Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-31T15:49:49.961Z Has data issue: false hasContentIssue false

7 - Pretreatment of Biomass: Structural Modification, Preparation, and Fractionation of Biomass for Further Conversion

Published online by Cambridge University Press:  24 January 2025

Sven Gjedde Sommer
Affiliation:
Aarhus Universitet, Denmark
Morten Lykkegaard Christensen
Affiliation:
Aalborg University, Denmark
Birgir Norddahl
Affiliation:
University of Southern Denmark
Morten Ambye-Jensen
Affiliation:
Aarhus Universitet, Denmark
Maria Cinta Roda-Serrat
Affiliation:
University of Southern Denmark
Get access

Summary

This chapter delves into the crucial step of biomass pretreatment and its significance in a biorefinery. It begins by introducing a comprehensive definition of a biorefinery and the importance of pretreatment in biorefining. Various pretreatment methods, their advantages, disadvantages, and accompanying structural modifications to the biomass are explained. The general focus is on the impact of pretreatment on enzyme hydrolysis, an essential step in biomass conversion to renewable sugars for producing various bioproducts, including biofuels and biopolymers such as bioplastics. The chapter further discusses how pretreatments, if not balanced, could also contribute to downstream processing challenges, such as the generation of inhibitors. The chapter provides a comprehensive guide to grasping the necessity of pretreatment in biomass utilization for sustainable biorefining.

Type
Chapter
Information
Bioprocesses
A Comprehensive Guide to Sustainable Resources in the Non-Fossil Era
, pp. 265 - 294
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cherubini, F., Jungmeier, G., Wellisch, M., Willke, T., Skiadas, I., van Ree, R., and de Jong, E. (2009). Toward a common classification approach for biorefinery systems. Biofuels, Bioproducts and Biorefining 3(5), 534546. doi: 10.1002/bbb.172.CrossRefGoogle Scholar
Galbe, M., and Wallberg, O. (2019). Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials. Biotechnology for Biofuels 12, 294. doi: 10.1186/s13068-019-1634-1.CrossRefGoogle ScholarPubMed
Rubin, E. M. (2008). Genomics of cellulosic biofuels. Nature 454, 841845. doi: 10.1038/nature07190.CrossRefGoogle ScholarPubMed
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., and Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96(6), 673686. doi: 10.1016/j.biortech.2004.06.025.CrossRefGoogle ScholarPubMed
Alizadeh, H., Teymouri, F., Gilbert, T. I., and Dale, B. E. (2005). Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Biotechnology 124, 1. doi: 10.1385/ABAB:124:1-3:1133.Google Scholar
Rezende, C. A., Atta, B. W., Breitkreitz, M. C., Simister, R., Gomez, L. D., and McQueen-Mason, S. J. (2018). Optimization of biomass pretreatments using fractional factorial experimental design. Biotechnology for Biofuels 11, 206. doi: 10.1186/s13068-018-1200-2.CrossRefGoogle ScholarPubMed
Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., and Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Research 2011, 787532. doi: 10.4061/2011/787532.CrossRefGoogle ScholarPubMed
Sindhu, R., Binod, P., and Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass: An overview. Bioresource Technology 199, 7682. doi: 10.1016/j.biortech.2015.08.030.CrossRefGoogle ScholarPubMed
Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., and Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances 29(6), 675685. doi: 10.1016/j.biotechadv.2011.05.005.CrossRefGoogle ScholarPubMed
Langsdorf, A., Volkmar, M., Holtmann, D., and Ulber, R. (2021). Material utilization of green waste: A review on potential valorization methods. Bioresources and Bioprocessing 8, 19. doi: 10.1186/s40643-021-00367-5.CrossRefGoogle ScholarPubMed
