Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T10:59:16.388Z Has data issue: false hasContentIssue false

20 - Emotion Recognition and Aging of the Social Brain

from Part III - Aging in a Socioemotional Context

Published online by Cambridge University Press:  28 May 2020

Ayanna K. Thomas
Affiliation:
Tufts University, Massachusetts
Angela Gutchess
Affiliation:
Brandeis University, Massachusetts
Get access

Summary

We examine evidence for whether brain volume reductions and neurotransmitter decline can account for older adults’ emotion recognition difficulties relative to young adults. We also consider whether emotion recognition decline is related to general cognitive decline or the positivity bias. Despite recent claims, older adults’ emotion recognition difficulties are not consistent with the positivity bias. Links to general cognitive decline are not strong, although future research could shed further light on this issue by examining links to speed of processing. We conclude that there is some evidence for the idea that neurotransmitter decline might relate to older men’s emotion recognition declines (though not older women’s), but with only two studies, more research is needed. There are more studies examining brain volume reductions, with links between emotion recognition and decline in the frontal and temporal lobes clearest.

Type
Chapter
Information
The Cambridge Handbook of Cognitive Aging
A Life Course Perspective
, pp. 367 - 382
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, R., & Brosgole, L. (1993). Facial and auditory affect recognition in senile geriatrics, the normal elderly and young adults. International Journal of Neuroscience, 68, 3342. doi: 10.3109/00207459308994257CrossRefGoogle ScholarPubMed
Arbuckle, T. Y., & Pushkar Gold, D. (1993). Aging, inhibition, and verbosity. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 48, 225232. doi: 10.1093/geronj/48.5P225Google Scholar
Bassili, J. N. (1979). Emotion recognition: The role of facial movement and the relative importance of upper and lower areas of the face. Journal of Personality and Social Psychology, 37, 20492058. doi: 10.1037/0022-3514.37.11.2049CrossRefGoogle ScholarPubMed
Blanke, E. S., Rauers, A., & Riediger, M. (2015). Nice to meet you – adult age differences in empathic accuracy for strangers. Psychology and Aging, 30, 149159. doi: 10.1037/a0038459Google Scholar
Brosgole, L., & Weisman, J. (1995). Mood recognition across the ages. International Journal of Neuroscience, 82, 169189. doi: 10.3109/00207459508999800Google Scholar
Cabeza, R., & Dennis, N. A. (2013). Frontal lobes and aging: Deterioration and compensation. In Stuss, D. T. & Knight, R. T. (Eds.), Principles of frontal lobe function (pp. 628652). Oxford: Oxford University Press.Google Scholar
Calder, A. J., Keane, J., Manly, T., et al. (2003). Facial expression recognition across the adult life span. Neuropsychologia, 41, 195202. doi: 10.1016/S0028-3932(02)00149-5Google Scholar
Calder, A. J., Young, A. W., Keane, J., & Dean, M. (2000). Configural information in facial expression perception. Journal of Experimental Psychology: Human Perception and Performance, 26, 527551. doi: 10.1037//0096-1523.26.2.527Google ScholarPubMed
Campbell, A., Ruffman, T., Murray, J. E., & Glue, P. (2014). Oxytocin improves emotion recognition in older males. Neurobiology of Aging, 35, 22462248. doi: 10.1016/j.neurobiolaging.2014.04.021CrossRefGoogle ScholarPubMed
Cao, W., Luo, C., Zhu, B., et al. (2014). Resting-state functional connectivity in anterior cingulate cortex in normal aging. Frontiers in Aging Neuroscience, 6, 17. doi: 10.3389/fnagi.2014.00280Google Scholar
