Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T13:03:48.149Z Has data issue: false hasContentIssue false

11 - Episodic Memory Decline in Aging

from Part II - Mechanisms of Cognitive Aging

Published online by Cambridge University Press:  28 May 2020

Ayanna K. Thomas
Affiliation:
Tufts University, Massachusetts
Angela Gutchess
Affiliation:
Brandeis University, Massachusetts
Get access

Summary

Age-related changes in memory are a common but worrisome occurrence in many people’s lives. However, these changes are not ubiquitous. Healthy aging appears to impact memory for associative/relational details, i.e., the ability to recollect, more so than memory for item information. We propose that alterations in the recruitment of prefrontally mediated cognitive control processes, such as strategy use and inhibitory control, underlie these age-related memory deficits in healthy adults. These processes are particularly critical for remembering specific relational details and for being able to resolve interference between competing memories. Critically, evidence suggests that while there are large individual differences in the impact of aging on memory, various methods of support/intervention can improve memory performance in healthy older adults. We discuss how recent developments in neuroscience analysis methods have enhanced our understanding of how aging affects the control processes that support episodic learning and retrieval. We further suggest that future studies should test more diverse samples of adults and assess the role of lifestyle factors on individual differences in patterns of episodic memory performance and supporting brain activity and structure.

Type
Chapter
Information
The Cambridge Handbook of Cognitive Aging
A Life Course Perspective
, pp. 200 - 217
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlskog, J. E., Geda, Y. E., Graff-Radford, N. R., & Petersen, R. C. (2011). Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clinic Proceedings, 86(9), 876884. doi: 10.4065/mcp.2011.0252Google Scholar
Angel, L., Bastin, C., Genon, S., et al. (2013). Differential effects of aging on the neural correlates of recollection and familiarity. Cortex, 49(6), 15851597. doi: 10.1016/j.cortex.2012.10.002Google Scholar
Ankudowich, E., Pasvanis, S., & Rajah, M. N. (2016). Changes in the modulation of brain activity during context encoding vs. context retrieval across the adult lifespan. NeuroImage, 139, 103113. doi: 10.1016/j.neuroimage.2016.06.022Google Scholar
Antonenko, D., & Floel, A. (2014). Healthy aging by staying selectively connected: A mini-review. Gerontology, 60(1), 39. doi: 10.1159/000354376Google Scholar
Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12(5), 193200. doi: 10.1016/j.tics.2008.02.004CrossRefGoogle ScholarPubMed
Badre, D., & Nee, D. E. (2018). Frontal cortex and the hierarchical control of behavior. Trends in Cognitive Sciences, 22(2), 170188. doi: 10.1016/j.tics.2017.11.005Google Scholar
Banducci, S. E., Daugherty, A. M., Biggan, J. R., et al. (2017). Active experiencing training improves episodic memory recall in older adults. Frontiers in Aging Neuroscience, 9, 133. doi: 10.3389/fnagi.2017.00133Google Scholar
Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502509. doi: 10.1016/j.tics.2013.08.012Google Scholar
Becker, N., Laukka, E. J., Kalpouzos, G., et al. (2015). Structural brain correlates of associative memory in older adults. NeuroImage, 118, 146153. doi: 10.1016/j.neuroimage.2015.06.002Google Scholar
Blumenfeld, R. S., Parks, C. M., Yonelinas, A. P., & Ranganath, C. (2011). Putting the pieces together: The role of dorsolateral prefrontal cortex in relational memory encoding. Journal of Cognitive Neuroscience, 23(1), 257265. doi: 10.1162/jocn.2010.21459Google Scholar
