Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-30T00:27:50.119Z Has data issue: false hasContentIssue false

4 - Conservation, Logistics, and Risk Analysis

Published online by Cambridge University Press:  24 January 2025

Sven Gjedde Sommer
Affiliation:
Aarhus Universitet, Denmark
Morten Lykkegaard Christensen
Affiliation:
Aalborg University, Denmark
Birgir Norddahl
Affiliation:
University of Southern Denmark
Morten Ambye-Jensen
Affiliation:
Aarhus Universitet, Denmark
Maria Cinta Roda-Serrat
Affiliation:
University of Southern Denmark
Get access

Summary

Users of biomass must know when the biomass is going to be delivered, which can either be seasonal or a constant delivery of biomass over the year, and they will demand a biomass of the right quality. This is obviously a challenge for the supply chain of biomass because most biomass from land or the ocean is harvested at intervals, and until used the organic components in the biomass is at risk of being lost or transformed. Our task is to provide economical and sustainable methods to store the biomass, avoiding unwanted transformation and loss of the organic components, and to reduce transport costs and spoiling. Therefore, before we make a decision on biomass management, the right logistics of sowing, harvesting, transport, storing, and pretreatment must be considered. For this purpose, you will need to have insight on pretreatment and conservation technologies, storage, transport, and transformation of biomass during handling. Knowledge that will be provided in this chapter.

Type
Chapter
Information
Bioprocesses
A Comprehensive Guide to Sustainable Resources in the Non-Fossil Era
, pp. 118 - 172
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hermansen, J. E., Jørgensen, U., Lærke, P. E., Manevski, K., Boelt, B., Jensen, S. K., et al. (2017). Green Biomass: Protein Production through Bio-refining. Silkeborg: DCA - Danish Centre for Food and Agriculture, 2017. 72 s. (DCA report; Nr. 093).Google Scholar
Engstrom, J., Gunnarson, C., Baky, A., Sindhøj, E., Eksvard, J., Orvendal, J., and Sjoholm, N. (2015). Energieffektivisering av jordbrukets logistik. JTI-rapport, Lantbruk & Industri nr. 441, Sverige.Google Scholar
Hess, J., Kenney, K. L., Ovard, L. P., Searcy, E. M., and Wright, C. T. (2009). Uniform-format bioenergy feedstock supply system design report series. In Uniform-Format Vision and Conventional-Bale Supply System, Volume A. Idaho: Idaho National Lab (INL), 14.Google Scholar
Ebadian, M., Sowlati, T., Sokhansanj, S., Stumborg, M., and Townley-Smith, L. (2011). A new simulation model for multi-agricultural biomass logistics system in bioenergy production. Biosystem Engineering 110(3), 280290. doi: 10.1016/j.biosystemseng.2011.08.008.CrossRefGoogle Scholar
Borreani, G., Tabacco, E., and Ciotti, A. (1999). Effects of mechanical conditioning on wilting of alfalfa and Italian ryegrass for ensiling. Agronomy Journal 91, 457463. doi: 10.2134/agronj1999.00021962009100030016x. Fig 4.5.CrossRefGoogle Scholar
Skovrup, M. J., and Holm, H. V. (2021). DTU, Dept. of Energy Engineering, downloaded from internet (general search), November 22, 2021.Google Scholar
Kristensen, E., and Gundtoft, S. (2003). Tørring af korn i lagertørringsanlæg Drift, tørringsstrategi og energiforbrug. Forskningscenter Bygholm, Teknologisk Institut, Energi. Grøn Viden. Markbrug nr. 282. July, pp. 8.Google Scholar
Kristensen, E. F. (2010). Tørring og lagring af korn og frøafgrøder. DJF Rapport Markbrug; No. 145. Aarhus: Aarhus Universitet, Det Jordbrugsvidenskabelige Fakultet. doi: 10.1002/bbb.129.Google Scholar
