Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-15T02:39:08.608Z Has data issue: false hasContentIssue false

Part I - Approaches to Bilingual Phonetics and Phonology

Published online by Cambridge University Press:  14 November 2024

Mark Amengual
Affiliation:
University of California, Santa Cruz
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Amengual, M. (2019). Type of early bilingualism and its effect on the acoustic realization of allophonic variants: Early sequential and simultaneous bilinguals. International Journal of Bilingualism, 23(5), 954970.CrossRefGoogle Scholar
Archibald, J. (2009). Phonological feature re-assembly and the importance of phonetic cues. Second Language Research, 25(2), 231233.CrossRefGoogle Scholar
Archibald, J. (2021). Ease and difficulty in L2 phonology: A mini-review. Frontiers in Communication, 6. www.frontiersin.org/articles/10.3389/fcomm.2021.626529/full.CrossRefGoogle Scholar
Berwick, R. (1985). The Acquisition of Syntactic Knowledge. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Best, C. & Tyler, A. (2007). Nonnative and second-language speech perception: Commonalities and complementarities. In Bohn, O.-S. & Munro, M. J., eds., Second Language Speech Learning: The Role of Language Experience in Speech Perception and Production. Amsterdam: John Benjamins, pp. 1334.CrossRefGoogle Scholar
Blevins, J. (2004). Evolutionary Phonology: The Emergence of Sound Patterns. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Boersma, P. (1998). Functional Phonology. [Doctoral dissertation, University of Amsterdam]. The Hague: Holland Academic Graphics.Google Scholar
Boersma, P. & Hayes, B. (2001). Empirical tests of the Gradual Learning Algorithm. Linguistic Inquiry, 32, 4586.CrossRefGoogle Scholar
Bordag, D., Gor, K., & Opitz, A. (2021). Ontogenesis model of the L2 lexical representation. Bilingualism: Language and Cognition, 25, 185201.CrossRefGoogle Scholar
Brannen, K. (2002). The role of perception in differential substitution. Canadian Journal of Linguistics, 47, 146.CrossRefGoogle Scholar
Broselow, E. (2004). Unmarked structures and emergent rankings in second language acquisition. International Journal of Bilingualism, 8(1), 5166.CrossRefGoogle Scholar
Broselow, E. (2018). Laryngeal contrasts in second language phonology. In Hyman, L. & Plank, F., eds., Linguistic Typology. Berlin: Walter de Gruyter, pp. 312340.Google Scholar
Broselow, E., Chen, S., & Wang, C. (1998). The emergence of the unmarked in second language acquisition. Studies in Second Language Acquisition, 20, 261280.CrossRefGoogle Scholar
Broselow, E. & Finer, D. (1991). Parameter setting in second language phonology. Second Language Research, 7(1), 3559.Google Scholar
Broselow, E. & Xu, Z. (2004). Differential difficulty in the acquisition of second language phonology. International Journal of English Studies, 4(2), 145163.Google Scholar
Browman, C. & Goldstein, L. (1989). Articulatory gestures as phonological units. Phonology, 6, 201252.CrossRefGoogle Scholar
Brown, C. (2000). Speech perception and phonological acquisition. In Archibald, J., ed., Second Language Acquisition and Linguistic Theory. Oxford: Blackwell, pp. 463.Google Scholar
Cardoso, W. (2007). The variable development of English word-final stops by Brazilian Portuguese speakers: A stochastic optimality theoretic account. Language Variation and Change, 19, 219248.CrossRefGoogle Scholar
Cardoso, W., Collins, L., & Cardoso, W. (2021). Developmental sequences in second language phonology: Effects of instruction on the acquisition of foreign sC onsets. Frontiers in Communication, 6. www.frontiersin.org/articles/10.3389/fcomm.2021.662934/full.CrossRefGoogle Scholar
Cardoso, W., John, P., & French, L. (2008). The variable perception of /s/ + coronal onset clusters in Brazilian Portuguese English. In Watkins, M. A., Rauber, A. S., & Baptista, B. O., eds., Recent Research in Second Language Phonetics/Phonology: Perception and Production. Newcastle upon Tyne: Cambridge Scholars Publishing, pp. 203231.Google Scholar
Cardoso, W. & Liakin, D. (2008). When input frequency patterns fail to drive learning: The acquisition of sC onset clusters. In Watkins, M. A., Rauber, A. S., & Baptista, B. O., eds., Recent Research in Second Language Phonetics/Phonology: Perception and Production. Newcastle upon Tyne: Cambridge Scholars Publishing, pp. 174202.Google Scholar
Chang, C. (2019). Phonetic drift. In Schmid, M. S. & Köpke, B., eds., The Oxford Handbook of Language Attrition. Oxford: Oxford University Press, pp. 191207.Google Scholar
Chomsky, N. & Halle, M. (1968). The Sound Pattern of English. New York: Harper & Row.Google Scholar
Clements, N. (1985). The geometry of phonological features. Phonology Yearbook, 2, 225252.CrossRefGoogle Scholar
Davidson, L. (2005). Addressing phonological questions with ultrasound. Clinical Linguistics and Phonetics, 19, 619633.CrossRefGoogle ScholarPubMed
Davidson, L. (2006). Phonotactics and articulatory coordination interact in phonology: Evidence from nonnative production. Cognitive Science, 30, 837862.CrossRefGoogle ScholarPubMed
Davidson, L. (2010). Phonetic bases of similarities in cross-language production: Evidence from English and Catalan. Journal of Phonetics, 38(2), 272288.CrossRefGoogle Scholar
De Jong, K., Hao, Y.-C., & Park, H. (2009). Evidence for featural units in the acquisition of speech production skills: Linguistic structure in foreign accent. Journal of Phonetics, 37(4), 357373.CrossRefGoogle Scholar
De Jong, K., Silbert, N. H., & Park, H. (2009). Generalization across segments in second language identification. Language Learning, 59(1), 131.CrossRefGoogle Scholar
Eckman, F. R. (1977). Markedness and the contrastive analysis hypothesis. Language Learning, 27(2), 315330.CrossRefGoogle Scholar
Eckman, F. R. (1981). On the naturalness of interlanguage phonological rules. Language Learning, 31, 195216.CrossRefGoogle Scholar
Eckman, F. (2004). From phonemic differences to constraint rankings: Research on second language phonology. Studies in Second Language Acquisition, 26, 513549.CrossRefGoogle Scholar
Edge, B. (1991). The production of word-final voiced obstruents in English by L1 speakers of Japanese and Cantonese. Studies in Second Language Acquisition, 13, 377393.CrossRefGoogle Scholar
Edwards, J. G. H. (2014). The role of input frequency, universals, and L1 transfer in the acquisition of English L2 onsets by native speakers of Cantonese, Mandarin Chinese, and Vietnamese. In Yavas, M., ed., Unusual Productions in Phonology: Universals and Language-Specific Considerations. New York: Psychology Press, pp. 206225.Google Scholar
Escudero, P. & Boersma, P. (2004). Bridging the gap between L2 speech perception research and phonological theory. Studies in Second Language Acquisition, 26, 551585.CrossRefGoogle Scholar
Flege, J. E. (1988). Chinese subjects’ perception of the word-final English /t/-/d/ contrast: Performance before and after training. Journal of the Acoustical Society of America, 86, 16841697.CrossRefGoogle Scholar
Flege, J. E. (1991). Age of learning affects the authenticity of voice-onset time (VOT) in stop consonants produced in a second language. Journal of the Acoustical Society of America, 89(1), 395411.CrossRefGoogle Scholar
Flege, J. E. (1995). Second language speech learning: Theory, findings, and problems. In Strange, W., ed., Speech Perception and Linguistic Experience: Issues in Cross-Language Research. Baltimore, MD: York Press, pp. 233273.Google Scholar
Flege, J. E. & Davidian, R. D. (1984). Transfer and developmental processes in adult foreign language speech production. Applied Psycholinguistics, 5, 323347.CrossRefGoogle Scholar
Flege, J. E. & Eefting, W. (1987). Production and perception of English stops by native Spanish speakers. Journal of Phonetics, 15, 6783.CrossRefGoogle Scholar
Frisch, S. (2009). Language processing and segmental OCP effects. In Hayes, B., Kirchner, R., & Steriade, D., eds., Phonetically-Based Phonology. Cambridge: Cambridge University Press, pp. 346371.Google Scholar
Gafos, A. (2002). A grammar of gestural coordination. Natural Language and Linguistic Theory, 20, 269337.CrossRefGoogle Scholar
Goldsmith, J. (1979). Autosegmental Phonology. [Doctoral dissertation, Massachusetts Institute of Technology]. New York: Garland Press.Google Scholar
Gonzales, K. & Lotto, A. J. (2013). A Bafri, un Pafri: Bilinguals’ pseudoword identifications support language-specific phonetic systems. Psychological Science, 24(11), 21352142.CrossRefGoogle ScholarPubMed
Guion, S. (2005). Knowledge of English word stress patterns in early and late Korean-English bilinguals. Bilingualism: Language and Cognition, 27(4), 503533.Google Scholar
Guion, S., Harada, T., & Clark, J. J. (2004). Early and late Spanish-English bilinguals’ acquisition of English word stress patterns. Bilingualism: Language and Cognition, 7(3), 207226.CrossRefGoogle Scholar
Hancin-Bhatt, B. (1994). Segmental transfer: A consequence of a dynamic system. Second Language Research, 10, 241269.CrossRefGoogle Scholar
Hancin-Bhatt, B. & Bhatt, R. (1998). Optimal L2 syllables: Interactions of transfer and developmental effects. Studies in Second Language Acquisition, 19, 331378.CrossRefGoogle Scholar
Hayes, B. (1985). A Metrical Theory of Stress Rules. [Doctoral dissertation, Massachusetts Institute of Technology]. New York: Garland Press.Google Scholar
Hayes, B. & Wilson, C. (2008). A maximum entropy model of phonotactics and phonological learning. Linguistic Inquiry, 39(3), 379440.CrossRefGoogle Scholar
Kager, R. (1999). Optimality Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kager, R., Pater, J., & Zonneveld, W. (2004). Constraints in Phonological Acquisition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kang, Y. (2008). Interlanguage segmental mapping as evidence for the nature of lexical representation. Language and Linguistic Compass, 2, 103118.CrossRefGoogle Scholar
Kisseberth, C. (1970). On the functional unity of phonological rules. Linguistic Inquiry, 1, 291306.Google Scholar
Kuhl, P. K. & Iverson, P. (1995). Linguistic experience and the “perceptual magnet effect.” In Strange, W., ed., Speech Perception and Linguistic Experience: Issues in Cross-Language Research. Baltimore, MD: York Press, pp. 121154.Google Scholar
Lado, R. (1957). Linguistics Across Cultures: Applied Linguistics for Language Teachers. Ann Arbor: University of Michigan Press.Google Scholar
Larson-Hall, J. (2004). Predicting perceptual success with segments: A test of Japanese speakers of Russian. Second Language Research, 20, 3276.CrossRefGoogle Scholar
Lombardi, L. (2003). Second language data and constraints on manner: Explaining substitutions for the English interdentals. Second Language Research, 19, 225250.CrossRefGoogle Scholar
Macleod, A. N. & Stoel-Gammon, C. (2005). Are bilinguals different? What VOT tells us about simultaneous bilinguals. Journal of Multilingual Communication Disorders, 3(2), 118127.CrossRefGoogle Scholar