Blumenfeld, R. S., & Ranganath, C. (2007). Prefrontal cortex and long-term memory encoding: An integrative review of findings from neuropsychology and neuroimaging. Neuroscientist, 13(3), 280291. doi: 10.1177/1073858407299290Google Scholar
Brainerd, C. J., & Reyna, V. F. (2001). Fuzzy-trace theory: Dual processes in memory, reasoning, and cognitive neuroscience. Advances in Child Development and Behavior, 28, 41100. doi: 10.1016/s0065-2407(02)80062-3Google Scholar
Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences USA, 106(18), 73517356. doi: 10.1073/pnas.0808187106Google Scholar
Cabeza, R. (2008). Role of parietal regions in episodic memory retrieval: The dual attentional processes hypothesis. Neuropsychologia, 46(7), 18131827. doi: 10.1016/j.neuropsychologia.2008.03.019Google Scholar
Campbell, K. L., Grady, C. L., Ng, C., & Hasher, L. (2012). Age differences in the frontoparietal cognitive control network: Implications for distractibility. Neuropsychologia, 50(9), 22122223. doi: 10.1016/j.neuropsychologia.2012.05.025CrossRefGoogle ScholarPubMed
Cansino, S., Estrada-Manilla, C., Trejo-Morales, P., et al. (2015a). fMRI subsequent source memory effects in young, middle-aged and old adults. Behavioural Brain Research, 280, 2435. doi: 10.1016/j.bbr.2014.11.042Google Scholar
Cansino, S., Hernandez-Ramos, E., & Trejo-Morales, P. (2012). Neural correlates of source memory retrieval in young, middle-aged and elderly adults. Biological Psychology, 90(1), 3349. doi: 10.1016/j.biopsycho.2012.02.004CrossRefGoogle ScholarPubMed
Cansino, S., Trejo-Morales, P., Estrada-Manilla, C., et al. (2015b). Brain activity during source memory retrieval in young, middle-aged and old adults. Brain Research, 1618, 168180. doi: 10.1016/j.brainres.2015.05.032Google Scholar
Chadick, J. Z., & Gazzaley, A. (2011). Differential coupling of visual cortex with default or frontal-parietal network based on goals. Nature Neuroscience, 14(7), 830832. doi: 10.1038/nn.2823Google Scholar
Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S. (2014). Decreased segregation of brain systems across the healthy adult lifespan. Proceedings of the National Academy of Sciences USA, 111(46), E49975006. doi: 10.1073/pnas.1415122111Google Scholar
Ciaramelli, E., & Ghetti, S. (2007). What are confabulators’ memories made of? A study of subjective and objective measures of recollection in confabulation. Neuropsychologia, 45(7), 14891500. doi: 10.1016/j.neuropsychologia.2006.11.007Google Scholar
Ciaramelli, E., Grady, C. L., & Moscovitch, M. (2008). Top-down and bottom-up attention to memory: A hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia, 46(7), 18281851. doi: 10.1016/j.neuropsychologia.2008.03.022CrossRefGoogle ScholarPubMed
Craik, F. I., & Bialystok, E. (2006). Cognition through the lifespan: Mechanisms of change. Trends in Cognitive Sciences, 10(3), 131138. doi: 10.1016/j.tics.2006.01.007Google Scholar
Davachi, L., Mitchell, J. P., & Wagner, A. D. (2003). Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Proceedings of the National Academy of Sciences USA, 100(4), 21572162. doi: 10.1073/pnas.0337195100Google Scholar
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18(5), 12011209. doi: 10.1093/cercor/bhm155CrossRefGoogle ScholarPubMed
de Chastelaine, M., Mattson, J. T., Wang, T. H., Donley, B. E., & Rugg, M. D. (2015). Sensitivity of negative subsequent memory and task-negative effects to age and associative memory performance. Brain Research, 1612, 1629. doi: 10.1016/j.brainres.2014.09.045Google Scholar
de Chastelaine, M., Mattson, J. T., Wang, T. H., Donley, B. E., & Rugg, M. D. (2016). The neural correlates of recollection and retrieval monitoring: Relationships with age and recollection performance. NeuroImage, 138, 164175. doi: 10.1016/j.neuroimage.2016.04.071CrossRefGoogle ScholarPubMed