Stelte, W., Sanadi, A. R., Shang, L., Holm, J. K., Ahrenfeldt, J., and Henriksen, U. B. (2012). Recent developments in biomass palletization: A review. BioResources 7(3), 44514490.CrossRefGoogle Scholar
Alakangas, E., and Paju, P. (2002). Wood Pellets in Finland, Technology, Economy and Market. OPET 5 Report. Jyväskyla: VTT Technical Research Centre of Finland.Google Scholar
Shang, L., Ahrenfeldt, J., Holm, J. K., Sanadi, A. R., Barsberg, S., Thomsen, T., et al. (2012). Changes of chemical and mechanical behavior of torrefied wheat straw. Biomass and Bioenergy 40, 6370. doi: 10.1016/j.biombioe.2012.01.0.CrossRefGoogle Scholar
Rodriguez, C., Alaswad, A., Benyounis, K. Y., and Olabi, A. G. (2017). Pretreatment techniques used in biogas production from grass. Renewable and Sustainable Energy Reviews 68(2), 11931204. doi: 10.1016/j.rser.2016.02.022.CrossRefGoogle Scholar
Borreani, G., Tabacco, E., Schmidt, R. J., Holmes, B. J., and Muck, R. E. (2018). Silage review: Factors affecting dry matter and quality losses in silages. Journal of Dairy Science 101(5), 39523979.CrossRefGoogle ScholarPubMed
Klevenhusen, F., and Zebeli, Q. (2021). A review on the potentials of using feeds rich in water-soluble carbohydrates to enhance rumen health and sustainability of dairy cattle production. Journal of Science Food and Agriculture 101, 57375746.CrossRefGoogle Scholar
Weissbach, F. (1996). New developments in crop conservation. In: Jones, D. I. H. Dewhurst, R., Merry, R., and Haigh, P. M., eds. 11th International Silage Conference, Aberystwyth, Wales, 11–25.Google Scholar
Herrmann, C., FitzGerald, J., O’Shea, R., Xia, A., O’Kiely, P., and Murphy, J. D. (2015). Ensiling of seaweed for a seaweed biofuel industry. Bioresource Technology 196, 301313. doi: 10.1016/j.biortech.2015.07.098.CrossRefGoogle ScholarPubMed
Gebrehanna, M. M., Gordon, R. J., Madani, A., VanderZaag, A. C., and Wood, J. D. (2014). Silage effluent management: A review. Journal Environmental Management 143, 113122. doi: 10.1016/j.jenvman.2014.04.012.CrossRefGoogle ScholarPubMed
Kung, L. Jr, Shaver, R. D., Grant, R. J., and Schmidt, R. J. (2018). Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science 101(5), 40204033. doi: 10.3168/jds.2017-13909.CrossRefGoogle ScholarPubMed
Muck, R. E., Nadeau, E. M. G., McAllister, T. A., Contreras-Govea, F. E., Santos, M. C., and Kun, L. (2018). Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science 101(5), 39804000. doi: 10.3168/jds.2017-13839.CrossRefGoogle ScholarPubMed
Ni, K., Wang, F., Zhu, B., Yang, J., Zhou, G., Pan, Y., et al. (2017). Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresource Technology 238, 706715. doi: 10.1016/j.biortech.2017.04.055.CrossRefGoogle ScholarPubMed
Triolo, J. M., Pedersen, L., Qu, H., and Sommer, S. G. (2012). Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production, Bioresource Technology 125, 226232. doi: 10.1016/j.biortech.2012.08.079.CrossRefGoogle ScholarPubMed
Larsen, S. U., Hjort-Gregersen, K., Heidarzadeh Vazifehkhoran, A., and Triolo, J. M. (2017). Co-ensiling of straw with sugar beet leaves increases the methane yield from straw. Bioresource Technology 245, 106115. doi: 10.1016/j.biortech.2017.08.117.CrossRefGoogle ScholarPubMed
Vazifehkhoran, A. H., Triolo, J. M., Larsen, S. U., Stefanek, K., and Sommer, S. G. (2016). Assessment of the variability of biogas production from sugar beet silage as affected by movement and loss of the produced alcohols and organic acids. Energies 9(368), 111. doi: 10.3390/en9050368.Google Scholar
