Google Scholar
Hojsgaard, D. H., Martínez, E. J. & Quarin, C. L. (2013). Competition between meiotic and apomictic pathways during ovule and seed development results in clonality. New Phytologist, 197: 336347.Google Scholar
Hörandl, E. (2006). The complex causality of geographical parthenogenesis. New Phytologist, 171: 525538.Google Scholar
Horne, D. J. & Martens, K. (1999). Geographical parthenogenesis in European non-marine ostracods: post-glacial invasion or Holocene stability? Hydrobiologia, 391: 17.Google Scholar
Hoving, H. J. T., Laptikhovsky, V. V. & Robison, B. H. (2015). Vampire squid reproductive strategy is unique among coleoid cephalopods. Current Biology, 25: R321R323.Google Scholar
Hughes, P. W. (2017). Between semelparity and iteroparity: Empirical evidence for a continuum of modes of parity. Ecology and Evolution, 7: 82328261.Google Scholar
Hughes, R. N. (1989). A Functional Biology of Clonal Animals. New York, NY: Chapman & Hall.Google Scholar
Igea, J., Miller, E. F., Papadopulos, A. S. T. & Tanentzap, A. J. (2017). Seed size and its rate of evolution correlate with species diversification across angiosperms. PLOS Biology, 15 (7): e2002792.Google Scholar
Iglésias, S. P., Sellos, D. Y. & Nakaya, K. (2005). Discovery of a normal hermaphroditic chondrichthyan species: Apristurus longicephalus. Journal of Fish Biology, 66: 417428.Google Scholar
Ignace, D. D., Dodson, S. I. & Kashian, D. R. (2011). Identification of the critical timing of sex determination in Daphnia magna (Crustacea, Branchiopoda) for use in toxicological studies. Hydrobiologia, 668: 117123.Google Scholar
Iskandar, D. T., Evans, B. J. & McGuire, J. A. (2014). A novel reproductive mode in frogs: a new species of fanged frog with internal fertilization and birth of tadpoles. PLOS One, 9 (12): e115884.Google Scholar
Jablonka, E. & Lamb, M. J. (2005). Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. Cambridge, MA: MIT Press.Google Scholar
Jaeckle, W. B. (1994). Multiple modes of asexual reproduction by tropical and subtropical sea star larvae: an unusual adaptation for genet dispersal and survival. Biological Bulletin, 186: 6271.Google Scholar
Jaklitsch, W., Baral, H.-O., Lücking, R. & Lumbsch, H. T. (2016). Ascomycota. In Syllabus of Plant Families, 13th edn, ed. Frey, W.. Berlin; Stuttgart: Borntraeger, Vol. 1/2.Google Scholar
Janousek, B. & Mrackova, M. (2010). Sex chromosomes and sex determination pathway dynamics in plant and animal models. Biological Journal of the Linnean Society, 100: 737752.Google Scholar
Jany, J. & Pawlowska, T. E. (2010). Multinucleate spores contribute to evolutionary longevity of asexual Glomeromycota. American Naturalist, 175: 424435.Google Scholar
Janzen, D. H. (1977). What are dandelions and aphids? American Naturalist, 111: 586589.Google Scholar
Jarne, P. & Auld, J. R. (2006). Animals mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution, 60: 18161824.Google Scholar
Jaspers, C., Haraldsson, M., Bolte, S. et al. (2012). Ctenophore population recruits entirely through larval reproduction in the central Baltic Sea. Biology Letters, 8: 809812.Google Scholar
Jetz, W., Sekercioglu, C. H. & Böhning-Gaese, K. (2008). The worldwide variation in avian clutch size across species and space. PLOS Biology, 6 (12): e303.Google Scholar
Johnson, G. D., Paxton, J. R., Sutton, T. T. et al. (2009). Deap-sea mystery solved: astonishing larval transformations and extreme sexual dimorphism unite three fish families. Biology Letters, 5: 235239.Google Scholar
Jordal, B. H., Beaver, R. A., Normark, B. B. & Farrell, B. D. (2002). Extraordinary sex ratios and the evolution of male neoteny in sib-mating Ozopemon beetles. Biological Journal of the Linnean Society, 75: 353360.Google Scholar
Jordal, B. H., Normark, B. B. & Farrell, B. D. (2000). Evolutionary radiation of an inbreeding haplodiploid beetle lineage (Curculionidae, Scolytinae). Biological Journal of the Linnean Society, 71: 483499.Google Scholar
Juarez, C. & Banks, J. A. (1998). Sex determination in plants. Current Opinion in Plant Biology, 1: 6872.Google Scholar
Kaiser, V. B. & Bachtrog, D. (2010). Evolution of sex chromosomes in insects. Annual Review of Genetics, 44: 91112.Google Scholar
Kamiya, M., Lindstrom, S. C., Nakayama, T. et al. (2017). Photoautotrophic eukaryotic Algae. Rhodophyta. In Syllabus of Plant Families, 13th edn, ed. Frey, W.. Berlin; Stuttgart: Borntraeger, Vol. 2/2.Google Scholar
Karsten, K. B., Andriamandimbiarisoa, L. N., Fox, S. F. & Raxworthy, C. J. (2008). A unique life history among tetrapods: an annual chameleon living mostly as an egg. Proceedings of the National Academy of Sciences of the United States of America, 105: 89808984.Google Scholar
Kelly, D. R. (1996). When is a butterfly like an elephant? Chemical Biology, 3: 595602.Google Scholar
Khosla, S., Mendiratta, G. & Brahmachari, V. (2006). Genomic imprinting in the mealybugs. Cytogenetics and Genome Research, 113: 4152.Google Scholar
Kirk, D. L. (2001). Germ–soma differentiation in Volvox. Developmental Biology, 238: 213223.Google Scholar
Kishore, K. (2014). Polyembryony. In Reproductive Biology of Plants, ed. Ramawat, K. G., Mérillon, J. M. & Shivanna, K. R.. Boca Raton, FL: CRC Press, pp. 355370.Google Scholar