Dennis, N. A., Hayes, S. M., Prince, S. E., et al. (2008a). Effects of aging on the neural correlates of successful item and source memory encoding. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(4), 791808. doi: 10.1037/0278–7393.34.4.791Google ScholarPubMed
Dennis, N. A., Kim, H., & Cabeza, R. (2008b). Age-related differences in brain activity during true and false memory retrieval. Journal of Cognitive Neuroscience, 20(8), 13901402. doi: 10.1162/jocn.2008.20096Google Scholar
Dey, A., Sommers, M. S., & Hasher, L. (2017). An age-related deficit in resolving interference: Evidence from speech perception. Psychology and Aging, 32(6), 572587. doi: 10.1037/pag0000189Google Scholar
Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2009). Medial temporal lobe activity during source retrieval reflects information type, not memory strength. Journal of Cognitive Neuroscience, 22(8), 18081818. doi: 10.1162/jocn.2009.21335Google Scholar
Duarte, A., Henson, R. N., & Graham, K. S. (2008). The effects of aging on the neural correlates of subjective and objective recollection. Cerebral Cortex, 18(9), 21692180. doi: 10.1093/cercor/bhm243CrossRefGoogle ScholarPubMed
Duarte, A., Henson, R. N., Knight, R. T., Emery, T., & Graham, K. S. (2010). Orbito-frontal cortex is necessary for temporal context memory. Journal of Cognitive Neuroscience, 22(8), 18191831. doi: 10.1162/jocn.2009.21316Google Scholar
Duarte, A., Ranganath, C., & Knight, R. T. (2005). Effects of unilateral prefrontal lesions on familiarity, recollection, and source memory. Journal of Neuroscience, 25(36), 83338337. doi: 10.1523/JNEUROSCI.1392-05.2005Google Scholar
Duarte, A., Ranganath, C., Trujillo, C., & Knight, R. T. (2006). Intact recollection memory in high-performing older adults: ERP and behavioral evidence. Journal of Cognitive Neuroscience, 18(1), 3347. doi: 10.1162/089892906775249988Google Scholar
Dulas, M. R., & Duarte, A. (2011). The effects of aging on material-independent and material-dependent neural correlates of contextual binding. NeuroImage, 57(3), 11921204. doi: 10.1016/j.neuroimage.2011.05.036Google Scholar
Dulas, M. R., & Duarte, A. (2012). The effects of aging on material-independent and material-dependent neural correlates of source memory retrieval. Cerebral Cortex, 22(1), 3750. doi: 10.1093/cercor/bhr056Google Scholar
Dulas, M. R., & Duarte, A. (2013). The influence of directed attention at encoding on source memory retrieval in the young and old: An ERP study. Brain Research, 1500, 5571. doi: 10.1016/j.brainres.2013.01.018Google Scholar
Dulas, M. R., & Duarte, A. (2014). Aging affects the interaction between attentional control and source memory: An fMRI study. Journal of Cognitive Neuroscience, 26(12), 26532669. doi: 10.1162/jocn_a_00663Google Scholar
Dulas, M. R., & Duarte, A. (2016). Age-related changes in overcoming proactive interference in associative memory: The role of PFC-mediated executive control processes at retrieval. NeuroImage, 132, 116128. doi: 10.1016/j.neuroimage.2016.02.017CrossRefGoogle ScholarPubMed
Dulas, M. R., Newsome, R. N., & Duarte, A. (2011). The effects of aging on ERP correlates of source memory retrieval for self-referential information. Brain Research, 1377, 84100. doi: 10.1016/j.brainres.2010.12.087Google Scholar
Duverne, S., Motamedinia, S., & Rugg, M. D. (2009). The relationship between aging, performance, and the neural correlates of successful memory encoding. Cerebral Cortex, 19(3), 733744. doi: 10.1093/cercor/bhn122Google Scholar
Eichenbaum, H., Yonelinas, A. R., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123152. doi: 10.1146/annurev.neuro.30.051606.094328Google Scholar
Erickson, K. I., Prakash, R. S., Voss, M. W., et al. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 19(10), 10301039. doi: 10.1002/hipo.20547Google Scholar
Erickson, K. I., Voss, M. W., Prakash, R. S., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences USA, 108(7), 30173022. doi: 10.1073/pnas.1015950108Google Scholar