Gallagher, J. A., Turner, L. B., Adams, J. M. M., Dyer, P. W., and Theodorou, M. K. (2017). Dewatering treatments to increase dry matter content of the brown seaweed, kelp (Laminaria digitata ((Hudson) JV Lamouroux)). Bioresource Technology 224, 662669. doi: 10.1016/j.biortech.2016.11.091.CrossRefGoogle ScholarPubMed
Gallagher, J. A., Turner, L. B., Adams, J. M. M., Barrento, S., Dyer, P. W., and Theodorou, M. K. (2018). Species variation in the effects of dewatering treatment on macroalgae. Journal of Applied Phycology 30(4), 23052316. doi: 10.1007/s10811-018-1420-7.CrossRefGoogle ScholarPubMed
Larsen, S. U., Maa, N., Hou, X., Bruhn, A., Boderskov, T., MacLeodd, S., et al. (2020). Ensiling of sugar kelp biomass for biorefining. Biomass and Bioenergy 151, #106134. doi: 10.1016/j.biombioe.2021.106134.CrossRefGoogle Scholar
Sandbakken, I. S., Sæther, M., Funderud, J., and Aasen, I. M. (2018). Acid preservation of Saccharina latissima for application as a carbon source for fermentation to biofuels and chemicals. Journal of Applied Phycology 30, 35813588.CrossRefGoogle Scholar
Samsel, K., and Meghani, A. (2021). The effects of commercial freezing on vitamin concentrations in spinach (Spinacia oleracea). Journal of Undergraduate Life Science 15(1), 935. doi: 10.33137/juls.v15i1.37032.CrossRefGoogle Scholar
van der Sman, R. G. M. (2020). Impact of processing factors on quality of frozen vegetables and fruits. Food Engineering Review 12, 399420. doi: 10.1007/s12393-020-09216-1.CrossRefGoogle Scholar
Authelin, J.-R., Rodrigues, M. A., Tchessalov, S., Singh, S. K., McCoy, T., Wang, S., and Shalaev, E. (2020). Freezing of biologicals revisited: Scale, stability, excipients, and degradation stresses, review. Journal of Pharmaceutical Science 109(1), 4461. doi: 10.1016/j.xphs.2019.10.062.CrossRefGoogle Scholar
Ratti, C. (2001). Hot air and freeze-drying of high-value foods: A review. Journal of Food Engineering 49(4), 311319. doi: 10.1016/s0260-8774(00)00228-4.CrossRefGoogle Scholar
Fellows, P. (2017). Freeze drying and freeze concentration. In Food Processing Technology: Principles and Practice, 4th ed. Kent: Woodhead Publishing, 929940.CrossRefGoogle Scholar
Stark, B., Pabst, G., and Prassl, R. (2010). Long-term stability of sterically stabilized liposomes by freezing and freeze-drying: Effects of cryoprotectants on structure. European Journal of Pharmaceutical Sciences 41, 546555. doi: 10.1016/j.ejps.2010.08.010.CrossRefGoogle ScholarPubMed
Ko, S., Lautala, P., and Handler, R. M. (2018). Securing the feedstock procurement for bioenergy products: A literature review on the biomass transportation and logistics. Journal of Cleaner Production 200, 205218. doi: 10.1016/j.jclepro.2018.07.241.CrossRefGoogle Scholar
Kudakasseril, K. J., Raveendran, N. G., Hussain, A., and Vijaya Raghavan, G. S. (2013). Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review. Renewable and Sustainable Energy Reviews 25, 205219. doi: 10.1016/j.rser.2013.04.019.CrossRefGoogle Scholar
Sarkar, B., Mridha, B., Pareek, S., Sarkar, M., and Thangavelu, L. (2021). A flexible biofuel and bioenergy production system with transportation disruption under a sustainable supply chain network. Journal of Cleaner Production 317. #128079. doi: 10.1016/j.jclepro.2021.128079.CrossRefGoogle Scholar
Ekşioǧlu, S. D., Acharya, A., Leightley, L. E., and Arora, S. (2009). Analyzing the design and management of biomass-to-biorefinery supply chain. Computers and Industrial Engineering 57(4), 13421352. doi: 10.1016/j.cie.2009.07.003.CrossRefGoogle Scholar
Mafakheri, F., and Nasiri, F. (2014). Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions. Energy Policy 67, 116126. doi: 10.1016/j.enpol.2013.11.071.CrossRefGoogle Scholar
