Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgements
- 1 Introduction
- 2 The Sieves of Brun and Selberg
- 3 Early Work
- 4 The Breakthrough of Goldston, Motohashi, Pintz and Yildirim
- 5 The Astounding Result of Yitang Zhang
- 6 Maynard’s Radical Simplification
- 7 Polymath’s Refinements of Maynards Results
- 8 Variations on Bombieri–Vinogradov
- 9 Further Work and the Epilogue
- Appendix A Bessel Functions of the First Kind
- Appendix B A Type of Compact Symmetric Operator
- Appendix C Solving an Optimization Problem
- Appendix D A Brun–Titchmarsh Inequality
- Appendix E The Weil Exponential Sum Bound
- Appendix F Complex Function Theory
- Appendix G The Dispersion Method of Linnik
- Appendix H One Thousand Admissible Tuples
- Appendix I PGpack Minimanual
- References
- Index
1 - Introduction
Published online by Cambridge University Press: 10 September 2021
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgements
- 1 Introduction
- 2 The Sieves of Brun and Selberg
- 3 Early Work
- 4 The Breakthrough of Goldston, Motohashi, Pintz and Yildirim
- 5 The Astounding Result of Yitang Zhang
- 6 Maynard’s Radical Simplification
- 7 Polymath’s Refinements of Maynards Results
- 8 Variations on Bombieri–Vinogradov
- 9 Further Work and the Epilogue
- Appendix A Bessel Functions of the First Kind
- Appendix B A Type of Compact Symmetric Operator
- Appendix C Solving an Optimization Problem
- Appendix D A Brun–Titchmarsh Inequality
- Appendix E The Weil Exponential Sum Bound
- Appendix F Complex Function Theory
- Appendix G The Dispersion Method of Linnik
- Appendix H One Thousand Admissible Tuples
- Appendix I PGpack Minimanual
- References
- Index
Summary
In 2013–14 Zhang, Polymath8, Maynard, Tao, both separately and together, showed that the gap between an infinite number of consecutive primes was less than 70 million, and then lowered the upper bound to 246. Progress then ceased. This chapter gives contextual and introductory material needed to derive the best results. Section 1.3 has an overview of the book. Section 1.4 describes Timothy Gowers’ idea of a polymath project, and lists contributors to Polymath8. Section 1.5 gives a time-line of the developments, Section 1.6 discusses the twin primes constant and the Dickson–Hardy–Littlewood conjecture, Section 1.7 delves into the nature of the prime gap distribution by discussing the issue of which prime gap is most common, and reports on recent work on “jumping champions”, Section 1.8 gives the derivation of some useful properties of the von Mangoldt function, Section1.9 discusses the Bombieri–Vinogradov theorem, Section 1.10 introduces admissible tuples, which describe patterns of primes which are expected to repeat infinitely often, and derives the intriguing relationship between the Dickson–Hardy–Littlewood conjecture and the second Hardy–Littlewood conjecture. Section 1.11 gives a brief guide to the literature and reader’s guide.In an end note, there is a summary table for results on large gaps between consecutive primes.
Keywords
- Type
- Chapter
- Information
- Bounded Gaps Between PrimesThe Epic Breakthroughs of the Early Twenty-First Century, pp. 1 - 34Publisher: Cambridge University PressPrint publication year: 2021