Major, R. (1987). A model for interlanguage phonology. In Ioup, G. & Weinberger, S., eds., Interlanguage Phonology: The Acquisition of a Second Language Sound System. Cambridge, MA: Newbury House, pp. 101124.Google Scholar
Martinez, R. M., Goad, H., & Dow, M. (2023). L1 phonological effects on L2 (non-)naïve vowel perception: A cross-language investigation of the oral-nasal vowel contrast in Brazilian Portuguese. Second Language Research, 39(2), 387423.CrossRefGoogle Scholar
Moreton, E. (2002). Structural constraints in the perception of English stop-sonorant clusters. Cognition, 84, 5571.CrossRefGoogle ScholarPubMed
Olson, D. J. (2019a). Feature acquisition in L2 phonetic development: Evidence from phonetic training. Language Learning, 69(2), 366404.CrossRefGoogle Scholar
Olson, D. J. (2019b). Phonological processes across word and language boundaries: Evidence from code-switching. Journal of Phonetics, 77, 116.CrossRefGoogle Scholar
Özçelik, Ö. (2018). Universal grammar and second language phonology: Full transfer/prevalent access in the L2 acquisition of Turkish “stress” by English and French speakers. Language Acquisition, 25(3), 231267.CrossRefGoogle Scholar
Prince, A. & Smolensky, P. (2004). Optimality Theory: Constraint Interaction in Generative Grammar. Malden, MA: Wiley-Blackwell.CrossRefGoogle Scholar
Sagey, E. (1986). The representation of features and relations in non-linear phonology. [Doctoral dissertation, Massachusetts Institute of Technology].Google Scholar
Selinker, L. (1972). Interlanguage. International Review of Applied Linguistics, 10, 209231.CrossRefGoogle Scholar
Selkirk, E. (1984). On the major class features and syllable theory. In Aronoff, M. & Oehrle, R., eds., Language Sound Structure: Studies in Phonology. Cambridge, MA: MIT Press, pp. 107136.Google Scholar
Song, J. Y. & Eckman, F. (2021). Using ultrasound tongue imaging to study covert contrasts in second-language learners’ acquisition of English vowels. Language Acquisition, 28(4), 344369.CrossRefGoogle Scholar
Stampe, D. (1979). How I Spent My Summer Vacation (A Dissertation on Natural Phonology). [Doctoral dissertation, University of Chicago]. New York: Garland Press.Google Scholar
Trofimovich, P., Gatbonton, E., & Segalowitz, N. (2007). A dynamic look at L2 phonological learning: Seeking processing explanations for implicational phenomena. Studies in Second Language Acquisition, 29, 407448.CrossRefGoogle Scholar
van Leussen, J. W. & Escudero, P. (2015). Learning to perceive and recognize a second language: The L2LP model revised. Frontiers in Psychology, 6, 1000. https://doi.org/10.3389/fpsyg.2015.01000.CrossRefGoogle ScholarPubMed
Wang, C. (1995). The acquisition of English word-final obstruents by Chinese speakers. [Doctoral dissertation, Stony Brook University].Google Scholar
Weinberger, S. H. (1987). The influence of linguistic context on syllable simplification. In Ioup, G. & Weinberger, S. H., eds., Interlanguage Phonology: The Acquisition of a Second Language Sound System. Rowley, MA: Newbury House, pp. 401417.Google Scholar
Wester, F., Gilbers, D., & Lowie, W. (2007). Substitution of dental fricatives in English by Dutch L2 speakers. Language Sciences, 29, 477491.CrossRefGoogle Scholar
Wilson, C. & Davidson, L. (2013). Bayesian analysis of non-native cluster production. In Kan, S., Moore-Cantwell, C., & Staubs, R., eds, Proceedings of the 40th Annual Meeting of the North East Linguistic Society. Amherst, MA: Graduate Linguistics Student Association, pp. 265278.Google Scholar
Wiltshire, C. (2006). Word-final consonant and cluster acquisition in Indian English(es). In Bamman, D., Magnitskaia, T., & Zaller, C., eds., Boston University Conference on Language Development 30 Online Proceedings Supplement. www.bu.edu/bucld/files/2011/05/30-WiltshireBUCLD2005.pdf.Google Scholar
Wissing, D. & Zonneveld, W. (1996). Final devoicing as a robust phenomenon in second language acquisition: Tswana, English, and Afrikaans. South African Journal of Linguistics, 14, 323.CrossRefGoogle Scholar
Yavas, M. (1997). The effects of vowel height and place of articulation in interlanguage final stop devoicing. International Review of Applied Linguistics in Language Teaching, 35(2), 115125.Google Scholar
Zhang, H. (2016). Dissimilation in the second language acquisition of Mandarin Chinese tones. Second Language Research, 32(3), 427451.CrossRefGoogle Scholar
Zsiga, E. (2003). Articulatory timing in a second language: Evidence from Russian and English. Studies in Second Language Acquisition, 25, 399432.CrossRefGoogle Scholar

References

Adamou, E., Feltgen, Q., & Padure, C. (2021). A unified approach to the study of language contact: Cross-language priming and change in adjective/noun order. International Journal of Bilingualism, 25(6), 16351654.CrossRefGoogle Scholar
Ambridge, B. (2020a). Against stored abstractions: A radical exemplar model of language acquisition. First Language, 40(5–6), 509559.CrossRefGoogle Scholar
Ambridge, B. (2020b). Abstractions made of exemplars or “You’re all right, and I’ve changed my mind”: Response to commentators. First Language, 40(5–6), 640659.CrossRefGoogle Scholar
Amengual, M. (2012). Interlingual influence in bilingual speech: Cognate status effect in a continuum of bilingualism. Bilingualism: Language and Cognition, 15(3), 517530.CrossRefGoogle Scholar
Amengual, M. (2016). Cross-linguistic influence in the bilingual mental lexicon: Evidence of cognate effects in the phonetic production and processing of a vowel contrast. Frontiers in Psychology, 7, 617. https://doi.org/10.3389/fpsyg.2016.00617.CrossRefGoogle ScholarPubMed
Baayen, R. H., Beaman, K. V., & Ramscar, M. (2021). Deconfounding the effects of competition and attrition on dialect across the lifespan: A panel study investigation of Swabian. In Beaman, K. V. & Buchstaller, I., eds., Language Variation and Language Change Across the Lifespan. New York: Routledge, pp. 235264.CrossRefGoogle Scholar
Backus, A. (2013). A usage-based approach to borrowability. In Zenner, E. & Kristiansen, G., eds., New Perspectives on Lexical Borrowing: Onomasiological, Methodological and Phraseological Innovations. Berlin: De Gruyter Mouton, pp. 1940.CrossRefGoogle Scholar
Backus, A. (2021). Usage-based approaches. In Adamou, E. & Matras, Y., eds., The Routledge Handbook of Language Contact. New York: Routledge, pp. 110126.Google Scholar
Barlow, M. & Kemmer, S. (2000). Usage-Based Models of Language. Stanford, CA: CSLI.Google Scholar
Barnes, S. (2015). Perceptual salience and social categorization of contact features in Asturian Spanish. Studies in Hispanic and Lusophone Linguistics, 8(2), 213241.CrossRefGoogle Scholar
Barnes, S. (2019). The role of social cues in the perception of final vowel contrasts in Asturian Spanish. In Chappell, W., ed., Recent Advances in the Study of Spanish Sociophonetic Perception. Amsterdam: John Benjamins, pp. 1638.CrossRefGoogle Scholar
Beckner, C., Blythe, R., Bybee, J., et al. (2009). Language is a complex adaptive system: Position paper. Language Learning, 59, 126.Google Scholar
Bérces, K. B. & Honeybone, P. (2020). Representation-based models in the current landscape of phonological theory. Acta Linguistica Academica, 67(1), 327.CrossRefGoogle Scholar
Brown, E. K. & Copple, M. T. (2018). Constructing two phonological systems: A phonetic analysis of /p/, /t/, /k/ among early Spanish-English bilingual speakers. International Journal of Bilingualism, 22(1), 5168.CrossRefGoogle Scholar
Brown, E. L. (2015). The role of discourse context frequency in phonological variation: A usage-based approach to bilingual speech production. International Journal of Bilingualism, 19(4), 387406.CrossRefGoogle Scholar
Brown, E. L. (2018). Cumulative exposure to phonetic reducing environments marks the lexicon: Spanish /d-/ words spoken in isolation. In Smith, K. A. & Nordquist, D., eds., Functionalist and Usage-Based Approaches to the Study of Language: In Honor of Joan L. Bybee. Amsterdam: John Benjamins, pp. 127154.CrossRefGoogle Scholar
Brown, E. L. & Amengual, M. (2015). Fine-grained and probabilistic cross-linguistic influence in the pronunciation of cognates: Evidence from corpus-based spontaneous conversation and experimentally elicited data. Studies in Hispanic and Lusophone Linguistics, 8(1), 5983.CrossRefGoogle Scholar
Brown, E. L. & Harper, D. (2009). Phonological evidence of interlingual exemplar connections. Studies in Hispanic and Lusophone Linguistics, 2(2), 257274.CrossRefGoogle Scholar
Brown, E. L., Raymond, W. D., Brown, E. K., & File-Muriel, R. J. (2021). Lexically specific accumulation in memory of word and segment speech rates. Corpus Linguistics and Linguistic Theory, 17(3), 625651.CrossRefGoogle Scholar
Bullock, B. E. & Gerfen, C. (2004). Phonological convergence in a contracting language variety. Bilingualism: Language and Cognition, 7, 95104.CrossRefGoogle Scholar
Bybee, J. (1999). Usage-based phonology. In Darnell, M., Moravcsik, E., Newmeyer, F., Noonan, M., & Wheatly, K., eds., Functionalism and Formalism in Linguistics. Amsterdam: John Benjamins, pp. 212242.Google Scholar
Bybee, J. (2001). Phonology and Language Use. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bybee, J. (2002a). Word frequency and context of use in the lexical diffusion of phonetically conditioned sound change. Language Variation and Change, 14(3), 261290.CrossRefGoogle Scholar
Bybee, J. (2002b). Sequentiality as the basis of constituent structure. In Givón, T. & Mall, B. F., eds., The Evolution of Language Out of Pre-language. Amsterdam: John Benjamins, pp. 109135.Google Scholar
Bybee, J. (2006). Frequency of Use and the Organization of Language. Oxford: Oxford University Press.Google Scholar
Bybee, J. (2010). Language, Usage and Cognition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bybee, J. (2012). Patterns of lexical diffusion and articulatory motivations for sound change. In Josep-Sole, M. & Recasens, D., eds., The Initiation of Sound Change: Perception, Production, and Social Factors. Amsterdam: John Benjamins, pp. 211234.CrossRefGoogle Scholar
Bybee, J., Perkins, R., & Pagliuca, W. (1994). The Evolution of Grammar: Tense, Aspect, and Modality in the Languages of the World. Chicago, IL: University of Chicago Press.Google Scholar
Carrasco-Ortiz, H., Amengual, M., & Gries, S. T. (2021). Cross-language effects of phonological and orthographic similarity in cognate word recognition: The role of language dominance. Linguistic Approaches to Bilingualism, 11(3), 389417.CrossRefGoogle Scholar
Cohn, A. C. & Renwick, M. E. (2021). Embracing multidimensionality in phonological analysis. Linguistic Review, 38(1), 101139.CrossRefGoogle Scholar
De Vogelaer, G. & Seiler, G. (2012). The dialect laboratory: Introductory remarks. In The Dialect Laboratory: Dialects as a Testing Ground for Theories of Language Change. Amsterdam: John Benjamins, pp. 131.CrossRefGoogle Scholar