Carstensen, L. L., & Mikels, J. A. (2005). At the intersection of emotion and cognition: Aging and the positivity effect. Current Directions in Psychological Science, 14, 117121. doi: 10.111/j.0963/7214.20020.00348.xCrossRefGoogle Scholar
Clark, L., Bechara, A., Damasio, H., et al. (2008). Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain, 131, 13111322. doi: 10.1093/brain/awn066Google Scholar
Colcombe, S. J., Erickson, K. I., Scalf, P. E., et al. (2006). Aerobic exercise training increases brain volume in aging humans. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 61, 11661170. doi: 10.1093/gerona/61.11.1166CrossRefGoogle ScholarPubMed
Convit, A., Wolf, O. T., de Leon, M. J., et al. (2001). Volumetric analysis of the pre-frontal regions: Findings in aging and schizophrenia. Psychiatry Research: Neuroimaging, 107, 6173. doi: 10.1016/S0925-4927(01)00097-XGoogle Scholar
Ebner, N. C., He, Y., & Johnson, M. K. (2011). Age and emotion affect how we look at a face: visual scan patterns differ for own-age and other-age emotional faces. Cognition and Emotion, 25, 983987. doi: 10.1080/02699931.2010.540817CrossRefGoogle Scholar
Ebner, N. C., Johnson, M. K., & Fischer, H. (2012). Neural mechanisms of reading emotions in young and older adults. Frontiers in Psychology, 3, p. 223. doi: 10.3389/fpsyg.2012.00223CrossRefGoogle ScholarPubMed
Eisenbarth, H., & Alpers, G. W. (2011). Happy mouth and sad eyes: Scanning emotional facial expressions. Emotion, 11, 860865. doi: 10.1037/a0022758Google Scholar
Firestone, A., Turk-Browne, N. B., & Ryan, J. D. (2007). Age-related deficits in face recognition are related to underlying changes in scanning behaviour. Aging, Neuropsychology, and Cognition, 14, 594607. doi: 10.1080/13825580600899717CrossRefGoogle Scholar
Fischer, H., Nyberg, L., & Bäckman, L. (2010). Age-related differences in brain regions supporting successful encoding of emotional faces. Cortex, 46, 490497. doi: 10.1016/j.cortex.2009.020.011Google Scholar
Fjell, A. M., & Walhovd, K. B. (2010). Structural brain changes in aging: Courses, causes and cognitive consequences. Reviews in the Neurosciences, 21, 187221. doi: 10.1515/REVNEURO.2010.21.3.187Google Scholar
Fjell, A. M., Westlye, L. T., Grydeland, H., et al. (2014). Accelerating cortical thinning: Unique to dementia or universal in aging? Cerebral Cortex, 24, 919934. doi: 10.1093/cercor/bhs379Google Scholar
Garraux, G., Salmon, E., Degueldre, C., et al. (1999). Comparison of impaired subcortico-frontal metabolic networks in normal aging, subcortico-frontal dementia, and cortical frontal dementia. NeuroImage, 10, 149162. doi: 10.1006/nimg.1999.0463Google Scholar
Grainger, S. A., Henry, J. D., Phillips, L. H., Vanman, E. J., & Allen, R. (2017). Age deficits in facial affect recognition: The influence of dynamic cues. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 72, 622632. doi: 10.1093/geronb/gbv100Google ScholarPubMed
Grainger, S. A., Henry, J. D., Steinvik, H. R., et al. (2018). Intranasal oxytocin does not reduce age-related difficulties in social cognition. Hormones and Behavior, 99, 2534. doi: 10.1016/j.yhbeh.2018.01.009Google Scholar
Hailstone, J. C., Omar, R., Henley, S. M. D., et al. (2009). It’s not what you play, it’s how you play it: Timbre affects perception of emotion in music. Quarterly Journal of Experimental Psychology, 62, 214121520. doi: 10.1080/17470210902765957CrossRefGoogle Scholar