Gazzaley, A., Clapp, W., Kelley, J., et al. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences USA, 105(35), 1312213126. doi: 10.1073/pnas.0806074105Google Scholar
Gazzaley, A., Cooney, J. W., Rissman, J., & D’Esposito, M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8(10), 12981300. doi: 10.1038/nn1543Google Scholar
Gazzaley, A., & D’Esposito, M. (2007). Top-down modulation and normal aging. Annals of the New York Academy of Sciences, 1097, 6783. doi: 10.1196/annals.1379.010Google Scholar
Gutchess, A. H., Sokal, R., Coleman, J. A., et al. (2015). Age differences in self-referencing: Evidence for common and distinct encoding strategies. Brain Research, 1612, 118127. doi: 10.1016/j.brainres.2014.08.033Google Scholar
Hasher, L., Lustig, C., & Zacks, J. M. (2007). Inhibitory mechanisms and the control of attention. In Jarold, C. (Ed.), Variation in working memory (pp. 227249). New York: Oxford University Press.Google Scholar
Hasher, L., & Zacks, R. (1988). Working memory, comprehension, and aging: A review and a new view. In Bower, G. (Ed.), The psychology of learning and motivation (pp. 193225). San Diego: Academic Press.Google Scholar
Hashtroudi, S., Johnson, M. K., & Chrosniak, L. D. (1990). Aging and qualitative characteristics of memories for perceived and imagined complex events. Psychology and Aging, 5(1), 119126. doi: 10.2307/1422927Google Scholar
Healey, M. K., Campbell, K. L., & Hasher, L. (2008). Cognitive aging and increased distractibility: Costs and potential benefits. Progress in Brain Research, 169, 353363. doi: 10.1016/S0079-6123(07)00022-2Google Scholar
Healey, M. K., Campbell, K. L., Hasher, L., & Ossher, L. (2010). Direct evidence for the role of inhibition in resolving interference in memory. Psychological Science, 21(10), 14641470. doi: 10.1177/0956797610382120CrossRefGoogle ScholarPubMed
Horecka, K. M., Dulas, M. R., Schwarb, H., et al. (2018). Reconstructing relational information. Hippocampus, 28(2), 164177. doi: 10.1002/hipo.22819Google Scholar
Jacoby, L. L., Bishara, A. J., Hessels, S., & Toth, J. P. (2005). Aging, subjective experience, and cognitive control: Dramatic false remembering by older adults. Journal of Experimental Psychology: General, 134(2), 131148. doi: 10.1037/0096-3445.134.2.131Google Scholar
Janowsky, J. S., Shimamura, A. P., & Squire, L. R. (1989). Source memory impairment in patients with frontal lobe lesions. Neuropsychologia, 27(8), 10431056. doi: 10.1016/j.neuropsychologia.2008.07.003Google Scholar
Jonasson, L. S., Nyberg, L., Kramer, A. F., et al. (2016). Aerobic exercise intervention, cognitive performance, and brain structure: Results from the Physical Influences on Brain in Aging (PHIBRA) study. Frontiers in Aging Neuroscience, 8, p. 336. doi: 10.3389/fnagi.2016.00336Google Scholar
Kattenstroth, J. C., Kalisch, T., Holt, S., Tegenthoff, M., & Dinse, H. R. (2013). Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Frontiers in Aging Neuroscience, 5, p. 5. doi: 10.3389/fnagi.2013.00005Google Scholar
Konkel, A., Warren, D. E., Duff, M. C., Tranel, D. N., & Cohen, N. J. (2008). Hippocampal amnesia impairs all manner of relational memory. Frontiers in Human Neuroscience, 2, p. 15. doi: 10.3389/neuro.09.015.2008Google Scholar
Kopelman, M. D., Stanhope, N., & Kingsley, D. (1997). Temporal and spatial context memory in patients with focal frontal, temporal lobe, and diencephalic lesions. Neuropsychologia, 35(12), 15331545. doi: 10.1016/s0028-3932(97)00076-6Google Scholar
Kramer, A. F., Erickson, K. I., & Colcombe, S. J. (2006). Exercise, cognition, and the aging brain. Journal of Applied Physiology, 101(4), 12371242. doi: 10.1152/japplphysiol.00500.2006Google Scholar
Kwon, D., Maillet, D., Pasvanis, S., et al. (2016). Context memory decline in middle aged adults is related to changes in prefrontal cortex function. Cerebral Cortex, 26(6), 24402460. doi: 10.1093/cercor/bhv068Google Scholar