Divjak, D. (2017). The role of lexical frequency in the acceptability of syntactic variants: Evidence from that‐clauses in Polish. Cognitive Science, 41(2), 354382.CrossRefGoogle ScholarPubMed
Docherty, G. J. & Foulkes, P. (2014). An evaluation of usage-based approaches to the modelling of sociophonetic variability. Lingua, 142, 4256.CrossRefGoogle Scholar
Drager, K. & Kirtley, M. J. (2016). Awareness, salience, and stereotypes in exemplar-based models of speech production and perception. In Babel, A., ed., Awareness and Control in Sociolinguistic Research. Cambridge: Cambridge University Press, pp. 124.Google Scholar
Dussias, P. E. & Sagarra, N. (2007). The effect of exposure on syntactic parsing in Spanish-English bilinguals. Bilingualism: Language and Cognition, 10(1), 101116.CrossRefGoogle Scholar
Ellis, N. C. (2012). What can we count in language, and what counts in language acquisition, cognition, and use? In Gries, S. Th. & Divjak, D., eds., Frequency Effects in Language Learning and Processing, Volume 1. Berlin: De Gruyter Mouton, pp. 734.CrossRefGoogle Scholar
Flege, J. E. (1987). The production of “new” and “similar” phones in a foreign language: Evidence for the effect of equivalence classification. Journal of Phonetics, 15(1), 4765.CrossRefGoogle Scholar
Forrest, J. (2017). The dynamic interaction between lexical and contextual frequency: A case study of (ING). Language Variation and Change, 29(2), 129156.CrossRefGoogle Scholar
Gahl, S. (2008). Time and thyme are not homophones: The effect of lemma frequency on word durations in spontaneous speech. Language, 84(3), 474496.CrossRefGoogle Scholar
Gampe, A., Quick, A. E., & Daum, M. M. (2021). Does linguistic similarity affect early simultaneous bilingual language acquisition? Journal of Language Contact, 13(3), 482500.CrossRefGoogle Scholar
Gaskins, D. (2020). Input-output effects in the bilingual first language acquisition of English and Polish: A usage-based perspective. Linguistic Approaches to Bilingualism, 10(4), 471498.CrossRefGoogle Scholar
Givón, T. (1998). The functional approach to grammar. In Tomasello, M., ed., The New Psychology of Language: Cognitive and Functional Approaches to Language Structure. Mahwah, NJ: Lawrence Erlbaum Associates, pp. 4166.Google Scholar
Gradoville, M., Waltermire, M., & Long, A. (2021). Cognate similarity and intervocalic /d/ production in Riverense Spanish. International Journal of Bilingualism, 25(3), 727746.CrossRefGoogle Scholar
Haiman, J. (1994). Ritualization and the development of language. In Pagliuca, W., ed., Perspectives on Grammaticalization. Amsterdam: John Benjamins, pp. 328.CrossRefGoogle Scholar
Hakimov, N. (2021). Lexical frequency and frequency of co-occurrence predict the use of embedded-language islands in bilingual speech: Adjective-modified nominal constituents in Russian-German code-mixing. Journal of Language Contact, 13(3), 501539.CrossRefGoogle Scholar
Hakimov, N. & Backus, A. (2021). Usage-based contact linguistics: Effects of frequency and similarity in language contact. Journal of Language Contact, 13(3), 459481.CrossRefGoogle Scholar
Harris, M., Miglio, V., & Gries, S. Th. (2015). Mexican and Chicano Spanish prosody: Differences related to information structure. In Levis, J., Mohammed, R., Qian, M., & Zhou, Z., eds., Proceedings of the 6th Pronunciation in Second Language Learning and Teaching Conference. Ames: Iowa State University, pp. 3848.Google Scholar
Hay, J. & Foulkes, P. (2016). The evolution of medial /t/ over real and remembered time. Language, 92(2), 298330.CrossRefGoogle Scholar
Hinskens, F. (2011). Koineization in the present-day Dutch dialect landscape: Postvocalic /r/ and more. Taal en Tongval, 63(1), 99126.CrossRefGoogle Scholar
Hopper, P. J. (1987). Emergent grammar. Berkeley Linguistics Society, 13, 139157.Google Scholar
Hopper, P. & Traugott, E. (1993). Grammaticalization. New York: Cambridge University Press.Google Scholar
Jaeger, T. F. & Weatherholtz, K. (2016). What the heck is salience? How predictive language processing contributes to sociolinguistic perception. Frontiers in Psychology, 7, 1115. https://doi.org/10.3389/fpsyg.2016.01115.CrossRefGoogle Scholar
Johnson, K. (1997). Speech perception without speaker normalization: An exemplar model. In Johnson, K. & Mullenix, J. W., eds., Talker Variability in Speech Processing. San Diego, CA: Academic Press, pp. 145165.Google Scholar
Johnson, K. (2007). Decisions and mechanisms in exemplar-based phonology. In Solé, M., Beddor, P., & Ohala, M., eds., Experimental Approaches to Phonology. Oxford: Oxford University Press, pp. 2540.CrossRefGoogle Scholar
Kanwit, M. & Terán, V. (2020). Ideas buenas o buenas ideas: Phonological, semantic, and frequency effects on variable adjective ordering in Rioplatense Spanish. Languages, 5(4), 65.CrossRefGoogle Scholar
Kemmer, S. & Barlow, M. (2000). Introduction: A usage-based conception of language. In Kemmer, S. & Barlow, M., eds., Usage-Based Models of Language. Chicago, IL: University of Chicago Press, pp. 728.Google Scholar
Kroll, J. F., Bogulski, C. A., & McClain, R. (2012). Psycholinguistic perspectives on second language learning and bilingualism: The course and consequence of cross-language competition. Linguistic Approaches to Bilingualism, 2(1), 124.CrossRefGoogle Scholar
Langacker, R. (2016). Entrenchment in cognitive grammar. In Schmid, H. J., ed., Entrenchment and the Psychology of Language Learning: How We Reorganize and Adapt Linguistic Knowledge. Berlin: Walter de Gruyter, pp. 3956.Google Scholar
Levy, H. & Hanulíková, A. (2019). Variation in children’s vowel production: Effects of language exposure and lexical frequency. Laboratory Phonology: Journal of the Association for Laboratory Phonology, 10(1), 9. https://doi.org/10.5334/labphon.131.CrossRefGoogle Scholar
Lin, Y., Yao, Y., & Luo, J. (2021). Phonetic accommodation of tone: Reversing a tone merger-in-progress via imitation. Journal of Phonetics, 87, 101060.CrossRefGoogle Scholar
López-Beltrán, P. & Carlson, M. T. (2020). How usage-based approaches to language can contribute to a unified theory of heritage grammars. Linguistics Vanguard, 6(1). https://doi.org/10.1515/lingvan-2019-0072.CrossRefGoogle Scholar
Mora, J. C. & Nadeu, M. (2009). Experience effects on the categorization of a native vowel contrast in highly proficient Catalan-Spanish bilinguals. Journal of the Acoustical Society of America, 125, 2775.CrossRefGoogle Scholar
Mompean, J. A., Fregier, A., & Valenzuela, J. (2020). Iconicity and systematicity in phonaesthemes: A cross-linguistic study. Cognitive Linguistics, 31(3), 515548.CrossRefGoogle Scholar
Morford, J. P., Occhino, C., Zirnstein, M., et al. (2019). What is the source of bilingual cross-language activation in deaf bilinguals? Journal of Deaf Studies and Deaf Education, 24(4), 356365.CrossRefGoogle ScholarPubMed
Onysko, A. (2019). Reconceptualizing language contact phenomena as cognitive processes. In Zenner, E., Backus, A., & Winter-Froemel, E., eds., Cognitive Contact Linguistics: Placing Usage, Meaning and Mind at the Core of Contact-Induced Variation and Change. Berlin: De Gruyter Mouton, pp. 2350.Google Scholar
Piccardi, D. (2019). Bilingual frequency in a favorable context (BFFC) in the Italian dialectal area: Theoretical preliminaries to the analysis of geminate lateral retroflexion and voiceless plosives aspiration in Antona (MS). In Piccardi, D., Ardolino, F., & Calamai, S., eds, Gli archivi sonori al crocevia tra scienze fonetiche, informatica umanistica e patrimonio digitale. Naples: Associazione Italiana Scienze della Voce, pp. 329351.Google Scholar
Pierrehumbert, J. B. (2001). Exemplar dynamics: Word frequency, lenition, and contrast. In Bybee, J. & Hopper, P., eds., Frequency and the Emergence of Linguistic Structure. Amsterdam: John Benjamins, pp. 137157.CrossRefGoogle Scholar
Pierrehumbert, J. B. (2002). Word-specific phonetics. In Gussenhoven, C. & Warner, N., eds., Laboratory Phonology, Vol. 7. Berlin: Mouton de Gruyter, pp. 101140.Google Scholar
Pierrehumbert, J. B. (2003). Probabilistic phonology: Discrimination and robustness. In Rens, B., Hay, J., & Jannedy, S., eds., Probabilistic Linguistics. Cambridge, MA: MIT Press, pp. 177228.CrossRefGoogle Scholar
Poplack, S. (2020). A variationist perspective on language contact. In Adamou, E. & Matras, Y., eds., The Routledge Handbook of Language Contact. London: Routledge, pp. 4662.CrossRefGoogle Scholar
Putnam, M. T., Carlson, M., & Reitter, D. (2018). Integrated, not isolated: Defining typological proximity in an integrated multilingual architecture. Frontiers in Psychology, 8, 2212. https://doi.org/10.3389/fpsyg.2017.02212.CrossRefGoogle ScholarPubMed
Quick, A. E. & Verschik, A. (2019). Usage-based contact linguistics: An introduction to the special issue. Applied Linguistics Review, 12, 165177.CrossRefGoogle Scholar
Raymond, W. D., Brown, E. L., & Healy, A. F. (2016). Cumulative context effects and variant lexical representations: Word use and English final t/d deletion. Language Variation and Change, 28(2), 175202.CrossRefGoogle Scholar
Schmid, H. J. (2016). Entrenchment and the Psychology of Language Learning: How We Reorganize and Adapt Linguistic Knowledge. Berlin: De Gruyter.Google Scholar
Shenk, P. S. (2006). The interactional and syntactic importance of prosody in Spanish-English bilingual discourse. International Journal of Bilingualism, 10(2), 179205.CrossRefGoogle Scholar
Sherkina, M. (2003). The cognate facilitation effect in bilingual speech processing. Toronto Working Papers in Linguistics, 21, 135151.Google Scholar
Simonet, M. (2014). Phonetic consequences of dynamic cross-linguistic interference in proficient bilinguals. Journal of Phonetics, 43, 2637.CrossRefGoogle Scholar
Thomason, S. G. & Kaufman, T. (1988). Language Contact, Creolization, and Genetic Linguistics. Berkeley: University of California Press.CrossRefGoogle Scholar
Tomasello, M. (2003). Constructing a Language: A Usage-Based Theory of Language Acquisition. Cambridge, MA: Harvard University Press.Google Scholar
Torres Cacoullos, R. & Ferreira, F. (2000). Lexical frequency and voiced labiodental-bilabial variation in new Mexican Spanish. Southwest Journal of Linguistics, 19(2), 117.Google Scholar
Van Coetsem, F. (1988). Loan Phonology and the Two Transfer Types in Language Contact. Dordrecht: Foris.CrossRefGoogle Scholar
Waltermire, M. & Gradoville, M. (2020). The interaction of social factors in the acoustically gradient realization of intervocalic /d/ in Border Uruguayan Spanish. In Rao, R., ed., Spanish Phonetics and Phonology in Contact: Studies from Africa, the Americas, and Spain. Amsterdam: John Benjamins, pp. 263292.CrossRefGoogle Scholar
Wasserscheidt, P. (2021). A usage-based approach to “language” in language contact. Applied Linguistics Review, 12(2), 279298.CrossRefGoogle Scholar
Weinreich, U. (1952). Languages in Contact. Berlin: De Gruyter Mouton.Google Scholar