Rabelo, S. C., Brenelli, L. B., Pin, T. C., Scopel, E., and de Costa, A. C. (2023). Pretreatments as a key for enzymatic hydrolysis of lignocellulosic biomass. In: Goldbeck, R., and Poletto, P. (eds.), Polysaccharide-Degrading Biocatalysts. Cambridge, MA: Academic Press, 109137.CrossRefGoogle Scholar
Carvalheiro, F., Duarte, L. C., and Gírio, F. M. (2008). Hemicellulose biorefineries: A review on biomass pretreatments. Journal of Scientific and Industrial Research 67(11), 849864.Google Scholar
Moirangthem, K., Greetham, D., Craigon, J., and Tucker, G. (2022). Impact of mixed feedstock of wheat straw, willow and Miscanthus on enzymatic hydrolysis and inhibitor production after microwave hydrothermal pre-treatment in Europe. Biofuels 13(6), 727734. doi: 10.1080/17597269.2021.1894782.CrossRefGoogle Scholar
Overend, R. P., and Chornet, E. (1987). Fractionation of lignocellulosics by steam-aqueous pretreatments. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 321(1561), 523536. doi: 10.1098/rsta.1987.0029.Google Scholar
Chum, H. L., Johnson, D. K., and Black, S. K. (1990). Organosolv pretreatment for enzymic hydrolysis of poplars. 2. Catalyst effects and the combined severity parameter. Industrial & Engineering Chemistry Research 29(2), 156162. doi: 10.1021/ie00098a003.CrossRefGoogle Scholar
Haldar, D., and Purkait, M. K. (2021). A review of the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere 264, 128523. doi: 10.1016/j.chemosphere.2020.128523.CrossRefGoogle ScholarPubMed
Raj, T., Chandrasekhar, K., Naresh Kumar, A., Rajesh Banu, J., Yoon, J.-J., Kant Bhatia, S., et al. (2022). Recent advances in commercial biorefineries for lignocellulosic ethanol production: Current status, challenges and future perspectives. Bioresource Technology 344, 126292. doi: 10.1016/j.biortech.2021.126292.CrossRefGoogle ScholarPubMed
Dobbelaere, S., Anthonis, T., and Soetaert, W. (2014). Conversion technologies for the production of liquid fuels and biochemicals. In: Karlen, D. L. (ed.), Cellulosic Energy Cropping Systems. Hoboken, NJ: Wiley, 1530.CrossRefGoogle Scholar
Rajendran, K., Drielak, E., Varma, V. S., Muthusamy, S., and Kumar, G. (2018). Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production: A review. Biomass Conversion and Biorefinery 8, 471483. doi: 10.1007/s13399-017-0269-3.CrossRefGoogle Scholar
Amin, F. R., Khalid, H., Zhang, H., Rahman, S. u., Zhang, R., Liu, G., and Chen, C. (2017). Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7, 72. doi: 10.1186/s13568-017-0375-4.CrossRefGoogle ScholarPubMed
Kratky, L., and Jirout, T. (2011). Biomass size reduction machines foe enhancing biogas production. Chemical Engineering & Technology 34(3), 391399. doi: 10.1002/ceat.201000357.CrossRefGoogle Scholar
Taherzadeh, M. J., and Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences 9(9), 16211651. doi: 10.3390/ijms9091621.CrossRefGoogle ScholarPubMed
Licari, A., Monlau, F., Solhy, A., Buche, P., and Barakat, A. (2016). Comparison of various milling modes combined to the enzymatic hydrolysis of lignocellulosic biomass for bioenergy production: Glucose yield and energy efficiency. Energy 102, 335342. doi: 10.1016/j.energy.2016.02.083.CrossRefGoogle Scholar
Bensah, E. C., and Mensah, M. (2013). Chemical pretreatment methods for the production of cellulosic ethanol: Technologies and innovations. International Journal of Chemical Engineering. doi: 10.1155/2013/719607.CrossRefGoogle Scholar
Sun, Y., and Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production; A review. Bioresource Technology 83(1), 111. doi: 10.1016/S0960-8524(01)00212-7.CrossRefGoogle ScholarPubMed