Knoflach, B. & van Harten, A. (2000). Palpal loss, single palp copulation and obligatory mate consumption in Tidarren cuneolatum (Tullgren, 1910) (Araneae, Theridiidae). Journal of Natural History, 34: 16391659.Google Scholar
Knoflach, B. & van Harten, A. (2001). Tidarren argo sp. nov. (Araneae: Theridiidae) and its exceptional copulatory behaviour: emasculation, male palpal organ as a mating plug and sexual cannibalism. Journal of Zoology, 254: 449459.Google Scholar
Kočarek, P. (2009). A case of viviparity in a tropical non-parasitizing earwig (Dermaptera Spongiphoridae). Tropical Zoology, 22: 237241.Google Scholar
Komma, D. J. & Endow, S. A. (1995). Haploidy and androgenesis in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 92: 1188411888.Google Scholar
Kondrashov, A. S. (2018). Through sex, nature is telling us something important. Trends in Genetics, 34: 352361.Google Scholar
Koopman, P. (2009). Sex determination: the power of DMRT1. Trends in Genetics, 25: 479481.Google Scholar
Kopp, A. (2012). Dmrt genes in the development and evolution of sexual dimorphism. Trends in Genetics, 28: 175184.Google Scholar
Kraak, S. B. M. & Pen, I. (2002). Sex-determining mechanisms in vertebrates. In Sex Ratios: Concepts and Research Methods, ed. Hardy, I. C. W.. Cambridge: Cambridge University Press, pp. 158177.Google Scholar
Krebs, J. E., Goldstein, E. S. & Kilpatrick, S. T. (2011). Lewin’s Genes X. Sudbury, MA: Jones & Bartlett.Google Scholar
Kreulen, D. J. W. (1972). Spore output of moss capsules in relation to ontogeny of archesporial tissue. Journal of Bryology, 7: 6174.Google Scholar
Kristensen, R. M. & Funch, P. (2000). Micrognathozoa: a new class with complicated jaws like those of Rotifera and Gnathostomulida. Journal of Morphology, 246: 149.Google Scholar
Kuo, L.-Y., Chen, C.-W., Shinohara, W. et al. (2017). Not only in the temperate zone: independent gametophytes of two vittarioid ferns (Pteridaceae, Polypodiales) in East Asian subtropics. Journal of Plant Research, 130: 255262.Google Scholar
LaFave, M. C. & Sekelsky, J. (2009). Mitotic recombination: why? when? how? where? PLOS Genetics, 5 (3): e1000411.Google Scholar
Lanfear, R. (2018). Do plants have a segregated germline? PLOS Biology, 16 (5): e2005439.Google Scholar
Lapierre, P. & Gogarten, P. (2009). Estimating the size of the bacterial pan-genome. Trends in Genetics, 25: 107110.Google Scholar
Larsen, K. (2005). Deep-sea Tanaidacea (Peracarida) from the Gulf of Mexico. Crustacean Monographs 5. Leiden: Brill.Google Scholar
Lee, R. E. (2008). Phycology. 4th edn. New York, NY: Cambridge University Press.Google Scholar
Leeb, M. & Wutz, A. (2010). Mechanistic concepts in X inactivation underlying dosage compensation in mammals. Heredity, 105: 6470.Google Scholar
Lehtonen, J., Jennions, M. D. & Kokko, H. (2012). The many costs of sex. Trends in Ecology and Evolution, 27: 172178.Google Scholar
Leliaert, F., Blindow, I. & Schudack, M. (2015a). Ulvophyceae (except Trentepohliales). In Syllabus of Plant Families, 13th edn, ed. Frey, W.. Berlin; Stuttgart: Borntraeger, Vol. 2/1, pp. 267280.Google Scholar
Leliaert, F., Lopez-Bautista, J. & De Clerk, O. (2015b). Charophyceae. In Syllabus of Plant Families, 13th edn, ed. Frey, W.. Berlin; Stuttgart: Borntraeger, Vol. 2/1, pp. 294300.Google Scholar
Levin, T. C. & King, N. (2013). Evidence for sex and recombination in the choanoflagellate Salpingoeca rosetta. Current Biology, 23: 21762180.Google Scholar
Li, S. I. & Purugganan, M. D. (2011). The cooperative amoeba: Dictyostelium as a model for social evolution. Trends in Genetics, 27: 4854.Google Scholar
Lindås, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. & Bernander, R. (2008). A unique cell division machinery in the Archaea. Proceedings of the National Academy of Sciences of the United States of America, 105: 1894218946.Google Scholar
Lloyd, D. G. & Webb, C. J. (1977). Secondary sex characters in plants. Botanical Review, 43: 177216.Google Scholar
Locey, K. J. & Lennon, J. T. (2016). Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences of the United States of America, 113: 59705975.Google Scholar
Lundmark, M. & Saura, A. (2006). Asexuality alone does not explain the success of clonal forms in insects with geographical parthenogenesis. Hereditas, 143: 2332.Google Scholar
Lushai, G. & Loxdale, H. D. (2002). The biological improbability of a clone. Genetics Research, 79: 19.Google Scholar
Lynch, M. (2010). Evolution of the mutation rate. Trends in Genetics, 26: 345352.Google Scholar
Lynch, M., Koskella, B. & Schaack, S. (2006). Mutation pressure and the evolution of organelle genomic architecture. Science, 311: 17271730.Google Scholar
Makarova, K. S., Yutin, N., Bell, S. D. & Koonin, E. V. (2010). Evolution of diverse cell division and vesicle formation systems in Archaea. Nature Reviews Microbiology, 8: 731741.Google Scholar
Malik, S. B., Pightling, A. W., Stefaniak, L. M., Schurko, A. M. & Logsdon, J. M. (2008). An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLOS One, 3 (8): e2879.Google Scholar
Manabe, H., Ishimura, M., Shinomiya, A. & Sunobe, T. (2007). Field evidence for bidirectional sex change in the polygynous gobiid fish Trimma okinawae. Journal of Fish Biology, 70: 600609.Google Scholar