Halberstadt, J., Ruffman, T., Murray, J., Taumoepeau, M., & Ryan, M. (2011). Emotion perception explains age-related differences in the perception of social gaffes. Psychology and Aging, 26, 133136. doi: 10.1037/a0021366Google Scholar
Hedden, T. (2007). Imaging cognition in the aging human brain. In Riddle, D. R. (Ed.), Brain aging: Models, methods, and mechanisms (pp. 251278). Boca Raton, FL: Taylor and Francis.Google Scholar
Henry, J. D., Phillips, L. H., Ruffman, T., & Bailey, P. E. (2013). A meta-analytic review of age differences in theory of mind. Psychology and Aging, 28, 826839. doi: 10.1037/a0030677Google Scholar
Horning, S. M., Cornwell, R. E., & Davis, H. P. (2012). The recognition of facial expressions: An investigation of the influence of age and cognition. Aging, Neuropsychology, and Cognition, 19, 657676. doi: 10.1080/138255820.2011.645011CrossRefGoogle ScholarPubMed
Ickes, W. (1993). Empathic accuracy. Journal of Personality, 61, 587610. doi: 10.111/j.1467-6494.1993.tb00783.xCrossRefGoogle Scholar
Iidaka, T., Okada, T., Murata, T., et al. (2002). Age-related differences in the medial temporal lobe responses to emotional faces as revealed by fMRI. Hippocampus, 12, 352362. doi: 10.1002/hipo.1113CrossRefGoogle ScholarPubMed
Isaacowitz, D. M., & Stanley, J. T. (2011). Bringing an ecological perspective to the study of aging and recognition of emotional facial expressions: Past, current, and future methods. Journal of Nonverbal Behavior, 35, 261278. doi: 10.1007/s10919-011-0113-6Google Scholar
Kamboj, S. K., & Curran, H. V. (2006). Scopolamine induces impairments in the recognition of human facial expressions of anger and disgust. Psychopharmacology, 185, 529535. doi: 10.1007/s00213-006-0332-4Google Scholar
Keightley, M. L., Chiew, K. S., Winocur, G., & Grady, C. L. (2007). Age-related differences in brain activity underlying identification of emotional expressions in faces. Social, Cognitive and Affective Neuroscience, 2, 292302. doi: 10.1093/scan/nsm024Google Scholar
Keightley, M. L., Winocur, G., Burianova, H., Hongwanishkul, D., & Grady, C. L. (2006). Age effects on social cognition: Faces tell a different story. Psychology and Aging, 20, 558572. doi: 10.1037/0882-7974.21.3.558Google Scholar
Lamar, M., & Resnick, S. M. (2004). Aging and prefrontal functions: Dissociating orbitofrontal and dorsolateral abilities. Neurobiology of Aging, 25, 553558. doi: 10.1016/j.neurobiolaging.2003.06.005CrossRefGoogle ScholarPubMed
Lambrecht, L., Kreifelts, B., & Wildgruber, D. (2012). Age-related decrease in recognition of emotional facial and prosodic expressions. Emotion, 12, 529539. doi: 10.1037/a0026827CrossRefGoogle ScholarPubMed
Laukka, P., & Juslin, P. N. (2007). Similar patterns of age-related differences in emotion recognition from speech and music. Motivation and Emotion, 31, 182191. doi: 10.1007/s11031-007-9063-zCrossRefGoogle Scholar
Lawrence, A. D., Calder, A. J., McGowan, S. W., & Grasby, P. M. (2002). Selective disruption of the recognition of facial expressions of anger. NeuroReport, 13, 881884. doi: 0.1097/00001756-200205070-00029Google Scholar
Lima, C. F., Alves, T., Scott, S. K., & Castro, S. L. (2014). In the ear of the beholder: How age shapes emotion processing in nonverbal vocalizations. Emotion, 14, 145160. doi: 10.1080/02699931.2010.502449Google Scholar
Lima, C. F., & Castro, S. L. (2011). Emotion recognition in music changes across the adult life span. Cognition and Emotion, 25, 585598. doi: 10.1080/02699931.2010.502449Google Scholar
Mather, M. (2016). The affective neuroscience of aging. Annual Review of Psychology, 67, 213238. doi: 10.1146/annurev-psych-122414-033540Google Scholar