Winford, D. (2003). An Introduction to Contact Linguistics. Malden, MA: Wiley–Blackwell.Google Scholar

References

Amengual, M. (2019). Type of early bilingualism and its effect on the acoustic realization of allophonic variants: Early sequential and simultaneous bilinguals. International Journal of Bilingualism, 23(5), 954970.CrossRefGoogle Scholar
Amengual, M., & Chamorro, P. (2015). The effects of language dominance in the perception and production of the Galician mid vowel contrasts. Phonetics, 72, 207236.CrossRefGoogle ScholarPubMed
Ansaldo, A. I., Marcotte, K., Scherer, L., & Raboyeau, G. (2008). Language therapy and bilingual aphasia: Clinical implications of psycholinguistic and neuroimaging research. Journal of Neurolinguistics, 21, 539557.CrossRefGoogle Scholar
Arthur, B., Farrar, D., & Bradford, G. (1974). Evaluation reactions of college students to dialect differences in the English of Mexican-Americans. Language and Speech, 17(3), 255270.CrossRefGoogle Scholar
Baird, B. (2015). Pre-nuclear peak alignment in the Spanish of Spanish-K’ichee’ (Mayan) bilinguals. In Willis, E. W., Butragueño, P. M., & Zendejas, E. H., eds., Selected Proceedings of the 6th Conference on Laboratory Approaches to Romance Phonology. Somerville, MA: Cascadilla Proceedings Project, pp. 163174.Google Scholar
Barnes, S. (2016). Variable back vowels in urban Asturian Spanish. Spanish in Context, 13(1), 1-28.CrossRefGoogle Scholar
Bell, A. (2013). The Guidebook to Sociolinguistics. Hoboken, NJ: John Wiley & Sons.CrossRefGoogle Scholar
Bell, A. (2016). Succeeding waves: Seeking sociolinguistic theory for the twenty-first century. In Coupland, N., ed., Sociolinguistics: Theoretical Debates. Cambridge: Cambridge University Press, pp. 391416.CrossRefGoogle Scholar
Berrebi, S., Bassel, N., & Gafter, R. J. (2022). Hearing Hebrew pharyngeals: Experimental evidence for a covert phonemic distinction. University of Pennsylvania Working Papers in Linguistics, 28(2) (selected papers from NWAV 49 [2021]), article 3. https://repository.upenn.edu/pwpl/vol28/iss2/3.Google Scholar
Bialystok, E., Craik, F., & Luk, G. (2012). Bilingualism: Consequences for mind and brain. Trends in Cognitive Sciences, 16(4), 240250.CrossRefGoogle ScholarPubMed
Birdsong, D. (2015). Dominance in bilingualism: Foundations of measurement, with insights from the study of handedness. In Silva-Corvalán, C. & Traffers-Dallers, J., eds., Language Dominance in Bilingualism: Issues of Measurement and Operationalization. Cambridge: Cambridge University Press, pp. 85105.CrossRefGoogle Scholar
Birdsong, D., Gertken, L. M., & Amengual, M. (2012). Bilingual Language Profile: An Easy-to-Use Instrument to Assess Bilingualism. Austin: COERLL, University of Texas at Austin. https://sites.la.utexas.edu/bilingual.Google Scholar
Bucholtz, M. & Hall, K. (2005). Identity and interaction: A sociocultural linguistic approach. Discourse Studies, 7(4–5), 585614.CrossRefGoogle Scholar
Bullock, B. & Toribio, A. J. (2009). The Cambridge Handbook of Linguistic Code-Switching. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Chappell, W. (2019a). The sociophonetic perception of heritage Spanish speakers in the United States: Reactions to labiodentalized in the speech of late immigrant and U.S.-born voices. In Chappell, W., ed., Recent Advances in the Study of Spanish Sociophonetic Perception. Philadelphia, PA: John Benjamins, pp. 239264.CrossRefGoogle Scholar
Chappell, W. (2019b). Recent Advances in the Study of Spanish Sociophonetic Perception. Philadelphia, PA: John Benjamins.CrossRefGoogle Scholar
Cole, M. (2022). Sociolinguistics and language shift in Ecuador: A case study of palatals. [Doctoral dissertation, Indiana University].Google Scholar
Coupland, N. (2001). Language, situation, and the relational self: Theorizing dialect-style in sociolinguistics. In Eckert, P. & Rickford, J. R., eds., Style and Sociolinguistic Variation. Malden, MA: Blackwell, pp. 185210.Google Scholar
Davidson, J. (2019). Covert and overt attitudes towards Catalonian Spanish laterals and intervocalic fricatives. In Chappell, W., ed., Recent Advances in the Study of Spanish Sociophonetic Perception. Philadelphia, PA: John Benjamins, pp. 3984.Google Scholar
De Bot, K. (1992). A bilingual production model: Levelt’s “speaking” model adapted. Applied Linguistics, 13(1), 124.Google Scholar
Delgado-Diaz, G., Galarza, I., & Díaz-Campos, M. (2021). Complex attitudes towards two sociolinguistic variables and their social meanings: Providing evidence from production and perception data in a speech community. In Díaz-Campos, M. & Sessarego, S., eds., Aspects of Latin American Spanish Dialectology: In Honor of Terrell A. Morgan. Amsterdam: John Benjamins, pp. 125154.CrossRefGoogle Scholar
Díaz-Campos, M. (2013). Segmental phonology in L2 Spanish. In Geeslin, K., ed., The Handbook of Spanish Second Language Acquisition. Hoboken, NJ: Wiley–Blackwell, pp. 146165.CrossRefGoogle Scholar
Díaz-Campos, M. (2014). Introducción a la sociolingüística hispánica. Malden, MA: Blackwell.Google Scholar
Díaz-Campos, M., & Dickinson, S. (2019). Using statistics as a tool in the analysis of sociolinguistic variation: A comparison of current and traditional methods. In Rei-Doval, G. & Tejedo-Herrero, F., eds., Lusophone, Galician, and Hispanic Linguistics: Bridging Frames and Traditions. Amsterdam: John Benjamins, pp. 205226.CrossRefGoogle Scholar
Díaz-Campos, M., Escalona Torres, J. M., & Filimonova, V. (2020). Sociolinguistics of the Spanish-speaking world. Annual Review of Linguistics, 6, 363388.CrossRefGoogle Scholar
Eckert, P. (1989). The whole woman: Sex and gender differences in variation. Language Variation and Change, 1, 245267.CrossRefGoogle Scholar
Eckert, P. (2008). Variation and the indexical field. Journal of Sociolinguistics, 12(4), 453476.CrossRefGoogle Scholar
Eckert, P. (2012). Three waves of variation study: The emergence of meaning in the study of sociolinguistic variation. Annual Review of Anthropology, 41, 87100.CrossRefGoogle Scholar
Erker, D. & Bruso, J. (2017). Uh, bueno, em … Filled pauses as a site of contact-induced change in Boston Spanish. Language Variation and Change, 29(2), 205244.CrossRefGoogle Scholar
Ferguson, C. A. (1959). Diglossia. Word, 15(2), 325340.CrossRefGoogle Scholar
Flege, J. E. (1995). Second language speech learning theory, findings, and problems. In Strange, W., ed., Speech Perception and Linguistic Experience: Issues in Cross-Language Research. Timonium, MD: York Press, pp. 233277.Google Scholar
Foulkes, P. & Docherty, G. (2006). The social life of phonetics and phonology. Journal of Phonetics, 34, 409438.CrossRefGoogle Scholar
Freed, B., Dewey, D., Segalowitz, N., & Halter, R. (2004). The language contact profile. Studies in Second Language Acquisition, 26(2), 349356.CrossRefGoogle Scholar
Grosjean, F. (2010). Bilingual: Life and Reality. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Guión, S. (2003). The vowel systems of Quichua-Spanish bilinguals: Age of acquisition effects on the mutual influence of the first and second languages. Phonetica, 60(2), 98128.CrossRefGoogle ScholarPubMed
Henriksen, N. & Fafulas, S. (2017). Prosodic timing and language contact: Spanish and Yagua in Amazonian Peru. Studies in Hispanic and Lusophone Linguistics, 10(2), 225257.CrossRefGoogle Scholar
Hirson, A. & Sohail, N. (2007). Variability of rhotics in Punjabi-English bilinguals. In Trouvain, J. & Barry, W., eds., Proceedings ICPhS XVI. Saabrücken, pp. 15011504. www.icphs2007.de/conference/Papers/1623/1623.pdf.Google Scholar
Hoffman, M. & Walker, J. (2010). Ethnolects and the city: Ethnic orientation and linguistic variation in Toronto. Language Variation and Change, 22(1), 3767.CrossRefGoogle Scholar
Johnson, D. E. (2009). Getting off the GoldVarb standard: Introducing Rbrul for mixed-effects variable rule analysis. Language and Linguistics Compass, 3(1), 359383.CrossRefGoogle Scholar
Kim, J. Y. (2011). Discrepancy between the perception and production of stop consonants by Spanish heritage speakers in the United States. [Master’s thesis, Korea University].Google Scholar
Lambert, W., Hodgson, R., Gardner, R., & Fillenbaum, S. (1960). Evaluational reactions to spoken languages. Journal of Abnormal and Social Psychology, 60(1), 4451.CrossRefGoogle ScholarPubMed
Li, W. (2000). The Bilingualism Reader. London: Routledge.Google Scholar
Lindholm-Leary, K. (2020). Developing Spanish in dual language programs. In Potowski, K. & Muñoz-Basols, J., eds., The Routledge Handbook of Spanish as a Heritage Language. New York: Routledge, pp. 433444.Google Scholar
Lipski, J. M. (2019). Field-testing code-switching constraints: A report on a strategic languages project. Languages, 4(1), 7. https://doi.org/10.3390/languages4010007.CrossRefGoogle Scholar
Masgoret, A. M. & Gardner, R. C. (2003). Attitudes, motivation, and second language learning: A meta-analysis of studies conducted by Gardner and Associates. Language Learning, 53(1), 123163.CrossRefGoogle Scholar
McKinnon, S. (2020). Quantifying propagation in language contact: A variationist analysis of stops in bilingual (Spanish-Kaqchikel Maya) Guatemalan Spanish. [Doctoral dissertation, Indiana University].Google Scholar
Michnowicz, J. & Carpenter, L. (2013). Voiceless stop aspiration in Yucatan Spanish: A sociolinguistic analysis. Spanish in Context, 10(3), 410437.CrossRefGoogle Scholar
Milroy, L. (1980). Language and Social Networks. Hoboken, NJ: Wiley-Blackwell.Google Scholar
Mohamed, S., González, C., & Muntendam, A. (2019). Arabic-Spanish language contact in Puerto Rico: A case of glottal stop epenthesis. Languages, 4(4), 93.CrossRefGoogle Scholar
O’Rourke, E. (2010). Dialect differences and the bilingual vowel space in Peruvian Spanish. In Ortega-Llebaria, M., ed., Selected Proceedings of the 4th Conference on Laboratory Approaches to Spanish Phonology. Somerville, MA: Cascadilla Proceedings Project, pp. 2030.Google Scholar
O’Rourke, E. (2012). The realization of contrastive focus in Peruvian Spanish intonation. Lingua, 122(5), 494510.CrossRefGoogle Scholar
Pollock, M., Willis, E., & Díaz-Campos, M. (2023). The perception of coda /ɾ/ and /l/ in Dominican Spanish: Diversity, geography, and sociolinguistic variation [La percepción de la coda /ɾ/ y /l/ en el español dominicano: diversidad, geografía y variación sociolingüística]. Revista Internacional de Lingüística Iberoamericana [International Journal of Ibero-American Linguistics], 21(42), 151172. https://doi.org/10.31819/rili-2023-214209.CrossRefGoogle Scholar
Potowski, K. (2005). Fundamentos de la enseñanza del español a los hablantes nativos en los Estados Unidos [Foundations in Teaching Spanish to Native Speakers in the United States]. Madrid: Arco/Libros.Google Scholar
R Foundation. (2022). The R Project for Statistical Computing. www.R-project.org/.Google Scholar
Romaine, S. (1994). Language and Society: An Introduction to Sociolinguistics. Oxford: Oxford University Press.Google Scholar