Mann, T. (1984). Spermatophores: Development, Structure, Biochemical Attributes, and Role in the Transfer of Spermatozoa. Berlin: Springer.Google Scholar
Mantovani, B., Passamonti, M. & Scali, V. (1999). Genomic evolution in parental and hybrid taxa of the genus Bacillus (Insecta, Phasmatodea). Italian Journal of Zoology, 66: 265272.Google Scholar
Mantovani, B. & Scali, V. (1992). Hybridogenesis and androgenesis in the stick-insect Bacillus rossius-grandii benazzii (Insecta, Phasmatodea). Evolution, 46: 783796.Google Scholar
Marescalchi, O., Pijnacker, L. P. & Scali, V. (1993). Automictic parthenogenesis and its genetic consequence in Bacillus atticus atticus (Insecta Phasmatodea). Invertebrate Reproduction and Development, 24: 712.Google Scholar
Marin, I. & Baker, B. S. (1998). The evolutionary dynamics of sex determination. Science, 281: 19901994.Google Scholar
Marques, A. C., García, J. & Ames, C. L. (2015). Internal fertilization and sperm storage in cnidarians: a response to Orr and Brennan. Trends in Ecology and Evolution, 30: 435436.Google Scholar
Martín-Durán, J. M. & Egger, B. (2012). Developmental diversity in free-living flatworms. EvoDevo, 3: 7.Google Scholar
Martinez, D. E. (1997). Mortality patterns suggest lack of senescence in hydra. Experimental Gerontology, 33: 217225.Google Scholar
Maruyama, D., Hamamura, Y., Takeuchi, H. et al. (2013). Independent control by each female gamete prevents the attraction of multiple pollen tubes. Developmental Cell, 25: 317323.Google Scholar
Matthes, D. (1988). Tierische Parasiten: Biologie und Ökologie. Braunschweig; Wiesbaden: Vieweg.Google Scholar
Matveevsky, S., Bakloushinskaya, I. & Kolomiets, O. (2016). Unique sex chromosome systems in Ellobius: how do male XX chromosomes recombine and undergo pachytene chromatin inactivation? Scientific Reports, 6: 29949.Google Scholar
Mauseth, J. D. (1988). Plant Anatomy. Menlo Park, CA: Benjamin/Cummings.Google Scholar
McCabe, J. & Dunn, A. M. (1997). Adaptive significance of environmental sex determination in an amphipod. Journal of Evolutionary Biology, 10: 515527.Google Scholar
McCurdy, D. G., Painter, D. C., Kopec, M. T. et al. (2008). Reproductive behaviour of intersexes of an intertidal amphipod Corophium volutator. Invertebrate Biology, 127: 417425.Google Scholar
McKone, M. J. & Halpern, S. L. (2003). The evolution of androgenesis. American Naturalist, 161: 641656.Google Scholar
Michalik, P., Knoflach, B., Thaler, K. & Alberti, G. (2010). Live for the moment: adaptations in the male genital system of a sexually cannibalistic spider (Theridiidae, Araneae). Tissue and Cell, 42: 3236.Google Scholar
Michalik, P. & Uhl, G. (2005). The male genital system of the cellar spider Pholcus phalangioides (Fuesslin, 1775) (Pholcidae, Araneae): development of spermatozoa and seminal secretion. Frontiers in Zoology, 2: 12.Google Scholar
Minelli, A. (2009). Perspectives in Animal Phylogeny and Evolution. Oxford: Oxford University Press.Google Scholar
Minelli, A. (2014). Developmental disparity. In Towards a Theory of Development, ed. Minelli, A. & Pradeu, T.. Oxford: Oxford University Press, pp. 227245.Google Scholar
Minelli, A. (2018). Plant Evolutionary Developmental Biology. Cambridge: Cambridge University Press.Google Scholar
Minelli, A., Brena, C., Deflorian, G., Maruzzo, D. & Fusco, G. (2006). From embryo to adult: beyond the conventional periodization of arthropod development. Development Genes and Evolution, 216: 373383.Google Scholar
Minelli, A. & Fusco, G. (2010). Developmental plasticity and the evolution of animal complex life cycles. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365: 631640.Google Scholar
Minelli, A. & Fusco, G. (2013). Arthropod post-embryonic development. In Arthropod Biology and Evolution. Molecules, Development, Morphology, ed. Minelli, A., Boxshall, G. & Fusco, G.. Heidelberg: Springer, pp. 91122.Google Scholar
Ming, R., Bendahmane, A. & Renner, S. S. (2011). Sex chromosomes in land plants. Annual Review of Plant Biology, 62: 485514.Google Scholar
Miya, M., Pietsch, T. W., Orr, J. W. et al. (2010). Evolutionary history of anglerfishes (Teleostei: Lophiiformes): a mitogenomic perspective. BMC Evolutionary Biology, 10: 58.Google Scholar
Mogie, M. (1992). The Evolution of Asexual Reproduction in Plants. London: Chapman & Hall.Google Scholar
Monaghan, P. & Haussmann, M. F. (2006). Do telomere dynamics link lifestyle and lifespan? Trends in Ecology and Evolution, 21: 4753.Google Scholar
Moore, D. S. (2017). The Developing Genome: an Introduction to Behavioral Epigenetics. New York, NY: Oxford University Press.Google Scholar
Morison, I. M., Ramsay, J. P. & Spencer, H. G. (2005). A census of mammalian imprinting. Trends in Genetics, 21: 457465.Google Scholar
Munday, P. L., Kuwamura, T. & Kroon, F. J. (2010). Bidirectional sex change in marine fishes. In Reproduction and Sexuality in Marine Fishes: Patterns and Processes, ed. Cole, K. S.. Berkeley, CA: University of California Press, pp. 241271.Google Scholar
Nath, P., Bouzayen, M., Mattoo, A. K. & Pech, J. C. (eds.) (2014). Fruit Ripening: Physiology, Signalling and Genomics. Wallingford: CABI.Google Scholar
Naurin, S., Hansson, B., Bensch, S. & Hasselquist, D. (2010). Why does dosage compensation differ between XY and ZW taxa? Trends in Genetics, 26: 1520.Google Scholar