Bobleter, O. (1994). Hydrothermal degradation of polymers derived from plants. Progress in Polymer Science 19(5), 797841. doi: 10.1016/0079-6700(94)90033-7.CrossRefGoogle Scholar
Kucharska, K., Rybarczyk, P., Hołowacz, I., Łukajtis, R., Glinka, M., and Kamiński, M. (2018). Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23(11), 2937. doi: 10.3390/molecules23112937.CrossRefGoogle ScholarPubMed
Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., and Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research 6. doi: 10.3389/fenrg.2018.00141.CrossRefGoogle Scholar
Singh, R., Shukla, A., Tiwari, S., and Srivastava, M. (2014). A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renewable and Sustainable Energy Reviews 32, 713728. doi: 10.1016/j.rser.2014.01.051.CrossRefGoogle Scholar
da Silva, A. R. G., Giuliano, A., Errico, M., Rong, B.-G., and Barletta, D. (2019). Economic value and environmental impact analysis of lignocellulosic ethanol production: Assessment of different pretreatment processes. Clean Technologies and Environmental Policy 21, 637654. doi: 10.1007/s10098-018-01663-z.CrossRefGoogle Scholar
Bali, G., Meng, X., Deneff, J. I., Sun, Q., and Ragauskas, A. J. (2015). The effect of alkaline pretreatment methods on cellulose structure and accessibility. ChemSusChem 8(2), 275279. doi: 10.1002/cssc.201402752.CrossRefGoogle ScholarPubMed
Sun, S., Sun, S., Cao, X., and Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology 199, 4958. doi: 10.1016/j.biortech.2015.08.061.CrossRefGoogle ScholarPubMed
Badiei, M., Asim, N., Jahim, J. M., and Sopian, K. (2014). Comparison of chemical pretreatment methods for cellulosic biomass. APCBEE Procedia 9, 170174. doi: 10.1016/j.apcbee.2014.01.030.CrossRefGoogle Scholar
Zhang, Z., Xie, Y., He, X., Li, X., Hu, J., Ruan, Z., et al. (2016). Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncolb by Bacillus coagulans using simultaneous saccharification and fermentation. Scientific Reports 6, 37245. doi: 10.1038/srep37245.CrossRefGoogle Scholar
Costa, S. P. F., Azevedo, A. M. O., Pinto, P. C. A. G., and Saraiva, M. L. M. F. S. (2017). Environmental impact of ionic liquids: Recent advances in (eco)toxicology and (bio)degradability. ChemSusChem 10(11), 23212347. doi: 10.1002/cssc.201700261.CrossRefGoogle ScholarPubMed
Yoo, C. G., Pu, Y., and Ragauskas, A. J. (2017). Ionic liquids: Promising green solvents for lignocellulosic biomass utilization. Current Opinion in Green and Sustainable Chemistry 5, 511. doi: 10.1016/j.cogsc.2017.03.003.CrossRefGoogle Scholar
Hossain, M. M., Rawal, A., and Aldous, L. (2019). Aprotic vs protic ionic liquids for lignocellulosic biomass pretreatment: Anion effects, enzymatic hydrolysis, solid-state NMR, distillation, and recycle. ACS Sustainable Chemistry & Engineering 7(14), 1192811936. doi: 10.1021/acssuschemeng.8b05987.Google Scholar
Hummel, M., Michud, A., Tanttu, M., Asaadi, S., Ma, Y., Hauru, L. K. J., et al. (2016). Ionic Liquids for the Production of Man-Made Cellulosic Fibers: Opportunities and Challenges. Cham: Springer International Publishing.Google Scholar
Zdanowicz, M., Wilpiszewska, K., and Spychaj, T. (2018). Deep eutectic solvents for polysaccharides processing. A review. Carbohydrate Polymers 200, 361380. doi: 10.1016/j.carbpol.2018.07.078.CrossRefGoogle ScholarPubMed
Smith, E. L., Abbott, A. P., and Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical Reviews 114(21), 1106011082. doi: 10.1021/cr300162p.CrossRefGoogle ScholarPubMed