Leshikar, E. D., & Duarte, A. (2014). Medial prefrontal cortex supports source memory for self-referenced materials in young and older adults. Cognitive, Affective, and Behavioral Neuroscience, 14(1), 236252. doi: 10.3758/s13415-013-0198-yGoogle Scholar
Leshikar, E. D., Dulas, M. R., & Duarte, A. (2015). Self-referencing enhances recollection in both young and older adults. Aging, Neuropsychology, and Cognition, 22(4), 388412. doi: 10.1080/13825585.2014.957150Google Scholar
Liang, J. C., & Preston, A. R. (2017). Medial temporal lobe reinstatement of content-specific details predicts source memory. Cortex, 91, 6778. doi: 10.1016/j.cortex.2016.09.011Google Scholar
Lindenberger, U. (2014). Human cognitive aging: Corriger la fortune? Science, 346(6209), 572578. doi: 10.1126/science.1254403Google Scholar
Logan, J. M., Sanders, A. L., Snyder, A. Z., Morris, J. C., & Buckner, R. L. (2002). Under-recruitment and nonselective recruitment: Dissociable neural mechanisms associated with aging. Neuron, 33(5), 827840. doi: 10.1016/s0896-6273(02)00612-8Google Scholar
Mandler, G. (1980). Recognizing: The judgment of previous occurrence. Psychological Review, 87(3), 252271. doi: 10.1037/0033-295X.87.3.252Google Scholar
Mark, R. E., & Rugg, M. D. (1998). Age effects on brain activity associated with episodic memory retrieval: An electrophysiological study. Brain, 121(Pt. 5), 861873. doi: 10.1093/brain/121.5.861Google Scholar
McDonough, I. M., & Gallo, D. A. (2013). Impaired retrieval monitoring for past and future autobiographical events in older adults. Psychology and Aging, 28(2), 457466. doi: 10.1037/a0032732Google Scholar
McDonough, I. M., Haber, S., Bischof, G. N., & Park, D. C. (2015). The Synapse Project: Engagement in mentally challenging activities enhances neural efficiency. Restorative Neurology and Neuroscience, 33(6), 865882. doi: 10.3233/RNN-150533Google Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202. doi: 10.1146/annurev.neuro.24.1.167CrossRefGoogle ScholarPubMed
Miller, S. L., Celone, K., DePeau, K., et al. (2008). Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proceedings of the National Academy of Sciences USA, 105(6), 21812186. doi: 10.1073/pnas.0706818105Google Scholar
Milner, B. (2005). The medial temporal-lobe amnesic syndrome. Psychiatric Clinics, 28(3), 599611. doi: 10.1016/j.psc.2005.06.002Google Scholar
Mitchell, K. J., & Johnson, M. K. (2009). Source monitoring 15 years later: What have we learned from fMRI about the neural mechanisms of source memory? Psychological Bulletin, 135(4), 638677. doi: 10.1037/a0015849Google Scholar
Monti, J. M., Cooke, G. E., Watson, P. D., et al. (2015). Relating hippocampus to relational memory processing across domains and delays. Journal of Cognitive Neuroscience, 27(2), 234245. doi: 10.1162/jocn_a_00717Google Scholar
Morcom, A. M., & Henson, R. N. (2018). Increased prefrontal activity with aging reflects nonspecific neural responses rather than compensation. Journal of Neuroscience, 38(33), 73037313. doi: 10.1523/JNEUROSCI.1701-17.2018Google Scholar
Morcom, A. M., Li, J., & Rugg, M. D. (2007). Age effects on the neural correlates of episodic retrieval: Increased cortical recruitment with matched performance. Cerebral Cortex, 17(11), 24912506. doi: 10.1093/cercor/bhl155Google Scholar
Naveh-Benjamin, M., Brav, T. K., & Levy, O. (2007). The associative memory deficit of older adults: The role of strategy utilization. Psychology and Aging, 22(1), 202208. doi: 10.1037/0882–7974.22.1.202Google Scholar
Noice, T., Noice, H., & Kramer, A. F. (2015). Theatre arts for improving cognitive and affective health. Activities, Adaptation and Aging, 39(1), 1931. doi: 10.1080/01924788.2015.994440Google Scholar
Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424430. doi: 10.1016/j.tics.2006.07.005Google Scholar
Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J., & Rattray, B. (2018). Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. British Journal of Sports Medicine, 52(3), 154160. doi: 10.1136/bjsports-2016-096587Google Scholar
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292305. doi: 10.1016/j.tics.2012.04.005Google Scholar
Nyberg, L., & Pudas, S. (2018). Successful memory aging. Annual Review of Psychology, 70, 219243 doi: 10.1146/annurev-psych-010418-103052Google Scholar
Nyberg, L., Salami, A., Andersson, M., et al. (2010). Longitudinal evidence for diminished frontal cortex function in aging. Proceedings of the National Academy of Sciences USA, 107(52), 2268222686. doi: 10.1073/pnas.1012651108Google Scholar
Old, S. R., & Naveh-Benjamin, M. (2008). Differential effects of age on item and associative measures of memory: A meta-analysis. Psychology and Aging, 23(1), 104118. doi: 10.1037/0882–7974.23.1.104Google Scholar
Park, D. C., & Bischof, G. N. (2013). The aging mind: Neuroplasticity in response to cognitive training. Dialogues in Clinical Neuroscience, 15(1), 109119.Google Scholar
Park, D. C., Lodi-Smith, J., & Drew, L., et al. (2014). The impact of sustained engagement on cognitive function in older adults: The Synapse Project. Psychological Science, 25(1), 103112. doi: 10.1177/0956797613499592Google Scholar
Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173196. doi: 10.1146/annurev.psych.59.103006.093656Google Scholar
Postman, L., & Underwood, B. J. (1973). Critical issues in interference theory. Memory and Cognition, 1(1), 1940. doi: 10.3758/BF03198064Google Scholar
Powell, P. S., Strunk, J., James, T. J., Polyn, S. M., & Duarte, A. (2018). Decoding selective attention to context memory: An aging study. NeuroImage, 181, 95107. doi: 10.1016/j.neuroimage.2018.06.085Google Scholar
Pudas, S., Josefsson, M., Rieckmann, A., & Nyberg, L. (2017). Longitudinal evidence for increased functional response in frontal cortex for older adults with hippocampal atrophy and memory decline. Cerebral Cortex, 28(3), 936948. doi: 10.1093/cercor/bhw418CrossRefGoogle Scholar
Rajah, M. N., Languay, R., & Valiquette, L. (2010). Age-related changes in prefrontal cortex activity are associated with behavioural deficits in both temporal and spatial context memory retrieval in older adults. Cortex, 46(4), 535549. doi: 10.1016/j.cortex.2009.07.006CrossRefGoogle ScholarPubMed
Raz, N., & Kennedy, K. M. (2009). A systems approach to the aging brain: Neuroanatomic changes, their modifiers, and cognitive correlates. In Jagust, W. J. & D’Esposito, M. (Eds.), Imaging the aging brain (pp. 4370). New York: Oxford University Press.Google Scholar
Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177182. doi: 10.1111/j.1467-8721.2008.00570.xGoogle Scholar
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355370. doi: 10.1007/s11065-014-9270-9Google Scholar
Rugg, M. D., & Morcom, A. M. (2005). The relationship between brain activity, cognitive performance and aging: The case of memory. In Cabeza, R., Nyberg, L., & Park, D. (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 132154). New York: Oxford University Press.Google Scholar
Salami, A., Eriksson, J., & Nyberg, L. (2012). Opposing effects of aging on large-scale brain systems for memory encoding and cognitive control. Journal of Neuroscience, 32(31), 1074910757. doi: 10.1523/JNEUROSCI.0278-12.2012Google Scholar
Salthouse, T. A. (2014). Why are there different age relations in cross-sectional and longitudinal comparisons of cognitive functioning? Current Directions in Psychological Science, 23(4), 252256. doi: 10.1177/0963721414535212Google Scholar
Schacter, D. L., Koutstaal, W., & Norman, K. A. (1997). False memories and aging. Trends in Cognitive Sciences, 1(6), 229236. doi: 10.1016/S1364-6613(97)01068-1CrossRefGoogle ScholarPubMed