Neestupa, J. (2015). Chlorophyta, Streptophyta. In Syllabus of Plant Families, 13th edn, ed. Frey, W.. Berlin; Stuttgart: Borntraeger, Vol. 2/1, pp. 191247, 264–267, 282–294.Google Scholar
Neiman, M., Lively, C. M. & Meirmans, S. (2017). Why sex? A pluralist approach revisited. Trends in Ecology and Evolution, 32: 589600.Google Scholar
Nguyen, K. B. & Smart, G. C. (1990). Heterorhabditis spp.: nematode parasites of insects. Nematology Circular, 173. Gainesville, FL: Florida Department of Agriculture & Consumer Service, Division of Plant Industry.Google Scholar
Nielsen, C. (2012). Animal Evolution: Interrelationships of the Living Phyla, 3rd edn. Oxford: Oxford University Press.Google Scholar
Nielsen, J., Hedeholm, R. B., Heinemeier, J. et al. (2016). Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science, 353: 702704.Google Scholar
Nieuwenhuis, B. P. S. & James, T. Y. (2016). The frequency of sex in fungi. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371: 20150540.Google Scholar
Noda, I. (1960). The emergence of winged viviparous female in aphids. VI. Difference in the rate of development between the winged and the unwinged forms. Japanese Journal of Ecology, 10: 97102.Google Scholar
Nogler, G. A. (1984). Genetics of apospory in apomictic Ranunculus auricomus: 5. Conclusion. Botanica Helvetica, 94: 411423.Google Scholar
Normark, B. B. (2003). The evolution of alternate genetic systems in insects. Annual Review of Entomology, 48: 397423.Google Scholar
Noro, C., López-Greco, L. S. & Buckup, L. (2007). Gonad morphology and type of sexuality in Parastacus defossus Faxon 1898, a burrowing, intersexed crayfish from southern Brazil (Decapoda: Parastacidae). Acta Zoologica, 89: 5967.Google Scholar
O’Gorman, C. M., Fuller, H. T. & Dyer, P. S. (2009). Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature, 457: 471474.Google Scholar
Okasha, S. (2006). Evolution and the Levels of Selection. New York, NY: Oxford University Press.Google Scholar
Oliveira, R. F., Taborsky, M. & Brockmann, H. J. (eds.) (2008). Alternative Reproductive Tactics: an Integrative Approach. Cambridge: Cambridge University Press.Google Scholar
Oliver, B. (2007). Sex, dose, and equality. PLOS Biology, 5 (12): e340.Google Scholar
Omilian, A. R., Cristescu, M. E. A., Dudycha, J. L. & Lynch, M. (2006). Ameiotic recombination in asexual lineages of Daphnia. Proceedings of the National Academy of Sciences of the United States of America, 103: 1863818643.Google Scholar
Ostrovsky, A. N., Lidgard, S., Gordon, D. P. et al. (2016). Matrotrophy and placentation in invertebrates: a new paradigm. Biological Reviews, 91: 673711.Google Scholar
Ota, K. G. (2018). Recent advances in hagfish developmental biology in a historical context: implications for understanding the evolution of the vertebral elements. In Reproductive and Developmental Strategies: Diversity and Commonality in Animals, ed. Kobayashi, K., Kitano, T., Iwao, Y. & Kondo, M.. Tokyo: Springer, pp. 615634.Google Scholar
Pacini, E. (2010). Relationship between tapetum, loculus, and pollen during development. International Journal of Plant Sciences, 171: 111.Google Scholar
Paemelaere, E. A. D., Guyer, C. & Dobson, F. S. (2011). A phylogenetic framework for the evolution of female polymorphism in anoles. Biological Journal of the Linnean Society, 104: 303317.Google Scholar
Palevitz, B. A. & Tiezzi, A. (1992). Organization, composition, and function of the generative cell and sperm cytoskeleton. International Review of Cytology, 140: 149185.Google Scholar
Pannell, J. R. (2017). Plant sex determination. Current Biology, 27: R191R197.Google Scholar
Parker, G. A. (2014). The sexual cascade and the rise of pre-ejaculatory (Darwinian) sexual selection, sex roles, and sexual conflict. Cold Spring Harbor Perspectives in Biology, 6: a017509.Google Scholar
Parker, J. D. (2004). A major evolutionary transition to more than two sexes? Trends in Ecology and Evolution, 19: 8386.Google Scholar
Pearcy, M., Hardy, O. & Aron, S. (2006). Thelytokous parthenogenesis and its consequences on inbreeding in an ant. Heredity, 96: 377382.Google Scholar
Pearson, H. (2006). What is a gene? Nature, 441: 469474.Google Scholar
Peccoud, J., Loiseau, V., Cordaux, R., Gilbert, C. (2017). Massive horizontal transfer of transposable elements in insects. Proceedings of the National Academy of Sciences of the United States of America, 114: 47214726.Google Scholar
Penman, D. J. & Piferrer, F. (2008). Fish gonadogenesis. Part I: genetic and environmental mechanisms of sex determination. Reviews in Fisheries Science, 16 (Supplement 1): 1432.Google Scholar
Pennell, M. W., Mank, J. E. & Peichel, C. L. (2018). Transitions in sex determination and sex chromosomes across vertebrate species. Molecular Ecology, 27: 39503963.Google Scholar
Perrin, N. (2016). Random sex determination: when developmental noise tips the sex balance. BioEssays, 38: 12181226.Google Scholar
Perry, L. E., Pannell, J. R. & Dorken, M. E. (2012). Two’s company, three’s a crowd: experimental evaluation of the evolutionary maintenance of trioecy in Mercurialis annua (Euphorbiaceae). PLOS One, 7 (4): e35597.Google Scholar
Phadke, S. S. & Zufall, R. A. (2009). Rapid diversification of mating systems in ciliates. Biological Journal of the Linnean Society, 98: 187197.Google Scholar