McNamara, R. K., Liu, Y., Jandacek, R., Rider, T., & Tso, P. (2008). The aging human orbitofrontal cortex: Decreased polyunsaturated fatty acid composition and associated increases in lipogenic gene expression and stearoyl-CoA desaturase activity. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 78, 293304. doi: 10.1016/j.plefa.2008.04.001Google Scholar
Mukherjee, J., Christian, B. T., Dunigan, K. A., et al. (2002). Brain imaging of F-18-fallypride in normal volunteers: Blood analysis, distribution, test–retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse, 46, 170188. doi: 10.1002/syn.10128Google Scholar
Murphy, N. A., & Isaacowitz, D. M. (2010). Age effects and gaze patterns in recognizing emotional expressions: An in-depth look at gaze measures and covariates. Cognition and Emotion, 24, 436452. doi: 10.1080/02699930802664623CrossRefGoogle Scholar
Murphy, N. A., Lehrfeld, J. M., & Isaacowitz, D. M. (2010). Recognition of posed and spontaneous dynamic smiles in young and older adults. Psychology and Aging, 25, 811821. doi: 10.1037/a0019888Google Scholar
Ohnishi, T., Matsuda, H., Tabira, T., Asada, T., & Uno, M. (2001). Changes in brain morphology in Alzheimer disease and normal aging: Is Alzheimer disease an exaggerated aging process? American Journal of Neuroradiology, 22, 168016820. www.ajnr.org/content/22/9/1680Google Scholar
Öngür, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex, 10, 206219. doi: 10.1093/cercor/10.3.206Google Scholar
Orbelo, D. M., Grim, M. A., Talbott, R. E., & Ross, E. D. (2005). Impaired comprehension of affective prosody in elderly subjects is not predicted by age-related hearing loss or age-related cognitive decline. Journal of Geriatric Psychiatry and Neurology, 18, 2532. doi: 10.1177/0891988704272214Google Scholar
Pardo, J. V., Lee, J. T., Sheikh, S. A., et al. (2007). Where the brain grows old: Decline in anterior cingulate and medial prefrontal function with normal aging. NeuroImage, 35, 12311237. doi: 10.1016/j.neuroimage.2006.12.044Google Scholar
Petit-Taboué, M. C., Landeau, B., Desson, J. F., Desgranges, B., & Baron, J. C. (1998). Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping. NeuroImage, 7, 176184. doi: 10.1006/nimg.1997.0318CrossRefGoogle ScholarPubMed
Phillips, L. H., MacLean, R. D. J., & Allen, R. (2002). Age and the understanding of emotions: Neuropsychological and sociocognitive perspectives. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 57, 526530. doi: 10.1093/geronb/57.6.P526Google Scholar
Rajkowska, G., Mahajan, G., Legutko, B., et al. (2017). Length of axons expressing the serotonin transporter in orbitofrontal cortex is lower with age in depression. Neuroscience, 359, 3039. doi: 10.1016/j.neuroscience.2017.07.006Google Scholar
Rauers, A., Blanke, E., & Riediger, M. (2013). Everyday empathic accuracy in younger and older couples: Do you need to see your partner to know his or her feelings? Psychological Science, 24, 22102217. doi: 10.1177/0956797613490747CrossRefGoogle ScholarPubMed
Raz, N., Gunning-Dixon, F. M., Head, D., et al. (1997). Selective aging of the human cerebral cortex observed in vivo: Differential vulnerability of the prefrontal gray matter. Cerebral Cortex, 7, 268282. doi: 10.1093/cercor/7.3.268Google Scholar
Resnick, S. M., Goldszal, A. F., Davatzikos, C., et al. (2000). One-year age changes in MRI brain volumes in older adults. Cerebral Cortex, 10, 464472. doi: 10.1093/cercor/10.20.464Google Scholar
Resnick, S. M., Lamar, M., & Driscoll, I. (2007). Vulnerability of the orbitofrontal cortex to age-associated structural and functional brain changes. Annals of the New York Academy of Sciences, 1121, 562575. doi: 10.1196/annals.1407.027Google Scholar