Schilling-Estes, N. (2013). Investigating stylistic variation. In Chambers, J. K., Trudgill, P., & Schilling-Estes, N., eds., The Handbook of Language Variation and Change. Oxford: Basil Blackwell, pp. 123.Google Scholar
Sharma, D. (2018). Style dominance: Attention, audience, and the “real me.Language in Society, 47, 131.CrossRefGoogle Scholar
Shea, C. (2019). Dominance, proficiency, and Spanish heritage speakers’ production of English and Spanish vowels. Studies in Second Language Acquisition, 41, 123149.CrossRefGoogle Scholar
Silva-Corvalán, C. (2014). Bilingual Language Acquisition: Spanish and English in the First Six Years. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Simonet, M. (2010). Dark and clear laterals in Catalan and Spanish: Interaction of phonetic categories in early bilinguals. Journal of Phonetics, 38(4), 663678.CrossRefGoogle Scholar
Strandberg, J. A. E., Gooskens, C., & Schüppert, A. (2021). Simultaneous bilingualism and speech style as predictors of variation in allophone production: Evidence from Finland-Swedish. Journal of Phonetics, 88, 101095.CrossRefGoogle Scholar
Tagliamonte, S. A. (2015). Making Waves: The Story of Variationist Sociolinguistics. Malden, MA: Wiley Blackwell.CrossRefGoogle Scholar
Valdés, G. (2000). Introduction. In Sandstedt, L., ed., Spanish for Native Speakers. New York: Harcourt College.Google Scholar
Valdés, G. & Geoffrion-Vinci, M. (2011). Heritage language students: The case of Spanish. In Díaz-Campos, M., ed., The Handbook of Hispanic Sociolinguistics. Hoboken, NJ: Wiley-Blackwell, pp. 598622.CrossRefGoogle Scholar
Zentella, A. C. (1995). La hispanofobia del movimiento “Inglés oficial” en los Estados Unidos por la oficialización del inglés. Alteridades, 5(10), 5565.Google Scholar
Zentella, A. C. (1997). Growing Up Bilingual: Puerto Rican Children in New York. Malden, MA: Wiley-Blackwell.Google Scholar

References

Amengual, M. (2012). Interlingual influence in bilingual speech: Cognate status effect in a continuum of bilingualism. Bilingualism: Language and Cognition, 15, 517530.CrossRefGoogle Scholar
Amengual, M. (2018). Asymmetrical interlingual influence in the production of Spanish and English laterals as a result of competing activation in bilingual language processing. Journal of Phonetics, 69, 1228.CrossRefGoogle Scholar
Balukas, C. & Koops, C. (2015). Spanish-English bilingual voice onset time in spontaneous code-switching. International Journal of Bilingualism, 19(4), 423443.CrossRefGoogle Scholar
Barry, C., Hirsh, K. W., Johnston, R. A., & Williams, C. L. (2001). Age of acquisition, word frequency, and the locus of repetition priming of picture naming. Journal of Memory and Language, 44, 350375.CrossRefGoogle Scholar
Best, C. T. & Tyler, M. D. (2007). Nonnative and second-language speech perception: Commonalities and complementarities. In Munro, M. J. & Bohn, O.-S., eds., Language Experience in Second Language Speech Learning: In Honor of James Emil Flege. Amsterdam: John Benjamins, pp. 1334.CrossRefGoogle Scholar
Brown, E. (2014). The role of discourse context frequency in phonological variation: A usage-based approach to bilingual speech production. International Journal of Bilingualism, 19(4), 387406.CrossRefGoogle Scholar
Costa, A., Caramazza, A., & Sebastian-Galles, N. (2000). The cognate facilitation effect: implications for models of lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 12831296.Google ScholarPubMed
Cummins, R. (2000). “How does it work?” vs. “What are the laws?” Two conceptions of psychological explanation. In Keil, F. & Wilson, R., eds., Explanation and Cognition. Cambridge, MA: MIT Press, pp. 117145.CrossRefGoogle Scholar
Damian, M. F., Vigliocco, G., & Levelt, W. J. (2001). Effects of semantic context in the naming of pictures and words. Cognition, 81, B77B86.CrossRefGoogle ScholarPubMed
De Bruin, A., Samuel, A. G., & Duñabeitia, J. A. (2018). Voluntary language switching: When and why do bilinguals switch between their languages? Journal of Memory and Language, 103, 2843.CrossRefGoogle Scholar
Declerck, M. & Philipp, A. M. (2015). A review of control processes and their locus in language switching. Psychonomic Bulletin & Review, 22(6), 16301645.CrossRefGoogle ScholarPubMed
Dell, G. S., Kelley, A. C., Hwang, S., & Bian, Y. (2021). The adaptable speaker: A theory of implicit learning in language production. Psychological Review, 128, 446487.CrossRefGoogle ScholarPubMed
Deuchar, M., Davies, P., Herring, J., Parafita Couto, M. C., & Carter, D. (2014). Building bilingual corpora. In Thomas, E. M. & Mennen, I., eds., Advances in the Study of Bilingualism. Bristol, UK: Multilingual Matters, pp. 93110.CrossRefGoogle Scholar
Emmorey, K., Borinstein, H. B., Thompson, R., & Gollan, T. H. (2008). Bimodal bilingualism. Bilingualism: Language and Cognition, 11, 4361.CrossRefGoogle ScholarPubMed
Flege, J. E. (1995). Second language speech learning: Theory, findings and problems. In Strange, W., ed., Speech Perception and Linguistic Experience: Issues in Cross-Language Research. Timonium, MD: York Press, pp. 233277.Google Scholar
Flege, J. E. & Bohn, O.-S. (2021). The revised Speech Learning Model (SLM-r). In Wayland, R., ed., Second Language Speech Learning: Theoretical and Empirical Progress. Cambridge: Cambridge University Press, pp. 383.CrossRefGoogle Scholar
Fibla, L., Sebastian-Galles, N., & Cristia, A. (2022). Is there a bilingual disadvantage for word segmentation? A computational modeling approach. Journal of Child Language, 49(6), 11191146. https://doi.org/10.1017/S0305000921000568.CrossRefGoogle Scholar
Fink, A. & Goldrick, M. (2015). The influence of word retrieval and planning on phonetic variation: Implications for exemplar models. Linguistics Vanguard, 1, 215225.CrossRefGoogle ScholarPubMed
Gade, M., Declerck, M., Philipp, A. M., Rey-Mermet, A., & Koch, I. (2021). Assessing the evidence for asymmetrical switch costs and reversed language dominance effects – A meta-analysis. Journal of Cognition, 4, 55.CrossRefGoogle ScholarPubMed
Goldrick, M. & Blumstein, S. E. (2006). Cascading activation from phonological planning to articulatory processes: Evidence from tongue twisters. Language and Cognitive Processes, 21(6), 649683.CrossRefGoogle Scholar
Goldrick, M., Runnqvist, E., & Costa, A. (2014). Language switching makes pronunciation less nativelike. Psychological Science, 25(4), 10311036.CrossRefGoogle ScholarPubMed
Gollan, T. H. & Ferreira, V. S. (2009). Should I stay or should I switch? A cost-benefit analysis of voluntary language switching in young and aging bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(3), 640.Google ScholarPubMed
Gollan, T. H. & Goldrick, M. (2016). Grammatical constraints on language switching: Language control is not just executive control. Journal of Memory and Language, 90, 177199.CrossRefGoogle Scholar
Gollan, T. H. & Goldrick, M. (2018). A switch is not a switch: Syntactically-driven bilingual language control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(1), 143.Google Scholar
Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1, 6781.CrossRefGoogle Scholar
Green, D. W. & Wei, L. (2014). A control process model of code-switching. Language, Cognition and Neuroscience, 29(4), 499511.CrossRefGoogle Scholar
Grosjean, F. (1997). Processing mixed language: Issues, findings, and models. In de Groot, A. M. B. & Kroll, J. F., eds., Tutorials in Bilingualism: Psycholinguistic Perspectives. Mahwah, NJ: Lawrence Erlbaum Associates, pp. 225254.Google Scholar
Johnson, K. (2021). SPiCE: Speech in Cantonese and English. Scholars Portal Dataverse, V1. https://doi.org/10.5683/SP2/MJOXP3.CrossRefGoogle Scholar
Kilbourn-Ceron, O. & Goldrick, M. (2021). Variable pronunciations reveal dynamic intra-speaker variation in speech planning. Psychonomic Bulletin and Review, 28, 13651380.CrossRefGoogle ScholarPubMed
Kleinman, D. & Gollan, T. H. (2018). Inhibition accumulates over time at multiple processing levels in bilingual language control. Cognition, 178, 115132.CrossRefGoogle Scholar
Kroll, J. F., Bobb, S. C., & Wodniecka, Z. (2006). Language selectivity is the exception, not the rule: Arguments against a fixed locus of language selection in bilingual speech. Bilingualism: Language and Cognition, 9, 119135.CrossRefGoogle Scholar
Lagrou, E., Hartsuiker, R. J., & Duyck, W. (2011). Knowledge of a second language influences auditory word recognition in the native language. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(4), 952.Google ScholarPubMed
Lauro, J. & Schwartz, A. I. (2017). Bilingual non-selective lexical access in sentence contexts: A meta-analytic review. Journal of Memory and Language, 92, 217233.CrossRefGoogle Scholar
Li, C. & Gollan, T. H. (2021). What cognates reveal about default language selection in bilingual sentence production. Journal of Memory and Language, 118, 104214.CrossRefGoogle ScholarPubMed
Li, P. (2013). Computational modeling of bilingualism: How can models tell us more about the bilingual mind? Bilingualism: Language and Cognition, 16, 241245.CrossRefGoogle Scholar
Lisker, L. & Abramson, A. S. (1964). A cross-language study of voicing in initial stops: Acoustical measurements. Word, 20, 384422.CrossRefGoogle Scholar
Marian, V. & Spivey, M. (2003). Competing activation in bilingual language processing: Within-and between-language competition. Bilingualism: Language and Cognition, 6, 97115.CrossRefGoogle Scholar
McDonald, M. & Kaushanskaya, M. (2020). Factors modulating cross-linguistic co-activation in bilinguals. Journal of Phonetics, 81, 100981.CrossRefGoogle ScholarPubMed
Meuter, R. F. I. & Allport, A. (1999). Bilingual language switching in naming: Asymmetrical costs of language selection. Journal of Memory and Language, 40, 2540.CrossRefGoogle Scholar
Mousikou, P. & Rastle, K. (2015). Lexical frequency effects on articulation: A comparison of picture naming and reading aloud. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01571.CrossRefGoogle ScholarPubMed
Myers-Scotton, C. & Jake, J. (2009). A universal model of code-switching and bilingual language processing and production. In Bullock, B. & Toribio, A. J., eds., The Cambridge Handbook of Linguistic Codeswitching. New York: Cambridge University Press, pp. 336357.Google Scholar
Roelofs, A. (2004). Seriality of phonological encoding in naming objects and reading their names. Memory & Cognition, 32, 212222.CrossRefGoogle ScholarPubMed
Runnqvist, E., Strijkers, K., & Costa, A. (2014). Bilingual word access. In Goldrick, M., Ferreira, V. S., & Miozzo, M., eds., The Oxford Handbook of Language Production. New York: Oxford University Press, pp. 182198.Google Scholar
Sharma, D. & Sankaran, L. (2011). Cognitive and social forces in dialect shift: Gradual change in London Asian speech. Language Variation and Change, 23(3), 399428.CrossRefGoogle Scholar
Shook, A. & Marian, V. (2013). The bilingual language interaction network for comprehension of speech. Bilingualism: Language and Cognition, 16(2), 304324.CrossRefGoogle Scholar