Pichot, C., El Mataoui, M., Raddi, S. & Raddi, P. (2001). Surrogate mother for endangered Cupressus. Nature, 412: 39.Google Scholar
Pietsch, T. W. & Orr, J. W. (2007). Phylogenetic relationships of deep-sea anglerfishes of the suborder Ceratioidei (Teleostei: Lophiiformes) based on morphology. Copeia, 2007: 134.Google Scholar
Piraino, S., Boero, F., Aeschbach, B. & Schmid, V. (1996). Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa). Biological Bulletin, 190: 302312.Google Scholar
Poethig, R. S. (2003). Phase change and the regulation of developmental timing in plants. Science, 301: 334336.Google Scholar
Pommerville, J. C. (2011). Alcamo’s Fundamentals of Microbiology, 9th edn. Sudbury, MA: Jones & Bartlett Learning.Google Scholar
Pradeu, T. (2010). What is an organism? An immunological answer. History and Philosophy of the Life Sciences, 32: 247267.Google Scholar
Pradeu, T. (2012). The Limits of the Self: Immunology and Biological Identity. Oxford: Oxford University Press.Google Scholar
Pradeu, T. (2016). Organisms or biological individuals? Combining physiological and evolutionary individuality. Biology and Philosophy, 31: 797817.Google Scholar
Pradeu, T., Laplane, L., Prévot, K. et al. (2016). Defining ‘development’. Current Topics in Developmental Biology, 117: 171183.Google Scholar
Premoli, M. C. & Sella, G. (1995). Sex economy in benthic polychaetes. Ethology Ecology Evolution, 7: 2748.Google Scholar
Prévot, V., Jordaens, K., Sonet, G. & Backeljau, T. (2013). Exploring species level taxonomy and species delimitation methods in the facultatively self-fertilizing land snail genus Rumina (Gastropoda: Pulmonata). PLOS One, 8 (4): e60736.Google Scholar
Proctor, H. C. (1998). Indirect sperm transfer in arthropods. Annual Review of Entomology, 43: 153174.Google Scholar
Queller, D. (2005). Males from Mars. Nature, 435: 11671168.Google Scholar
Radder, R. S., Pike, D. A., Quinn, A. E. & Shine, R. (2009). Offspring sex in a lizard depends on egg size. Current Biology, 19: 11021105.Google Scholar
Raigner, A. & van Bovan, J. (1955). Etude taxonomique, biologique et biométrique des Dorylus du sou-genre Anomma (Hymenoptera, Formicidae). Annales du Musée Royal du Congo Belge. Nouvelle Série. Sciences Zoologiques, 2: 1359.Google Scholar
Raikov, I. B. (1994). The diversity of forms of mitosis in protozoa: a comparative review. European Journal of Protistology, 30: 253269.Google Scholar
Ram, Y. & Hadany, L. (2016). Condition-dependent sex: who does it, when and why? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371: 20150539.Google Scholar
Ramesh, M. A., Malik, S. B. & Logsdon, J. M. (2005). A phylogenomic inventory of meiotic genes: evidence for sex in Giardia and an early eukaryotic origin of meiosis. Current Biology, 15: 185191.Google Scholar
Ramm, S. J., Poirier, M. & Scharer, L. (2015). Hypodermic self-insemination as a reproductive insurance strategy. Proceedings of the Royal Society of London. Series B, Biological Sciences, 282, 20150660.Google Scholar
Redecker, D. (2012). Glomeromycota. In Syllabus of Plant Families, 13th edn, ed. Frey, W.. Berlin; Stuttgart: Borntraeger, Vol. 1/1, pp. 163170.Google Scholar
Reinhard, F., Herle, M., Bastiansen, F. & Streit, B. (2003). Economic Impact of the Spread of Alien Species in Germany. Berlin: Federal Environmental Agency.Google Scholar
Reisinger, E., Cichocki, I., Erlach, T. & Szyskowitz, T. (1974). Ontogenetische Studien an Turbellarien: ein Beitrag zur Evolution der Dotterverarbeitung im ektolecithalen Ei. II. Zeitschrift für Zoologische Systematik und Evolutionsforschung, 12: 241278.Google Scholar
Renner, S. S. (2014). The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany 101: 15881596.Google Scholar
Ricci, C. (2001). Dormancy patterns in rotifers. Hydrobiologia, 446/447: 111.Google Scholar
Richards, A. J. (1997). Plant Breeding Systems, 2nd edn. London: Chapman & Hall.Google Scholar
Rieger, R., Michaelis, A. & Green, M. M. (1976). Glossary of Genetics and Cytogenetics. Berlin: Springer.Google Scholar
Roark, E., Guilderson, T. P., Dunbar, R. B., Fallon, S. J. & Mucciarone, D. A. (2009). Extreme longevity in proteinaceous deep-sea corals. Proceedings of the National Academy of Sciences of the United States of America, 106: 52045208.Google Scholar
Rocha, F., Guerra, A. & González, A. F. (2001). A review of reproductive strategies in cephalopods. Biological Reviews, 76: 291304.Google Scholar
Roff, D. A. (2002). Life History Evolution. Sunderland, MA: Sinauer Associates.Google Scholar
Rosenstiel, T. N., Shortlidge, E. E., Melnychenko, A. N., Pankow, J. F. & Eppley, S. M. (2012). Sex-specific volatile compounds influence microarthropod-mediated fertilization of moss. Nature, 489: 431433.Google Scholar
Ross, C. N., French, J. A. & Ortí, G. (2007). Germ-line chimerism and paternal care in marmosets (Callithrix kuhlii). Proceedings of the National Academy of Sciences of the United States of America, 104: 62786282.Google Scholar
Rouse, G. W, Goffredi, S. K. & Vrijenhoek, R. C. (2004). Osedax: bone-eating marine worms with dwarf males. Science, 305: 668671.Google Scholar
Rouse, G. W. & Pleijel, F. (2001). Polychaetes. Oxford: Oxford University Press.Google Scholar