Resnick, S. M., Pham, D. L., Kraut, M. A., Zonderman, A. B., & Davatzikos, C. (2003). Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain. Journal of Neuroscience, 23, 32953301. doi: 10.1523/JNEUROSCI.23-08-032920.2003CrossRefGoogle ScholarPubMed
Richter, D., & Kunzmann, U. (2011). Age differences in three facets of empathy: Performance-based evidence. Psychology and Aging, 26, 6070. doi: 10.1037/a0021138CrossRefGoogle ScholarPubMed
Ruffman, T., Halberstadt, J., & Murray, J. (2009). Recognition of facial, auditory, and bodily emotions in older adults. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 64, 696703. doi: 10.1093/geronb/gbp072Google Scholar
Ruffman, T., Halberstadt, J., Murray, J., Jack, F., & Vater, T. (2019). Empathic accuracy: Worse recognition by older adults and less transparency in older adult expressions compared with young adults. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences. doi: 10.1093/geronb/gbz008CrossRefGoogle Scholar
Ruffman, T., Henry, J. D., Livingstone, V., & Phillips, L. H. (2008). A meta-analytic review of emotion recognition and aging: Implications for neuropsychological models of aging. Neuroscience and Biobehavioral Reviews, 32, 863881. doi: 10.1016/j.neubiorev.2008.01.001CrossRefGoogle ScholarPubMed
Ruffman, T., Murray, J., Halberstadt, J., & Taumoepeau, M. (2010). Verbosity and emotion recognition in older adults. Psychology and Aging, 25, 492497. doi: 10.1037/a0018247Google Scholar
Ruffman, T., Murray, J., Halberstadt, J., & Vater, T. (2012). Age-related differences in deception. Psychology and Aging, 27, 543549. doi: 10.1037/a0023380Google Scholar
Ruffman, T., Sullivan, S., & Dittrich, W. (2009). Older adults’ recognition of bodily and auditory expressions of emotion. Psychology and Aging, 24, 614622. doi: 10.1037/a0016356Google Scholar
Ruffman, T., & Sutcliffe, R. (submitted). Neuropsychological perspectives on emotion recognition and the aging brain. University of Otago, Dunedin, New Zealand.Google Scholar
Ruffman, T., Wilson, M., Henry, J. D., et al. (2016). Age differences in right-wing authoritarianism and their relation to emotion recognition. Emotion, 16(2), 226236. doi: 10.1037/emo0000107Google Scholar
Ryan, M., Murray, J., & Ruffman, T. (2010). Aging and the perception of emotion: Processing vocal expressions alone and with faces. Experimental Aging Research, 36, 122. doi: 10.1080/03610730903418372CrossRefGoogle ScholarPubMed
Sala-Llonch, R., Bartrés-Faz, D., & Junqué, C. (2015). Reorganization of brain networks in aging: A review of functional connectivity studies. Frontiers in Psychology, 6, 111. doi: 10.3389/fpsyg.20120.00663Google Scholar
Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403428. doi: 10.1037//0033-295X.103.3.403Google Scholar
Schultz, S. K., O’Leary, D. S., Boles Ponto, L. L., et al. (1999). Age-related changes in regional cerebral blood flow among young to mid-life adults. NeuroReport, 10, 24932496. doi: 10.1097/00001756-199908200-00011CrossRefGoogle Scholar
Shen, J., Kassir, M. A., Wu, J., et al. (2013). MR volumetric study of piriform-cortical amygdala and orbitofrontal cortices: The aging effect. PLoS One, 8(9), e74526. doi: 10.1371/journal.pone.0074526Google Scholar
Spreng, R. N., Wojtowicz, M., & Grady, C. L. (2010). Reliable differences in brain activity between young and old adults: A quantitative meta-analysis across multiple cognitive domains. Neuroscience and Biobehavioral Reviews, 34, 11781194. doi: 10.1016/j.neubiorev.2010.01.009Google Scholar