Smolensky, P. (1999). Grammar-based connectionist approaches to language. Cognitive Science, 23, 589613.Google Scholar
Van Leussen, J. & Escudero, P. (2015). Learning to perceive and recognize a second language: The L2LP model revised. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01000.CrossRefGoogle ScholarPubMed

References

Abutalebi, J. & Green, D. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20(3), 242275.CrossRefGoogle Scholar
Alexandrou, A. M., Saarinen, T., Kujala, J., & Salmelin, R. (2020). Cortical entrainment: What we can learn from studying naturalistic speech perception. Language, Cognition and Neuroscience, 35(6), 681693.CrossRefGoogle Scholar
Arredondo, M. M., Hu, X.-S., Satterfield, T., & Kovelman, I. (2017). Bilingualism alters children’s frontal lobe functioning for attentional control. Developmental Science, 20(3), e12377.CrossRefGoogle ScholarPubMed
Barac, R., Moreno, S., & Bialystok, E. (2016). Behavioral and electrophysiological differences in executive control between monolingual and bilingual children. Child Development, 87(4), 12771290.CrossRefGoogle ScholarPubMed
Beres, A. M. (2017). Time is of the essence: A review of electroencephalography (EEG) and event-related brain potentials (ERPs) in language research. Applied Psychophysiology and Biofeedback, 42(4), 247255.CrossRefGoogle Scholar
Bidelman, G. M. (2018). Subcortical sources dominate the neuroelectric auditory frequency-following response to speech. NeuroImage, 175, 5669.CrossRefGoogle ScholarPubMed
Blanco-Elorrieta, E., Ding, N., Pylkkänen, L., & Poeppel, D. (2020). Understanding requires tracking: Noise and knowledge interact in bilingual comprehension. Journal of Cognitive Neuroscience, 32(10), 19751983.CrossRefGoogle ScholarPubMed
Bohland, J. W., Tourville, J. A., & Guenther, F. H. (2019). Neural bases of speech production. In Katz, W. F. & Assmann, P. F., eds., The Routledge Handbook of Phonetics. Abingdon: Routledge, pp. 126163.CrossRefGoogle Scholar
Bouchard, K. E., Mesgarani, N., Johnson, K., & Chang, E. F. (2013). Functional organization of human sensorimotor cortex for speech articulation. Nature, 495(7441), 327332.CrossRefGoogle ScholarPubMed
Callan, D. E., Tajima, K., Callan, A. M., et al. (2003). Learning-induced neural plasticity associated with improved identification performance after training of a difficult second-language phonetic contrast. NeuroImage, 19(1), 113124.CrossRefGoogle ScholarPubMed
Cavanagh, J. F. & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414421.CrossRefGoogle ScholarPubMed
Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49(4), 31983209.CrossRefGoogle ScholarPubMed
Chandrasekaran, B., Gandour, J. T., & Krishnan, A. (2007). Neuroplasticity in the processing of pitch dimensions: A multidimensional scaling analysis of the mismatch negativity. Restorative Neurology and Neuroscience, 25(0), 195210.Google ScholarPubMed
Coffey, E. B. J., Herholz, S. C., Chepesiuk, A. M. P., Baillet, S., & Zatorre, R. J. (2016). Cortical contributions to the auditory frequency-following response revealed by MEG. Nature Communications, 7(1), 111.CrossRefGoogle Scholar
Coffey, E. B. J., Nicol, T., White-Schwoch, T., et al. (2019). Evolving perspectives on the sources of the frequency-following response. Nature Communications, 10(1), 5036.CrossRefGoogle ScholarPubMed
Crosse, M. J., Di Liberto, G. M., Bednar, A., & Lalor, E. C. (2016). The multivariate Temporal Response Function (mTRF) toolbox: A MATLAB toolbox for relating neural signals to continuous stimuli. Frontiers in Human Neuroscience, 10, 604.CrossRefGoogle ScholarPubMed
Danylkiv, A. & Krafnick, A. J. (2020). A meta-analysis of gray matter differences between bilinguals and monolinguals. Frontiers in Human Neuroscience, 14, 146.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., Dupoux, E., & Gout, A. (2000). Electrophysiological correlates of phonological processing: A cross-linguistic study. Journal of Cognitive Neuroscience, 12(4), 635647.CrossRefGoogle ScholarPubMed
Di Liberto, G. M., Crosse, M. J., & Lalor, E. C. (2018). Cortical measures of phoneme-level speech encoding correlate with the perceived clarity of natural speech. eNeuro, 5(2), https://doi.org/10.1523/ENEURO.0084-18.2018.CrossRefGoogle ScholarPubMed
Di Liberto, G. M., Nie, J., Yeaton, J., et al. (2021). Neural representation of linguistic feature hierarchy reflects second-language proficiency. NeuroImage, 227, 117586.CrossRefGoogle Scholar
Di Liberto, G. M., O’Sullivan, J. A., & Lalor, E. C. (2015). Low-frequency cortical entrainment to speech reflects phoneme-level processing. Current Biology, 25(19), 24572465.CrossRefGoogle ScholarPubMed
Ding, N., Chatterjee, M., & Simon, J. Z. (2014). Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure. NeuroImage, 88, 4146.CrossRefGoogle Scholar
Ding, N., Melloni, L., Yang, A., et al. (2017). Characterizing neural entrainment to hierarchical linguistic units using electroencephalography (EEG). Frontiers in Human Neuroscience, 11, 481.CrossRefGoogle ScholarPubMed
Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158164.CrossRefGoogle ScholarPubMed
Ding, N. & Simon, J. Z. (2014). Cortical entrainment to continuous speech: Functional roles and interpretations. Frontiers in Human Neuroscience, 8, 311.CrossRefGoogle ScholarPubMed
Fedorenko, E. & Blank, I. A. (2020). Broca’s area is not a natural kind. Trends in Cognitive Sciences, 24(4), 270284.CrossRefGoogle Scholar
Feng, G., Li, Y., Hsu, S.-M., et al. (2021). Emerging native-similar neural representations underlie non-native speech category learning success. Neurobiology of Language, 2(2), 280307.CrossRefGoogle ScholarPubMed
Feng, G., Yi, H. G., & Chandrasekaran, B. (2019). The role of the human auditory corticostriatal network in speech learning. Cerebral Cortex, 29(10), 40774089.CrossRefGoogle ScholarPubMed
Ferrari, M. & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage, 63(2), 921935.CrossRefGoogle ScholarPubMed
Friederici, A. D. (2015). White-matter pathways for speech and language processing. Handbook of Clinical Neurology, 129, 177186.CrossRefGoogle ScholarPubMed
Ganushchak, L., Christoffels, I., & Schiller, N. O. (2011). The use of electroencephalography in language production research: a review. Frontiers in Psychology, 2, 208.CrossRefGoogle ScholarPubMed
García-Pentón, L., Pérez Fernández, A., Iturria-Medina, Y., Gillon-Dowens, M., & Carreiras, M. (2014). Anatomical connectivity changes in the bilingual brain. NeuroImage, 84, 495504.CrossRefGoogle ScholarPubMed
García-Sierra, A., Ramírez-Esparza, N., Silva-Pereyra, J., Siard, J., & Champlin, C. A. (2012). Assessing the double phonemic representation in bilingual speakers of Spanish and English: An electrophysiological study. Brain and Language, 121(3), 194205.CrossRefGoogle Scholar
Garrido, M. I., Friston, K. J., Kiebel, S. J., et al. (2008). The functional anatomy of the MMN: A DCM study of the roving paradigm. NeuroImage, 42(2), 936944.CrossRefGoogle ScholarPubMed
Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453463.CrossRefGoogle ScholarPubMed
Giordano, V., Alexopoulos, J., Spagna, A., et al. (2021). Accent discrimination abilities during the first days of life: An fNIRS study. Brain and Language, 223, 105039.CrossRefGoogle ScholarPubMed
Giraud, A.-L. & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511517.CrossRefGoogle ScholarPubMed
Giroud, N., Baum, S. R., Gilbert, A. C., Phillips, N. A., & Gracco, V. (2020). Earlier age of second language learning induces more robust speech encoding in the auditory brainstem in adults, independent of amount of language exposure during early childhood. Brain and Language, 207, 104815.CrossRefGoogle ScholarPubMed
Gnanateja, G. N., Rupp, K., Llanos, F., et al. (2021). Frequency-following responses to speech sounds are highly conserved across species and contain cortical contributions. ENeuro, 8(6). https://doi.org/10.1523/ENEURO.0451-21.2021.CrossRefGoogle ScholarPubMed
Golestani, N. & Zatorre, R. J. (2004). Learning new sounds of speech: Reallocation of neural substrates. NeuroImage, 21(2), 494506.CrossRefGoogle ScholarPubMed
Golestani, N. & Zatorre, R. J. (2009). Individual differences in the acquisition of second language phonology. Brain and Language, 109(2–3), 5567.CrossRefGoogle ScholarPubMed
Grant, A., Dennis, N. A., & Li, P. (2014). Cognitive control, cognitive reserve, and memory in the aging bilingual brain. Frontiers in Psychology, 5, 1401.CrossRefGoogle ScholarPubMed
Hamilton, L. S. & Huth, A. G. (2020). The revolution will not be controlled: Natural stimuli in speech neuroscience. Language, Cognition and Neuroscience, 35(5), 573582.CrossRefGoogle Scholar
Hansen, P., Kringelbach, M., & Salmelin, R. (2010). MEG: An Introduction to Methods. Oxford: Oxford University Press.CrossRefGoogle Scholar
Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: The early beginnings. NeuroImage, 62(2), 852855.CrossRefGoogle ScholarPubMed
Hernandez, A. E. (2013). The Bilingual Brain. Oxford: Oxford University Press.CrossRefGoogle ScholarPubMed
Hickok, G. & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393402.CrossRefGoogle ScholarPubMed
Hickok, G. & Poeppel, D. (2016). Neural basis of speech perception. In Hickok, G. & Small, S. L., eds., Neurobiology of Language. New York: Academic Press, pp. 299310.CrossRefGoogle Scholar
Huettel, S. A. (2012). Event-related fMRI in cognition. NeuroImage, 62(2), 11521156.CrossRefGoogle ScholarPubMed
Jakoby, H., Goldstein, A., & Faust, M. (2011). Electrophysiological correlates of speech perception mechanisms and individual differences in second language attainment: Speech perception and individual differences. Psychophysiology, 48(11), 15171531.CrossRefGoogle ScholarPubMed
Jasińska, K. K. & Guei, S. (2018). Neuroimaging field methods using functional near infrared spectroscopy (NIRS) neuroimaging to study global child development: Rural sub-Saharan Africa. Journal of Visualized Experiments, 132, 57165.Google Scholar
Kaan, E. (2007). Event‐related potentials and language processing: A brief overview. Language and Linguistics Compass, 1(6), 571591.CrossRefGoogle Scholar
Krishnan, A., Xu, Y., Gandour, J., & Cariani, P. (2005). Encoding of pitch in the human brainstem is sensitive to language experience. Cognitive Brain Research, 25(1), 161168.CrossRefGoogle ScholarPubMed
Krizman, J., Marian, V., Shook, A., Skoe, E., & Kraus, N. (2012). Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proceedings of the National Academy of Sciences, 109(20), 78777881.CrossRefGoogle ScholarPubMed
Kuhl, P. K., Stevenson, J., Corrigan, N. M., et al. (2016). Neuroimaging of the bilingual brain: Structural brain correlates of listening and speaking in a second language. Brain and Language, 162, 19.CrossRefGoogle Scholar
Leonard, M. K. & Chang, E. F. (2014). Dynamic speech representations in the human temporal lobe. Trends in Cognitive Sciences, 18(9), 472479.CrossRefGoogle ScholarPubMed