Yu, Q., Qin, L., Liu, Y., Sun, Y., Xu, H., Wang, Z., and Yuan, Z. (2019). In situ deep eutectic solvent pretreatment to improve lignin removal from garden wastes and enhance production of bio-methane and microbial lipids. Bioresource Technology 271, 210217. doi: 10.1016/j.biortech.2018.09.056.CrossRefGoogle ScholarPubMed
Yao, L., Yoo, C. G., Pu, Y., Meng, X., Muchero, W., Tuskan, G. A., et al. (2019). Physicochemical changes of cellulose and their influences on Populus trichocarpa digestibility after different pretreatments. BioRes 14(4), 96589676.CrossRefGoogle Scholar
Zhang, K., Pei, Z., and Wang, D. (2016). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology 199, 2133. doi: 10.1016/j.biortech.2015.08.102.CrossRefGoogle ScholarPubMed
Borand, M. N., Karaosmanoğlu, F. (2018). Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: A review. Journal of Renewable and Sustainable Energy 10(3). doi: 10.1063/1.5025876.CrossRefGoogle Scholar
Kumar, S., Gupta, R., Lee, Y. Y., and Gupta, R. B. (2010). Cellulose pretreatment in subcritical water: Effect of temperature on molecular structure and enzymatic reactivity. Bioresource Technology 101(4), 13371347. doi: 10.1016/j.biortech.2009.09.035.CrossRefGoogle ScholarPubMed
Bouchard, J., Nguyen, T. S., Chornet, E., and Overend, R. P. (1991). Analytical methodology for biomass pretreatment. Part 2: Characterization of the filtrates and cumulative product distribution as a function of treatment severity. Bioresource Technology 36(2), 121131. doi: 10.1016/0960-8524(91)90169-K.CrossRefGoogle Scholar
Li, H.-Q., Jiang, W., Jia, J.-X., and Xu, J. (2014). pH pre-corrected liquid hot water pretreatment on corn stover with high hemicellulose recovery and low inhibitors formation. Bioresource Technology 153, 292299. doi: 10.1016/j.biortech.2013.11.089.CrossRefGoogle ScholarPubMed
Aguilar, D. L., Rodríguez-Jasso, R. M., Zanuso, E., de Rodríguez, D. J., Amaya-Delgado, L., Sanchez, A., and Ruiz, H. A. (2018). Scale-up and evaluation of hydrothermal pretreatment in isothermal and non-isothermal regimen for bioethanol production using agave bagasse. Bioresource Technology 263, 112119. doi: 10.1016/j.biortech.2018.04.100.CrossRefGoogle ScholarPubMed
Kim, D. (2018). Physico-chemical conversion of lignocellulose: Inhibitor effects and detoxification strategies: A mini review. Molecules 23(2), 309. doi: 10.3390/molecules23020309.CrossRefGoogle ScholarPubMed
Yu, G., Yano, S., Inoue, H., Inoue, S., Endo, T., and Sawayama, S. (2010). Pretreatment of rice straw by a hot-compressed water frocess for enzymatic hydrolysis. Applied Biochemistry and Biotechnology 160, 539551. doi: 10.1007/s12010-008-8420-z.CrossRefGoogle ScholarPubMed
Rabemanolontsoa, H., and Saka, S. (2016). Various pretreatments of lignocellulosics. Bioresource Technology 199, 8391. doi: 10.1016/j.biortech.2015.08.029.CrossRefGoogle ScholarPubMed
Chen, H.-Z., and Liu, Z.-H. (2015). Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnology Journal 10(6), 866885. doi: 10.1002/biot.201400705.CrossRefGoogle ScholarPubMed
Duff, S. J. B., and Murray, W. D. (1996). Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresource Technology 55(1), 133. doi: 10.1016/0960-8524(95)00122-0.CrossRefGoogle Scholar
O’Dwyer, J. P., Zhu, L., Granda, C. B., Chang, V. S., and Holtzapple, M. T. (2008). Neural network prediction of biomass digestibility based on structural features. Biotechnology Progress 24(2), 283292. doi: 10.1021/bp070193v.Google ScholarPubMed
Bondesson, P.-M., Galbe, M., and Zacchi, G. (2013). Ethanol and biogas production after stream pretreatment of corn stover with or without the addition of sulphuric acid. Biotechnology for Biofuels 6, 11. doi: 10.1186/1754-6834-6-11.CrossRefGoogle ScholarPubMed