Rouse, G. W., Wilson, N. G., Carvajal, J. I. & Vrijenhoek, R. C. (2016). New deep-sea species of Xenoturbella and the position of Xenacoelomorpha. Nature, 530: 9497.Google Scholar
Russell, P. J. (2010). iGenetics, 3rd edn. San Francisco, CA: Benjamin/Cummings.Google Scholar
Ryland, J. S. (2005). Bryozoa: an introductory overview. Denisia, 16: 920.Google Scholar
Salje, J., Gayathri, P. & Löwe, J. (2010). The ParMRC system: molecular mechanisms of plasmid segregation by actin-like filaments. Nature Reviews Microbiology, 8: 683692.Google Scholar
Sallon, S., Solowey, E., Cohen, Y. et al. (2008). Germination, genetics, and growth of an ancient date seed. Science, 320: 1464.Google Scholar
Salomon, M., Aflalo, E. D., Coll, M. & Lubin, Y. (2015). Dramatic histological changes preceding suicidal maternal care in the subsocial spider Stegodyphus lineatus (Araneae: Eresidae). Journal of Arachnology, 43: 7785.Google Scholar
Sánchez, L. (2008). Sex-determining mechanisms in insects. International Journal of Developmental Biology, 52: 837856.Google Scholar
Sano, N., Obata, M., Ooie, Y. & Komaru, A. (2011). Mitochondrial DNA copy number is maintained during spermatogenesis and in the development of male larvae to sustain the doubly uniparental inheritance of mitochondrial DNA system in the blue mussel Mytilus galloprovincialis. Development Growth and Differentiation, 53: 816821.Google Scholar
Santelices, B. (1999). How many kinds of individual are there? Trends in Ecology and Evolution, 14: 152155.Google Scholar
Santelices, B., Correa, J. A., Meneses, I., Aedo, D. & Varela, D. (1996). Sporeling coalescence and intra-clonal variation in Gracilaria chilensis (Gracilariales: Rhodophyta). Journal of Phycology, 32: 313322.Google Scholar
Sato, S., Beakes, G., Idel, M., Nagumo, T. & Mann, D. G. (2011). Novel sex cells and evidence for sex pheromones in diatoms. PLOS One, 6 (10): e26923.Google Scholar
Scali, V., Passamonti, M., Marescalchi, O. & Mantovani, B. (2003). Linkage between sexual and asexual lineages: genome evolution in Bacillus stick insects. Biological Journal of the Linnean Society, 79: 137150.Google Scholar
Schön, I. & Martens, K. (2017). Paradox of sex. In Oxford Bibliographies in Evolutionary Biology, ed. Losos, J.. Oxford: Oxford University Press. www.oxfordbibliographies.com/view/document/obo-9780199941728/obo-9780199941728-0035.xml (accessed April 2019).Google Scholar
Schön, I., Martens, K. & van Dijk, P. (eds.) (2009). Lost Sex: the Evolutionary Biology of Parthenogenesis. Berlin: Springer.Google Scholar
Schrader, F. (1923). The origin of the mycetocytes in Pseudococcus. Biological Bulletin, 40: 259270.Google Scholar
Schroeder, P. C. & Hermans, C. O. (1975). Annelida: Polychaeta. In Reproduction of Marine Invertebrates, 3. Annelids and Echiurans, ed. Giese, A. C. & Pearse, J. S.. New York, NY: Academic Press, pp. 1213.Google Scholar
Schurko, A. M. & Logsdon, J. M. Jr. (2008). Using a meiosis detection toolkit to investigate ancient asexual ‘scandals’ and the evolution of sex. BioEssays, 30: 579589.Google Scholar
Schurko, A. M., Neiman, M. & Logsdon, J. M. Jr. (2009). Signs of sex: what we know and how we know it. Trends in Ecology and Evolution, 24: 208217.Google Scholar
Schut, E., Hemmings, N. & Birkhead, T. R. (2008). Parthenogenesis in a passerine bird, the zebra finch Taeniopygia guttata. Ibis, 150: 197199.Google Scholar
Schwander, T. & Oldroyd, B. P. (2016). Androgenesis: where males hijack eggs to clone themselves. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371: 20150534.Google Scholar
Scott, R. J., Armstrong, S. J., Doughty, J. & Spielman, M. (2008). Double fertilization in Arabidopsis thaliana involves a polyspermy block on the egg but not the central cell. Molecular Plant, 1: 611619.Google Scholar
Segoli, M., Larari, A. R., Rosenheim, J. A., Bouslika, A. & Keasar, T. (2010). The evolution of polyembryony in parasitoid wasps. Journal of Evolutionary Biology, 23: 18071819.Google Scholar
Sender, R., Fuchs, S. & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLOS Biology, 14 (8): e1002533.Google Scholar
Shefferson, R. P., Jones, O. R. & Salguero-Gómez, R. (2017). The Evolution of Senescence in the Tree of Life. Cambridge: Cambridge University Press.Google Scholar
Shen-Miller, J., Mudgett, M. B., Schopf, J. W., Clarke, S. & Berger, R. (1995). Exceptional seed longevity and robust growth: ancient sacred lotus from China. American Journal of Botany, 82: 13671380.Google Scholar
Smith, R. J., Matzke-Karasz, R., Kamiya, T. & De Deckker, P. (2016). Sperm lengths of non-marine cypridoidean ostracods (Crustacea). Acta Zoologica, 97: 117.Google Scholar
Smith, S. E. & Read, D. J. (2008). Mycorrhizal Symbiosis, 3rd edn. London: Academic Press.Google Scholar
Snell, T. W., Kubanek, J., Carter, W. et al. (2006). A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Marine Biology, 149: 763773.Google Scholar
Sodmergen, Z. Q. (2010). Why does biparental plastid inheritance revive in angiosperms. Journal of Plant Research, 123: 201206.Google Scholar
Speijer, D., Lukeš, J. & Eliáš, M. (2015). Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proceedings of the National Academy of Sciences of the United States of America, 112: 88278834.Google Scholar