Li, P., Legault, J., & Litcofsky, K. A. (2014). Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex, 58, 301324.CrossRefGoogle ScholarPubMed
Lloyd-Fox, S., Moore, S., Darboe, M., et al. (2016). fNIRS in Africa & Asia: An objective measure of cognitive development for global health settings. FASEB Journal, 30(S1), 1149.18. https://doi.org/10.1096/fasebj.30.1_supplement.1149.18.CrossRefGoogle Scholar
Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique, 2nd ed. Cambridge, MA: MIT Press.Google Scholar
Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 343(6174), 10061010.CrossRefGoogle ScholarPubMed
Morales, J., Yudes, C., Gómez-Ariza, C. J., & Bajo, M. T. (2015). Bilingualism modulates dual mechanisms of cognitive control: Evidence from ERPs. Neuropsychologia, 66, 157169.CrossRefGoogle ScholarPubMed
Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 25442590.CrossRefGoogle ScholarPubMed
Nourski, K. V., Reale, R. A., Oya, H., et al. (2009). Temporal envelope of time-compressed speech represented in the human auditory cortex. Journal of Neuroscience, 29(49), 1556415574.CrossRefGoogle ScholarPubMed
Olsen, R. K., Pangelinan, M. M., Bogulski, C., et al. (2015). The effect of lifelong bilingualism on regional grey and white matter volume. Brain Research, 1612, 128139.CrossRefGoogle ScholarPubMed
Peelle, J. E. & Davis, M. H. (2012). Neural oscillations carry speech rhythm through to comprehension. Frontiers in Psychology, 3, 320. https://doi.org/10.3389/fpsyg.2012.00320.CrossRefGoogle ScholarPubMed
Peltola, M. S., Tamminen, H., Toivonen, H., Kujala, T., & Näätänen, R. (2012). Different kinds of bilinguals – Different kinds of brains: The neural organisation of two languages in one brain. Brain and Language, 121(3), 261266.CrossRefGoogle ScholarPubMed
Peng, C. & Hou, X. (2021). Applications of functional near-infrared spectroscopy (fNIRS) in neonates. Neuroscience Research, 170, 1823.CrossRefGoogle ScholarPubMed
Petitto, L. A., Berens, M. S., Kovelman, I., et al. (2012). The “Perceptual Wedge Hypothesis” as the basis for bilingual babies’ phonetic processing advantage: New insights from fNIRS brain imaging. Brain and Language, 121(2), 130143.CrossRefGoogle Scholar
Picton, T., Rodriguez, R. T., Linden, R. D., & Maiste, A. C. (1985). The neurophysiology of human hearing. Human Communication Canada, 9, 127136.Google Scholar
Pinti, P., Tachtsidis, I., Hamilton, A., et al. (2020). The present and future use of functional near‐infrared spectroscopy (fNIRS) for cognitive neuroscience. Annals of the New York Academy of Sciences, 1464(1), 529.CrossRefGoogle ScholarPubMed
Pliatsikas, C. (2020). Understanding structural plasticity in the bilingual brain: The Dynamic Restructuring Model. Bilingualism: Language and Cognition, 23(2), 459471.CrossRefGoogle Scholar
Poldrack, R. A., Mumford, J. A., & Nichols, T. E. (2011). Handbook of Functional MRI Data Analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Poline, J.-B. & Brett, M. (2012). The general linear model and fMRI: Does love last forever? NeuroImage, 62(2), 871880.CrossRefGoogle ScholarPubMed
Raizada, R. D. S., Tsao, F.-M., Liu, H.-M., et al. (2010). Linking brain-wide multivoxel activation patterns to behaviour: Examples from language and math. NeuroImage, 51(1), 462471.CrossRefGoogle ScholarPubMed
Reetzke, R., Gnanateja, G. N., & Chandrasekaran, B. (2021). Neural tracking of the speech envelope is differentially modulated by attention and language experience. Brain and Language, 213, 104891.CrossRefGoogle ScholarPubMed
Reetzke, R., Xie, Z., Llanos, F., & Chandrasekaran, B. (2018). Tracing the trajectory of sensory plasticity across different stages of speech learning in adulthood. Current Biology, 28(9), 14191427, e1–e4. https://doi.org/10.1016/j.cub.2018.03.026.CrossRefGoogle ScholarPubMed
Ressel, V., Pallier, C., Ventura-Campos, N., et al. (2012). An effect of bilingualism on the auditory cortex. Journal of Neuroscience, 32(47), 1659716601.CrossRefGoogle ScholarPubMed
Rimmele, J. M., Zion Golumbic, E., Schröger, E., & Poeppel, D. (2015). The effects of selective attention and speech acoustics on neural speech-tracking in a multi-talker scene. Cortex, 68, 144154.CrossRefGoogle Scholar
Rodriguez-Fornells, A., van der Lugt, A., Rotte, M., et al. (2005). Second language interferes with word production in fluent bilinguals: Brain potential and functional imaging evidence. Journal of Cognitive Neuroscience, 17(3), 422433.CrossRefGoogle ScholarPubMed
Rosen, S., Carlyon, R. P., Darwin, C. J., & Russell, I. J. (1992). Temporal information in speech: Acoustic, auditory and linguistic aspects. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 336(1278), 367373.Google ScholarPubMed
Saba, L. (2016). Magnetic Resonance Imaging Handbook. Boca Raton, FL: CRC Press.Google Scholar
Saliba, J., Bortfeld, H., Levitin, D. J., & Oghalai, J. S. (2016). Functional near-infrared spectroscopy for neuroimaging in cochlear implant recipients. Hearing Research, 338, 6475.CrossRefGoogle ScholarPubMed
Shannon, R. V., Zeng, F.-G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech recognition with primarily temporal cues. Science, 270(5234), 303304.CrossRefGoogle ScholarPubMed
Skoe, E., Burakiewicz, E., Figueiredo, M., & Hardin, M. (2017). Basic neural processing of sound in adults is influenced by bilingual experience. Neuroscience, 349, 278290.CrossRefGoogle ScholarPubMed
Skoe, E. & Kraus, N. (2010). Auditory brainstem response to complex sounds: A tutorial. Ear and Hearing, 31(3), 302324.CrossRefGoogle ScholarPubMed
Song, J. & Iverson, P. (2018). Listening effort during speech perception enhances auditory and lexical processing for non-native listeners and accents. Cognition, 179, 163170.CrossRefGoogle ScholarPubMed
Sorace, A. (2011). Pinning down the concept of “interface” in bilingualism. Linguistic Approaches to Bilingualism, 1(1), 133.CrossRefGoogle Scholar
Stilp, C. E. (2020). Evaluating peripheral versus central contributions to spectral context effects in speech perception. Hearing Research, 392, 107983.CrossRefGoogle ScholarPubMed
Sugiura, L., Ojima, S., Matsuba-Kurita, H., et al. (2015). Effects of sex and proficiency in second language processing as revealed by a large-scale fNIRS study of school-aged children. Human Brain Mapping, 36(10), 38903911.CrossRefGoogle ScholarPubMed
Sussman, E., Kujala, T., Halmetoja, J., et al. (2004). Automatic and controlled processing of acoustic and phonetic contrasts. Hearing Research, 190(1), 128140.CrossRefGoogle ScholarPubMed
Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: A user-friendly application for MEG/EEG. Computational Intelligence and Neuroscience, 2011, 879716.CrossRefGoogle ScholarPubMed
Tamminen, H., Peltola, M. S., Toivonen, H., Kujala, T., & Näätänen, R. (2013). Phonological processing differences in bilinguals and monolinguals. International Journal of Psychophysiology, 87(1), 812.CrossRefGoogle ScholarPubMed
Teng, X., Tian, X., Rowland, J., & Poeppel, D. (2017). Concurrent temporal channels for auditory processing: Oscillatory neural entrainment reveals segregation of function at different scales. PLoS Biology, 15(11), e2000812.CrossRefGoogle ScholarPubMed
Tourville, J. A. & Guenther, F. H. (2011). The DIVA model: A neural theory of speech acquisition and production. Language and Cognitive Processes, 26(7), 952981.CrossRefGoogle Scholar
Wang, Y., Sereno, J. A., Jongman, A., & Hirsch, J. (2003). FMRI evidence for cortical modification during learning of Mandarin lexical tone. Journal of Cognitive Neuroscience, 15(7), 10191027.CrossRefGoogle ScholarPubMed
Winkler, I., Kujala, T., Tiitinen, H., et al. (1999). Brain responses reveal the learning of foreign language phonemes. Psychophysiology, 36(5), 638642.CrossRefGoogle ScholarPubMed
Wolfe, J. M., Kluender, K. R., Levi, D. M., et al. (2006). Sensation & Perception. Sunderland, MA: Sinauer.Google Scholar
Wong, P. C. M., Perrachione, T. K., & Parrish, T. B. (2007). Neural characteristics of successful and less successful speech and word learning in adults. Human Brain Mapping, 28(10), 9951006.CrossRefGoogle ScholarPubMed
Worden, F. G. & Marsh, J. T. (1968). Frequency-following (microphonic-like) neural responses evoked by sound. Electroencephalography and Clinical Neurophysiology, 25(1), 4252.CrossRefGoogle ScholarPubMed
Xie, S., Wu, D., Yang, J., et al. (2021). An fNIRS examination of executive function in bilingual young children. International Journal of Bilingualism, 25(3), 516530.CrossRefGoogle Scholar
Yeung, M. K. (2021). An optical window into brain function in children and adolescents: A systematic review of functional near-infrared spectroscopy studies. NeuroImage, 227, 117672.CrossRefGoogle ScholarPubMed
Yi, H. G., Leonard, M. K., & Chang, E. F. (2019). The encoding of speech sounds in the superior temporal gyrus. Neuron, 102(6), 10961110.CrossRefGoogle ScholarPubMed
Zinszer, B. D., Chen, P., Wu, H., Shu, H., & Li, P. (2015). Second language experience modulates neural specialization for first language lexical tones. Journal of Neurolinguistics, 33, 5066.CrossRefGoogle Scholar
Zinszer, B. D., Yuan, Q., Zhang, Z., Chandrasekaran, B., & Guo, T. (2022). Continuous speech tracking in bilinguals reflects adaptation to both language and noise. Brain and Language, 230, 105128.CrossRefGoogle ScholarPubMed

References

Adriaans, F. (2018). Effects of consonantal context on the learnability of vowel categories from infant-directed speech. The Journal of the Acoustical Society of America, 144(1), EL20–EL25.CrossRefGoogle ScholarPubMed
Adriaans, F. (2020). The effectiveness of phonological cues for bilingual input separation. Paper presented at the 45th Boston University Conference on Language Development (BUCLD45). www.bu.edu/bucld/files/2020/10/BUCLD45_Abstracts_at-a-glance_v4.pdf.Google Scholar
Adriaans, F. & Kager, R. (2010). Adding generalization to statistical learning: The induction of phonotactics from continuous speech. Journal of Memory and Language, 62, 311331.CrossRefGoogle Scholar
Adriaans, F. & Kager, R. (2017). Learning novel phonotactics from exposure to continuous speech. Laboratory Phonology: Journal of the Association for Laboratory Phonology, 8(1), 114.CrossRefGoogle Scholar
Adriaans, F. & Swingley, D. (2017). Prosodic exaggeration within infant-directed speech: Consequences for vowel learnability. The Journal of the Acoustical Society of America, 141(5), 30703078.CrossRefGoogle ScholarPubMed
Albright, A. (2009). Feature-based generalisation as a source of gradient acceptability. Phonology, 26, 941.CrossRefGoogle Scholar
Bailey, T. M. & Hahn, U. (2001). Determinants of wordlikeness: Phonotactics or lexical neighborhoods? Journal of Memory and Language, 44, 568591.CrossRefGoogle Scholar
Best, C. T., McRoberts, G. W., & Goodell, E. (2001). Discrimination of non-native consonant contrasts varying in perceptual assimilation to the listener’s native phonological system. The Journal of the Acoustical Society of America, 109(2), 775794.CrossRefGoogle Scholar
