Published online by Cambridge University Press: 21 July 2022
Plato’s dialoguesespecially the Republiclead us to wonder what the objects of mathematics are. For Plato, no perceptible three is unqualifiedly three, a necessary condition for being an object of knowledge. Aristotle controversially ascribes to Plato the view that mathematical objects are “intermediates,” between perceptibles and Forms: multiple but also eternal, lacking change, and separate from perceptibles. The hunt for or against intermediates in Plato’s dialogues has depended on two ways of understanding Plato on scientific claims, a Form-centric approach and a subject-centric (semantic) approach. Although Socrates does not present intermediates in the Republic, it is difficult to see how the units of the expert arithmetician or motions of the real astronomer could be simply Forms or perceptibles. The standard over-reading of the Divided Line, where the middle sections are equal, further obscures our understanding. The Phaedo and the Timaeus provide candidates for mathematical objects, although these have only some of the attributes ascribed to intermediates. We are left with no clear answer, but exploring options may be exactly what Plato wants.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.