Hong, J., Feng, K., and Xie, Y. (2016). A simulation-based robust biofuel facility location model for an integrated bio-energy logistics network. Journal of Industrial Engineering and Man 7(5), 14151432. doi: 10.3926/jiem.1196.Google Scholar
Sun, O., and Fan, N. (2020). A review on optimization methods for biomass supply chain: Models and algorithms, sustainable issues, and challenges and opportunities. Process Integration and Optimization for Sustainability 4(3), 203226. doi: 10.1007/s41660–020-00108-9.CrossRefGoogle Scholar
Zahraee, S. M., Shiwakoti, N., and Stasinopoulos, P. (2020). Biomass supply chain environmental and socio-economic analysis: 40-years comprehensive review of methods, decision issues, sustainability challenges, and the way forward. Biomass and Bioenergy 142, #105777. doi: 10.1016/j.biombioe.2020.105777.CrossRefGoogle Scholar
Rentizelas, A. A. (2013). Biomass supply chains. In Rosendahl, L. (ed.), Biomass Combustion Science, Technology and Engineering. Cambridge: Woodhead Publishing, 935. doi: 10.1533/9780857097439.1.9.CrossRefGoogle Scholar
Grossauer, F., and Stoeglehner, G. (2020). Bioeconomy: Spatial requirements for sustainable development. Sustainability 12(5). #1877. doi: 10.3390/su12051877.CrossRefGoogle Scholar
Liobikienė, G., and Poškus, M. S. (2019). The importance of environmental knowledge for private and public sphere pro-environmental behavior: Modifying the value-belief-norm theory. Sustainability 11, 3324. doi: 10.3390/su11123324.CrossRefGoogle Scholar
Salvador, R., Puglieri, F. N., Halog, A., Andrade, F. G. D., Piekarski, C. M., and De Francisco, A. C. (2021). Key aspects for designing business models for a circular bioeconomy. Journal of Cleaner Production 278, #124341. doi: 10.1016/j.jclepro.2020.124341.CrossRefGoogle Scholar
Patel, P., Vaezi, M., Sebastian, R. M., and Kumar, A. (2021). The development of a GIS-based framework to locate biomass and municipal solid waste collection points for an optimal waste conversion facility. Transactions of the American Society of Agricultural and Biological Engineers 64(5), 16711691. doi: 10.13031/trans.14253.Google Scholar
Gold, S., and Seuring, S. (2011). Supply chain and logistics issues of bio-energy production. Journal of Cleaner Production 19(1), 3242. doi: 10.1016/j.jclepro.2010.08.009.CrossRefGoogle Scholar
Searcy, E., Flynn, P., Ghafoori, E., and Kumar, A. (2007) The relative cost of biomass energy transport. Applied Biochemestry and Biotechnology 137, 639652. doi: 10.1007/s12010-007-9085-8.Google ScholarPubMed
Miao, Z., Shastri, Y., Grift, T. E., and Hansen, A. C. (2012). Lignocellulosic biomass feedstock transportation alternatives, logistics, equipment configurations, and modeling. Biofuels Bioproducts and Biorefining 6(3), 351362. doi: 10.1002/bbb.1322.CrossRefGoogle Scholar
Dijkman, T. J., Basset-Mens, C., Antón, A., and Núñez, M. (2018). LCA of food and agriculture. In: Hauschild, M., Rosenbaum, R., and Olsen, S. (eds.), Life Cycle Assessment. Cham: Springer, 129. doi: 10.1007/978-3-319-56475-3_29.Google Scholar
U. S. Geological Survey. (2022). What is a geographic information system (GIS)? Available at www.usgs.gov/faqs/what-geographic-information-system-gis#:~:text=A (last accessed June 4, 2024).Google Scholar
Araújo, R., Vázquez Calderón, F., Sánchez López, J., Azevedo, I. C., Bruhn, A., Fluch, S., et al. (2021) Current status of the algae production industry in Europe: An emerging sector of the blue bioeconomy. Frontiers in Marine Science 7, #626389. doi: 10.3389/fmars.2020.626389.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×