Boersma, P. & Hayes, B. (2001). Empirical tests of the Gradual Learning Algorithm. Linguistic Inquiry, 32(1), 4586.CrossRefGoogle Scholar
Bonatti, L. L., Peña, M., Nespor, M., & Mehler, J. (2005). Linguistic constraints on statistical computations. Psychological Science, 16, 451459.CrossRefGoogle ScholarPubMed
Brent, M. R. & Cartwright, T. A. (1996). Distributional regularity and phonotactic constraints are useful for segmentation. Cognition, 61, 93125.CrossRefGoogle ScholarPubMed
Byers-Heinlein, K. (2013). Parental language mixing: Its measurement and the relation of mixed input to young bilingual children’s vocabulary size. Bilingualism: Language and Cognition, 16(1), 3248.CrossRefGoogle Scholar
Cairns, P., Shillcock, R., Chater, N., & Levy, J. (1997). Bootstrapping word boundaries: A bottom-up corpus-based approach to speech segmentation. Cognitive Psychology, 33, 111153.CrossRefGoogle ScholarPubMed
Carbajal, M. J. (2018). Separation and acquisition of two languages in early childhood: A multidisciplinary approach. [Doctoral dissertation, Université de recherche Paris Sciences et Lettres].Google Scholar
Carbajal, M. J., Dawud, A., Thiollière, R., & Dupoux, E. (2016). The “language filter” hypothesis: A feasibility study of language separation in infancy using unsupervised clustering of i-vectors. In Proceedings of the 2016 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob). Cergy-Pontoise, France: IEEE, pp. 195201. https://doi.org/10.1109/DEVLRN.2016.7846818.CrossRefGoogle Scholar
Carbajal, M. J., Fér, R., & Dupoux, E. (2016). Modeling language discrimination in infants using i-vector representations. In Proceedings of the 38th Annual Conference of the Cognitive Science Society, pp. 889896. www.lscp.net/persons/dupoux/papers/Carbajal_FD_2016_Language_discrimination_i-vectors.ProcCogSci.pdf.Google Scholar
Carnegie Mellon University. (2014). CMU Pronouncing Dictionary, Version 0.7b. www.speech.cs.cmu.edu/cgi-bin/cmudict.Google Scholar
Curtin, S., Byers-Heinlein, K., & Werker, J. F. (2011). Bilingual beginnings as a lens for theory development: PRIMIR in focus. Journal of Phonetics, 39(4), 492504.CrossRefGoogle Scholar
Daland, R. & Pierrehumbert, J. B. (2011). Learning diphone-based segmentation. Cognitive Science, 35, 119155.CrossRefGoogle ScholarPubMed
Danielson, D. K., Seidl, A., Onishi, K. H., Alamian, G., & Cristia, A. (2014). The acoustic properties of bilingual infant-directed speech. The Journal of the Acoustical Society of America, 135(2), EL95–EL101.Google ScholarPubMed
De Boer, B. & Kuhl, P. K. (2003). Investigating the role of infant-directed speech with a computer model. Acoustics Research Letters Online, 4, 129134.CrossRefGoogle Scholar
Dehak, N., Kenny, P. J., Dehak, R., Dumouchel, P., & Ouellet, P. (2010). Front-end factor analysis for speaker verification. IEEE Transactions on Audio, Speech, and Language Processing, 19(4), 788798.CrossRefGoogle Scholar
Dehak, N., Torres-Carrasquillo, P. A., Reynolds, D., & Dehak, R. (2011). Language recognition via i-vectors and dimensionality reduction. In Proceedings of Interspeech 2011, pp. 857860. https://doi.org/10.21437/Interspeech.2011-328.CrossRefGoogle Scholar
De Seyssel, M. & Dupoux, E. (2020). Does bilingual input hurt? A simulation of language discrimination and clustering using i-vectors. In Proceedings of CogSci 2020 – 42nd Annual Virtual Meeting of the Cognitive Science Society, pp. 27912797. https://cognitivesciencesociety.org/cogsci20/papers/0683/0683.pdf.Google Scholar
Dillon, B., Dunbar, E., & Idsardi, W. (2013). A single-stage approach to learning phonological categories: Insights from Inuktitut. Cognitive Science, 37, 344377.CrossRefGoogle ScholarPubMed
Escudero, P. (2005). Linguistic Perception and Second Language Acquisition: Explaining the Attainment of Optimal Phonological Categorization. Utrecht: LOT. www.lotpublications.nl/Documents/113_fulltext.pdf.Google Scholar
Feldman, N. H., Griffiths, T. L., Goldwater, S., & Morgan, J. L. (2013). A role for the developing lexicon in phonetic category acquisition. Psychological Review, 120, 751778.CrossRefGoogle ScholarPubMed
Goddijn, S. & Binnenpoorte, D. (2003). Assessing manually corrected broad phonetic transcriptions in the Spoken Dutch Corpus. In Proceedings of the 15th International Congress of Phonetic Sciences, pp. 13611364. www.internationalphoneticassociation.org/icphs-proceedings/ICPhS2003/papers/p15_1361.pdf.Google Scholar
Gouskova, M. & Gallagher, G. (2020). Inducing nonlocal constraints from baseline phonotactics. Natural Language & Linguistic Theory, 38(1), 77116.CrossRefGoogle Scholar
Hay, J., Pierrehumbert, J., & Beckman, M. (2004). Speech perception, well-formedness, and the statistics of the lexicon. Papers in Laboratory Phonology vi, 5874.Google Scholar
Hayes, B. & Wilson, C. (2008). A maximum entropy model of phonotactics and phonotactic learning. Linguistic Inquiry, 39, 379440.CrossRefGoogle Scholar
Hochmann, J.-R., Benavides-Varela, S., Nespor, M., & Mehler, J. (2011). Consonants and vowels: Different roles in early language acquisition. Developmental Science, 14(6), 14451458.CrossRefGoogle ScholarPubMed
Jurafsky, D. & Martin, J. H. (2009). Speech and Language Processing, 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall.Google Scholar
Jusczyk, P. W., Luce, P. A., & Charles-Luce, J. (1994). Infants’ sensitivity to phonotactic patterns in the native language. Journal of Memory and Language, 33, 630645.CrossRefGoogle Scholar
Kastner, I. & Adriaans, F. (2018). Linguistic constraints on statistical word segmentation: The role of consonants in Arabic and English. Cognitive Science, 42, 494518.CrossRefGoogle ScholarPubMed
Keidel, J. L., Zevin, J. D., Kluender, K. R., & Seidenberg, M. S. (2003). Modeling the role of native language knowledge in perceiving nonnative speech contrasts. In Proceedings of the 15th International Congress of Phonetic Sciences, pp. 22212224. www.internationalphoneticassociation.org/icphs-proceedings/ICPhS2003/papers/p15_2221.pdf.Google Scholar
Legendre, G., Miyata, Y., & Smolensky, P. (1990). Harmonic grammar – A formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations. In Proceedings of the 12th Annual Conference of the Cognitive Science Society, pp. 884891. www.colorado.edu/ics/sites/default/files/attached-files/90-05.pdf.Google Scholar
Li, P. & Farkas, I. (2002). A self-organizing connectionist model of bilingual processing. Advances in Psychology, 134, 5985.CrossRefGoogle Scholar
Li, P. & MacWhinney, B. (2002). PatPho: A phonological pattern generator for neural networks. Behavior Research Methods, Instruments, & Computers, 34(3), 408415.CrossRefGoogle ScholarPubMed
MacWhinney, B. (2014). The CHILDES project: Tools for Analyzing Talk, Volume II: The Database, 3rd ed. New York: Psychology Press.CrossRefGoogle Scholar
Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco, CA: W. H. Freeman.Google Scholar
Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensitivity to distributional information can affect phonetic discrimination. Cognition, 82, B101B111.CrossRefGoogle ScholarPubMed
McMurray, B., Aslin, R. N., & Toscano, J. C. (2009). Statistical learning of phonetic categories: Insights from a computational approach. Developmental Science, 12, 369378.CrossRefGoogle ScholarPubMed
Pierrehumbert, J. B. (2003). Probabilistic phonology: Discrimination and robustness. In Bod, R., Hay, J., & Jannedy, S., eds., Probabilistic Linguistics. Cambridge, MA: MIT Press, pp. 177228.CrossRefGoogle Scholar
Pitt, M. A., Dilley, L., Johnson, K., et al. (2007). Buckeye Corpus of Conversational Speech (2nd Release). Columbus: Ohio State University, Department of Psychology, pp. 265270.Google Scholar
Potts, C., Pater, J., Jesney, K., Bhatt, R., & Becker, M. (2010). Harmonic grammar with linear programming: from linear systems to linguistic typology. Phonology, 27(1), 77117.CrossRefGoogle Scholar
Prince, A. & Smolensky, P. (2004). Optimality Theory: Constraint Interaction in Generative Grammar. Malden, MA: Wiley–Blackwell.CrossRefGoogle Scholar
Prince, A. & Tesar, B. (2004). Learning phonotactic distributions. In Kager, R., Pater, J., & Zonneveld, W., eds., Constraints in Phonological Acquisition. Cambridge: Cambridge University Press, pp. 245291.CrossRefGoogle Scholar
Richtsmeier, P. T. (2011). Word-types, not word-tokens, facilitate extraction of phonotactic sequences by adults. Laboratory Phonology, 2, 157183.CrossRefGoogle Scholar
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 19261928.CrossRefGoogle ScholarPubMed
Saffran, J. R., Newport, E. L., & Aslin, R. N. (1996). Word segmentation: The role of distributional cues. Journal of Memory and Language, 35, 606621.CrossRefGoogle Scholar
Shook, A. & Marian, V. (2013). The bilingual language interaction network for comprehension of speech. Bilingualism: Language and Cognition, 16(2), 304324.CrossRefGoogle Scholar
Sundara, M. & Breiss, C. (2020). Infants are sensitive to phonotactic patterns in their native language at 5-months. Paper presented at the 45th Boston University Conference on Language Development (BUCLD45). www.bu.edu/bucld/files/2020/10/BUCLD45_Abstracts_at-a-glance_v4.pdf.Google Scholar
Sundara, M. & Scutellaro, A. (2011). Rhythmic distance between languages affects the development of speech perception in bilingual infants. Journal of Phonetics, 39(4), 505513.CrossRefGoogle Scholar
Swingley, D. (2009). Contributions of infant word learning to language development. Philosophical Transactions of the Royal Society B, 364, 36173622.CrossRefGoogle ScholarPubMed
Swingley, D. & Alarcon, C. (2018). Lexical learning may contribute to phonetic learning in infants: A corpus analysis of maternal Spanish. Cognitive Science, 42(5), 16181641.CrossRefGoogle Scholar
Tesar, B. & Smolensky, P. (2000). Learnability in Optimality Theory. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Vallabha, G. K., McClelland, J. L., Pons, F., Werker, J. F., & Amano, S. (2007). Unsupervised learning of vowel categories from infant-directed speech. Proceedings of the National Academy of Sciences of the United States of America, 104, 1327313278.CrossRefGoogle ScholarPubMed
Van Leussen, J.-W. & Escudero, P. (2015). Learning to perceive and recognize a second language: The L2LP model revised. Frontiers in Psychology, 6, 1000. https://doi.org/10.3389/fpsyg.2015.01000.CrossRefGoogle ScholarPubMed
Vitevitch, M. S. & Luce, P. A. (1999). Probabilistic phonotactics and neighborhood activation in spoken word recognition. Journal of Memory and Language, 40, 374408.CrossRefGoogle Scholar
Yang, C. D. (2004). Universal Grammar, statistics or both? Trends in Cognitive Sciences, 8, 451456.CrossRefGoogle ScholarPubMed
Yip, V. & Matthews, S. (2000). Syntactic transfer in a Cantonese–English bilingual child. Bilingualism: Language and cognition, 3(3), 193208.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×