Sestieri, C., Shulman, G. L., & Corbetta, M. (2017). The contribution of the human posterior parietal cortex to episodic memory. Nature Reviews Neuroscience, 18(3), 183192. doi: 10.1038/nrn.2017.6Google Scholar
Siman-Tov, T., Bosak, N., Sprecher, E., et al. (2016). Early age-related functional connectivity decline in high-order cognitive networks. Frontiers in Aging Neuroscience, 8, 330. doi: 10.3389/fnagi.2016.00330Google Scholar
Simons, J. S., & Spiers, H. J. (2003). Prefrontal and medial temporal lobe interactions in long-term memory. Nature Reviews Neuroscience, 4(8), 637648. doi: 10.1038/nrn1178Google Scholar
Spalding, K. N., Schlichting, M. L., Zeithamova, D., et al. (2018). Ventromedial prefrontal cortex is necessary for normal associative inference and memory integration. Journal of Neuroscience, 38(15), 37673775. doi: 10.1523/JNEUROSCI.2501-17.2018Google Scholar
Spaniol, J., & Grady, C. (2012). Aging and the neural correlates of source memory: Over-recruitment and functional reorganization. Neurobiology of Aging, 33(2), 425 e38. doi: 10.1016/j.neurobiolaging.2010.10.005Google Scholar
Staresina, B. P., Henson, R. N., Kriegeskorte, N., & Alink, A. (2012). Episodic reinstatement in the medial temporal lobe. Journal of Neuroscience, 32(50), 1815018156. doi: 10.1523/JNEUROSCI.4156-12.2012Google Scholar
Stevens, W. D., Hasher, L., Chiew, K. S., & Grady, C. L. (2008). A neural mechanism underlying memory failure in older adults. Journal of Neuroscience, 28(48), 1282012824. doi: 10.1523/JNEUROSCI.2622-08.2008Google Scholar
Stine-Morrow, E. A., Parisi, J. M., Morrow, D. G., & Park, D. C. (2008). The effects of an engaged lifestyle on cognitive vitality: A field experiment. Psychology and Aging, 23(4), 778786. doi: 10.1037/a0014341Google Scholar
Stine-Morrow, E. A., Payne, B. R., Roberts, B. W., et al. (2014). Training versus engagement as paths to cognitive enrichment with aging. Psychology and Aging, 29(4), 891906. doi: 10.1037/a0038244Google Scholar
Tulving, E. (1985). Memory and consciousness. Canadian Psychology, 26(1), 112. doi: 10.1037/h0080017Google Scholar
Uncapher, M. R., & Wagner, A. D. (2009). Posterior parietal cortex and episodic encoding: Insights from fMRI subsequent memory effects and dual-attention theory. Neurobiology of Learning and Memory, 91(2), 139154. doi: 10.1016/j.nlm.2008.10.011Google Scholar
Vilberg, K. L., & Rugg, M. D. (2008). Memory retrieval and the parietal cortex: A review of evidence from a dual-process perspective. Neuropsychologia, 46(7), 17871799. doi: 10.1016/j.neuropsychologia.2008.01.004Google Scholar
Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9(9), 445453. doi: 10.1016/j.tics.2005.07.001Google Scholar
Wang, T. H., Johnson, J. D., de Chastelaine, M., Donley, B. E., & Rugg, M. D. (2016). The effects of age on the neural correlates of recollection success, recollection-related cortical reinstatement, and post-retrieval monitoring. Cerebral Cortex, 26(4), 16981714. doi: 10.1093/cercor/bhu333Google Scholar
West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120(2), 272292. doi: 10.1037/0033-2909.120.2.272Google Scholar
Wong, C. N., Chaddock-Heyman, L., Voss, M. W., et al. (2015). Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults. Frontiers in Aging Neuroscience, 7, p. 154. doi: 10.3389/fnagi.2015.00154Google Scholar
Xiao, X., Dong, Q., Gao, J., et al. (2017). Transformed neural pattern reinstatement during episodic memory retrieval. Journal of Neuroscience, 37(11), 29862998. doi: 10.1523/JNEUROSCI.2324-16.2017Google Scholar
Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46, 441517. doi: 10.1016/j.actpsy.2006.06.002Google Scholar
Young, J., Angevaren, M., Rusted, J., & Tabet, N. (2015). Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database of Systematic Reviews, 4, CD005381. doi: 10.1002/14651858.CD005381.pub4Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×