Spratt, B. G. (2004) Exploring the concept of clonality in bacteria. Methods in Molecular Biology, 266: 323352.Google Scholar
Stamps, J. & Krishnan, V. V. (1997). Sexual bimaturation and sexual size dimorphism in animals with asymptotic growth after maturity. Evolutionary Ecology, 11: 2139.Google Scholar
Stanley, J. S. L. (2005). The Entamoeba histolytica genome: something old, something new, something borrowed and sex too? Trends in Parasitology, 21: 451.Google Scholar
Stearns, S. C. (ed.) (1987). The Evolution of Sex and its Consequences. Basel: Birkhäuser.Google Scholar
Stearns, S. C. (1992). The Evolution of Life Histories. Oxford: Oxford University Press.Google Scholar
Stenberg, P. & Saura, A. (2009). Cytology of asexual animals. In Lost Sex, ed. Schön, I., Martens, K. & van Dijk, P., Berlin: Springer, pp. 6374.Google Scholar
Sterelny, K. & Griffiths, P. E. (1999). Sex and Death: an Introduction to the Philosophy of Biology. Chicago, IL: University of Chicago Press.Google Scholar
Stern, D. L. (1994). A phylogenetic analysis of soldier evolution in the aphid family Hormaphididae. Proceedings of the Royal Society of London. Series B, Biological Sciences, 256: 203209.Google Scholar
Stewart, D. T., Saavedra, C., Stanwood, R. R., Ball, A. O. & Zouros, E. (1995). Male and female mitochondrial DNA lineages in the blue mussel (Mytilus edulis) species group. Molecular Biology and Evolution, 12: 735747.Google Scholar
Stewart, E., Madden, R., Paul, G. & Taddei, F. (2005). Aging and death in an organism that reproduces by morphologically symmetric division. PLOS Biology, 3 (2): e45.Google Scholar
Strasburger, E., Noll, F., Schenck, H. & Schimper, A. F. W. (2002). Lehrbuch der Botanik für Hochschulen, 35th edn. Heidelberg: Spektrum-Akademischer Verlag.Google Scholar
Sweeney, B. W. & Vannote, R. L. (1982). Population synchrony in mayflies: a predator satiation hypothesis. Evolution, 36: 810821.Google Scholar
Taiz, L. & Zeiger, E. (2010). Plant Physiology, 5th edn. Sunderland, MA: Sinauer Associates.Google Scholar
Tekaya, S., Sluys, R. & Zghal, F. (1997). Sperm transfer and fertilization in the marine planarian Sabussowia dioica (Platyhelminthes, Tricladida, Maricola). Invertebrate Reproduction and Development, 32: 143147.Google Scholar
Tindale, N. B. (1932). Revision of the Australian ghost moths (Lepidoptera Homoneura, family Hepialidae) Part I. Records of the South Australian Museum, 4: 497536.Google Scholar
Tinti, F. & Scali, V. (1995). Allozymic and cytological evidence for hemiclonal, all-paternal and mosaic offspring of the hybridogenetic stick insect Bacillus rossius-grandii grandii. Journal of Experimental Zoology, 273: 149159.Google Scholar
Togashi, T. & Cox, P. A. (2001). Tidal-linked synchrony of gamete release in the marine green alga, Monostroma angicava Kjellman. Journal of Experimental Marine Biology and Ecology, 264: 117131.Google Scholar
Tripp, E. A. & Lendemer, J. C. (2018). Twenty-seven modes of reproduction in the obligate lichen symbiosis. Brittonia, 70: 114.Google Scholar
Trumbo, S. T. (2012). Patterns of parental care in invertebrates. In The Evolution of Parental Care, ed. Royle, N. J., Smiseth, P. T. & Kölliker, M.. Oxford: Oxford University Press, pp. 81100.Google Scholar
Turke, P. W. (2013). Making young from old: how is sex designed to help? Evolutionary Biology, 40: 471479.Google Scholar
van Dijk, P. (2009). Apomixis: basic for non-botanists. In Lost Sex, ed. Schön, I., Martens, K. & van Dijk, P.. Berlin: Springer, pp. 4762.Google Scholar
van Voorhies, W. A. (1992). Production of sperm reduces nematode lifespan. Nature, 360: 456458.Google Scholar
Vandel, A. (1928). La parthénogenèse geographique: contribution à l’étude biologique et cytologique de la parthénogenèse naturelle. I. Bulletin Biologique de la France et de la Belgique, 62: 164281.Google Scholar
Vandel, A. (1931). La parthénogenèse. Paris: G. Doin.Google Scholar
Vanthournout, B., Greve, M., Bruun, A. et al. (2016). Benefits of group living include increased feeding efficiency and lower mass loss during desiccation in the social and inbreeding spider Stegodyphus dumicola. Frontiers in Physiology, 7: 18.Google Scholar
Veller, C., Nowak, M. A., Davis, C. C. & Blasius, B. (2015). Extended flowering intervals of bamboos evolved by discrete multiplication. Ecology Letters, 18: 653659.Google Scholar
Verne, S., Johnson, M., Bouchon, D. & Grandjean, F. (2012). Effects of parasitic sex ratio distorters on host genetic structure in the Armadillidium vulgare-Wolbachia association. Journal of Evolutionary Biology, 25: 264276.Google Scholar
Vershinina, A. O. & Kuznetsova, V. G. (2016). Parthenogenesis in Hexapoda: Entognatha and non-holometabolous insects. Journal of Zoological Systematics and Evolutionary Research, 54: 257268.Google Scholar
Vila-Farré, M. & Rink, J. C. (2018). The ecology of freshwater planarians. In Planarian Regeneration: Methods and Protocols, ed. Rink, J. C.. Methods in Molecular Biology, 1774. New York, NY: Springer, pp. 173205.Google Scholar
Vogt, G. (2016). Structural specialties, curiosities and record-breaking features of crustacean reproduction. Journal of Morphology, 277: 13991422.Google Scholar
Voigt, K. (2012). Chytridiomycota, Zygomycota. In Syllabus of Plant Families, 13th edn, ed. Frey, W.. Berlin; Stuttgart: Borntraeger, Vol. 1/1, pp. 106162.Google Scholar