Sullivan, S., Campbell, A., Hutton, S. B., & Ruffman, T. (2017). What’s good for the goose is not good for the gander: Age and gender differences in scanning emotion faces. Journals of Gerontology: Psychological Sciences, 72, 441447. doi: 10.1093/geronb/gbv033CrossRefGoogle Scholar
Sullivan, S., & Ruffman, T. (2004a). Emotion recognition deficits in the elderly. International Journal of Neuroscience, 114, 403432. doi: 10.1080/00207450490270901Google Scholar
Sullivan, S., & Ruffman, T. (2004b). Social understanding: How does it fare with advancing years? British Journal of Psychology, 95, 118. doi: 10.1348/00071260432277942Google Scholar
Sullivan, S., Ruffman, T., & Hutton, S. (2007). Age differences in emotion recognition skills and the visual scanning of emotion faces. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 62, 5360. doi: 10.1093/geronb/62.1CrossRefGoogle ScholarPubMed
Sutcliffe, R., Rendell, P. G., Henry, J. D., Bailey, P. E., & Ruffman, T. (2017). Music to my ears: Age-related decline in musical and facial emotion recognition. Psychology and Aging, 32, 698709. doi: 10.1037/pag0000203Google Scholar
Suzuki, A., & Akiyama, H. (2013). Cognitive aging explains age-related differences in face-based recognition of basic emotions except for anger and disgust. Aging, Neuropsychology, and Cognition, 20, 253270. doi: 10.1080/138255820.2012.692761CrossRefGoogle ScholarPubMed
Tehan Stanley, J., & Isaacowitz, D. M. (2015). Caring more and knowing more reduces age-related differences in emotion perception. Psychology and Aging, 30, 383395. doi: 10.1037/pag0000028Google Scholar
Tessitore, A., Hariri, A. R., Fera, F., et al. (2005). Functional changes in the activity of brain regions underlying emotion processing in the elderly. Psychiatry Research: Neuroimaging, 139, 918. doi: 10.1016/j.pscychresns.20020.02.009Google Scholar
Tisserand, D. J., Pruessner, J. C., Sanz Arigita, E. J., et al. (2002). Regional frontal cortical volumes decrease differentially in aging: An MRI study to compare volumetric approaches and voxel-based morphometry. NeuroImage, 17, 657669. doi: 10.1006/nimg.2002.1173Google Scholar
Vaidya, J. G., Paradiso, S., Boles Ponto, L. L., McCormick, L. M., & Robinson, R. G. (2007). Aging, grey matter, and blood flow in the anterior cingulate cortex. NeuroImage, 37, 13461353. doi: 10.1016/j.neuroimage.2007.06.015Google Scholar
Volkow, N. D., Logan, J., Fowler, J. S., et al. (2000). Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. American Journal of Psychiatry, 157, 7580. doi: 10.1176/ajp.157.1.75Google Scholar
Wieck, C., & Kunzmann, U. (2015). Age differences in empathy: Multidirectional and context-dependent. Psychology and Aging, 30, 407419. doi: 10.1037/a0039001Google Scholar
Wieck, C., & Kunzmann, U. (2017). Age differences in emotion recognition: A question of modality? Psychology and Aging, 32, 401411. doi: 10.1037/pag0000178Google Scholar
Williams, L. M., Brown, K. J., Palmer, D., et al. (2006). The mellow years? Neural basis of improving emotional stability over age. Journal of Neuroscience, 26, 64226430. doi: 10.1523/JNEUROSCI.0022-06.2006Google Scholar
Wong, B., Cronin-Golomb, A., & Neargarder, S. (2005). Patterns of visual scanning as predictors of emotion identification in normal aging. Neuropsychology, 19, 739749. doi: 10.1037/0894-4105.19.6.739Google Scholar
Ziaei, M., Burianová, H., von Hippel, W., et al. (2016). The impact of aging on the neural networks involved in gaze and emotional processing. Neurobiology of Aging, 48, 182194. doi: 10.1016/j.neurobiolaging.2016.08.026Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×