Kumar, P., Barrett, D. M., Delwiche, M. J., and Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research 48(8), 37133729. doi: 10.1021/ie801542g.CrossRefGoogle Scholar
Aguilar-Reynosa, A., Romani, A., Rodriguez-Jasso, R. M., Aguilar, C. N., Garrote, G., and Ruiz, H. A. (2017). Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview. Energy Conversion and Management 136, 5065. doi: 10.1016/j.enconman.2017.01.004.CrossRefGoogle Scholar
Shinoj, S., Visvanathan, R., Panigrahi, S., and Kochubabu, M. (2011). Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products 33(1), 722. doi: 10.1016/j.indcrop.2010.09.009.CrossRefGoogle Scholar
Palav, T. and Seetharaman, K. (2007). Impact of microwave heating on the physico-chemical properties of a starch–water model system. Carbohydrate Polymers 67(4), 596604. doi: 10.1016/j.carbpol.2006.07.006.CrossRefGoogle Scholar
Marx, S., Ndaba, B., Chiyanzu, I., and Schabort, C. (2014). Fuel ethanol production from sweet sorghum bagasse using microwave irradiation. Biomass and Bioenergy 65, 145150. doi: 10.1016/j.biombioe.2013.11.019.CrossRefGoogle Scholar
Xu, J. (2015). Microwave pretreatment. In: Pandey, A., Negi, S., Binod, P., and Larroche, C. (eds.), Pretreatment of Biomass: Processes and Technologies. Amsterdam: Elsevier, 157172.CrossRefGoogle Scholar
Banu, R. J., Sugitha, S., Kavitha, S., Ravi, Y. K., Merrylin, J., and Kumar, G. (2021). Lignocellulosic biomass pretreatment for enhanced bioenergy recovery: Effect of lignocelluloses recalcitrance and enhancement strategies. Frontiers in Energy Research 9. doi: 10.3389/fenrg.2021.646057.CrossRefGoogle Scholar
Pellera, F.-M., and Gidarakos, E. (2017). Microwave pretreatment of lignocellulosic agroindustrial waste for methane production. Journal of Environmental Chemical Engineering 5(1), 352365. doi: 10.1016/j.jece.2016.12.009.CrossRefGoogle Scholar
Chen, S., Zhang, X., Singh, D., Yu, H., and Yang, X. (2010). Biological pretreatment of lignocellulosics: Potential, progress and challenges. Biofuels 1(1), 177199. doi: 10.4155/bfs.09.13.CrossRefGoogle Scholar
Yesilada, O., Birhanli, E., and Geckil, H. (2018). Bioremediation and Decolorization of Textile Dyes by White Rot Fungi and Laccase Enzymes. Berlin: Springer.CrossRefGoogle Scholar
Plácido, J., and Capareda, S. (2015). Ligninolytic enzymes: A biotechnological alternative for bioethanol production. Bioresources and Bioprocessing 2, 23. doi: 10.1186/s40643-015-0049-5.CrossRefGoogle Scholar
Dionisi, D., Anderson, J. A., Aulenta, F., McCue, A., and Paton, G. (2015). The potential of mcrobial processes for lignocellulosic biomass conversion to ethanol: A review. Journal of Chemical Technology and Biotechnology 90(3), 366383. doi: 10.1002/jctb.4544.CrossRefGoogle Scholar
Mussatto, S. I., and Roberto, I. C. (2004). Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: A review. Bioresource Technology 93(1), 110. doi: 10.1016/j.biortech.2003.10.005.CrossRefGoogle ScholarPubMed
Tomás-Pejó, E., Alvira, P., Ballesteros, M., and Negro, M. J. (2011). Pretreatment technologies for lignocellulose-to-bioethanol conversion. In: Pandey, A., Larroche, C., Ricke, S. C., Dussap, C.-G., and Gnansounou, E. (eds.), Biofuels: Alternative Feedstocks and Conversion Processes. Amsterdam: Academic Press, 149176.CrossRefGoogle Scholar
Wang, W., Yang, S., Hunsinger, G. B., Pienkos, P. T., and Johnson, D. K. (2014). Connecting lignin-degradation pathway with pre-treatment inhibitor sensitivity of Cupriavidus necator. Frontiers in Microbiology 5. doi: 10.3389/fmicb.2014.00247.CrossRefGoogle ScholarPubMed
Palmqvist, E., and Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresource Technology 74(1), 2533. doi: 10.1016/S0960-8524(99)00161-3.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×