Volff, J.-N. & Schartl, M. (2001). Variability of genetic sex determination in poeciliid fishes. Genetica, 111: 101110.Google Scholar
Vortsepneva, E., Tzetlin, A., Purschke, G. et al. (2008). The parasitic polychaetes known as Asetocalamyzas laonicola (Calamyzidae) is in fact the dwarf male of the spionid Scolelepis laonicola (comb. nov.). Invertebrate Biology, 124: 403416.Google Scholar
Wang, H., Matsushita, M., Tomaru, N. & Nakagawa, M. (2017). Sex change in the subdioecious shrub Eurya japonica (Pentaphylacaceae). Ecology and Evolution, 7: 23402345.Google Scholar
Warburg, M. R. (2011). Scorpion reproductive strategies, allocation and potential: a partial review. European Journal of Entomology, 108: 173181.Google Scholar
Waters, E., Hohn, M. J., Ahel, I. et al. (2003). The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proceedings of the National Academy of Sciences of the United States of America, 100: 1298412988.Google Scholar
Weismann, A. (1892). Das Keimplasma. Eine Theorie der Vererbung. Jena: Fischer.Google Scholar
Werner, B. (1955). On the development and reproduction of the anthomedusan Margelopsis haeckeli Hartlaub. Annals of the New York Academy of Sciences, 62: 129.Google Scholar
Werner, B., (1963). Effect of some environmental factors on differentiation and determination in marine Hydrozoa, with a note on their evolutionary significance. Annals of the New York Academy of Sciences, 105: 461488.Google Scholar
Westneat, D. & Foz, C. (eds.) (2010). Evolutionary Behavioral Ecology. Oxford: Oxford University Press.Google Scholar
White, M. J. D. (1973). Animal Cytology and Evolution. Cambridge: Cambridge University Press.Google Scholar
White, M. J. D. (1984). Chromosomal mechanisms in animal reproduction. Bollettino di Zoologia, 51: 123.Google Scholar
Whiting, P. W. (1943). Multiple alleles in complementary sex determination of Habrobracon. Genetics, 28: 365382.Google Scholar
Whittle, C. A., & Extavour, C. G. (2017). Causes and evolutionary consequences of primordial germ-cell specification mode in metazoans. Proceedings of the National Academy of Sciences of the United States of America, 114: 57845791.Google Scholar
Wilkinson, M., Sherratt, E., Starace, F. & Gower, D. J. (2013). A new species of skin-feeding caecilian and the first report of reproductive mode in Microcaecilia (Amphibia: Gymnophiona: Siphonopidae). PLOS One, 8 (3): e57756.Google Scholar
Williams, C. G. (2009). Conifer Reproductive Biology. Dordrecht: Springer.Google Scholar
Williamson, D. J. (2006). Hybridization in the evolution of animal form and life-cycle. Biological Journal of the Linnean Society, 148: 585602.Google Scholar
Wilson, J. (1999). Biological Individuality: the Identity and Persistence of Living Entities. Cambridge: Cambridge University Press.Google Scholar
Wittgenstein, L. (1953). Philosophical Investigations. Cambridge: Basil Blackwell.Google Scholar
Wolff, N. C., Gandre, S., Kalinin, A. & Gemmell, N. J. (2008). Delimiting the frequency of paternal leakage of mitochondrial DNA in chinook salmon. Genetics, 179: 10291032.Google Scholar
Wolpert, L. (2007). Principles of Development, 3rd edn. New York, NY: Oxford University Press.Google Scholar
Wourms, J. P. (1981). Viviparity: the maternal–fetal relatioship in fishes. American Zoologist, 21: 473515.Google Scholar
Wyatt, T. D. (2014). Pheromones and Animal Behavior: Chemical Signals and Signatures, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Yashina, S., Gubin, S., Maksimovich, S. et al. (2012). Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. Proceedings of the National Academy of Sciences of the United States of America, 109: 40084013.Google Scholar
Yoshizawa, K., Ferreira, R. L., Kamimura, Y. & Lienhard, C. (2014). Female penis, male vagina, and their correlated evolution in a cave insect. Current Biology, 24: 10061010.Google Scholar
Zattara, E. E. & Bely, A. E. (2016). Phylogenetic distribution of regeneration and asexual reproduction in Annelida: regeneration is ancestral and fission evolves in regenerative clades. Invertebrate Biology, 135: 400414.Google Scholar
Zimmer, R. L. (1997). Phoronids, brachiopods, and bryozoans, the lophophorates. In Embryology: Constructing the Organism, ed. Gilbert, S. F. & Raunio, A. M.. Sunderland, MA: Sinauer Associates, pp. 279305.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Giuseppe Fusco, Università degli Studi di Padova, Italy, Alessandro Minelli, Università degli Studi di Padova, Italy
  • Book: The Biology of Reproduction
  • Online publication: 30 September 2019
  • Chapter DOI: https://doi.org/10.1017/9781108758970.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Giuseppe Fusco, Università degli Studi di Padova, Italy, Alessandro Minelli, Università degli Studi di Padova, Italy
  • Book: The Biology of Reproduction
  • Online publication: 30 September 2019
  • Chapter DOI: https://doi.org/10.1017/9781108758970.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Giuseppe Fusco, Università degli Studi di Padova, Italy, Alessandro Minelli, Università degli Studi di Padova, Italy
  • Book: The Biology of Reproduction
  • Online publication: 30 September 2019
  • Chapter DOI: https://doi.org/10.1017/9781108758970.012
Available formats
×