Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T23:11:12.220Z Has data issue: false hasContentIssue false

6 - The Brain Basis Underlying the Transition from Adolescence to Adulthood

from Part I - Neurobiological Constraints and Laws of Cognitive Development

Published online by Cambridge University Press:  24 February 2022

Olivier Houdé
Affiliation:
Université de Paris V
Grégoire Borst
Affiliation:
Université de Paris V
Get access

Summary

Adolescence is primarily characterized by puberty (Vijayakumar et al., 2018) which demarcates sexual maturation that can start as young as 10–12 years of age (Parent et al., 2003) and proceeds until adult independence, which may continue until the mid-twenties (National Research Council, 2013). Adolescence is characterized as a time of a peak in sensation seeking (Chambers et al., 2003; Spear, 2000), the drive to explore novel experiences that generate increased sensations, despite possible long-term negative consequences (Zuckerman, 2008). While sensation seeking can be adaptive, including information seeking and exploration, to gain new experiences needed to optimally develop into an independent adult, it can also lead to risk-taking behavior, due to decision-making processes that weigh short-term rewards over long-term risks to survival. In fact, adolescents in the United States experience a four-fold increase in deaths over US adults due to risk-taking behaviors (e.g., crime, substance use, reckless driving) (Eaton et al., 2012). Thus, adolescents are often believed to lack forethought and behave in volatile and unpredictable ways. Adolescent peaks in sensation seeking, however, are present across species (Hodes & Shors, 2005; Stansfield & Kirstein, 2006) and across cultures (Steinberg et al., 2018), underscoring their adaptive nature. Adolescence is also a time for vulnerability to the emergence of psychopathology such as schizophrenia, mood disorders, anxiety, suicidality, and addiction (Paus et al., 2008). This adolescent vulnerability for emergence of psychopathology suggests that maturational processes unique to this period may impair development and/or reveal impairments that are present but unseen until puberty, becoming apparent as the brain transitions through adolescence and into adulthood. Thus, there is great interest in understanding the neurobiological mechanisms that underlie normative development to identify brain processes that may contribute to impaired development in adolescence.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adleman, N. E. (2002). A developmental fMRI study of the Stroop color-word task. NeuroImage, 16, 6175.CrossRefGoogle ScholarPubMed
Alahyane, N., Brien, D. C., Coe, B. C., Stroman, P. W., & Munoz, D. P. (2014). Developmental improvements in voluntary control of behavior: Effect of preparation in the fronto-parietal network? NeuroImage, 98, 103117.CrossRefGoogle ScholarPubMed
Amso, D., & Johnson, S. P. (2005). Selection and inhibition in infancy: Evidence from the spatial negative priming paradigm. Cognition, 95, B27B36.CrossRefGoogle ScholarPubMed
Baddeley, A. (1986). Working Memory. New York: Oxford University Press.Google ScholarPubMed
Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 4479.CrossRefGoogle ScholarPubMed
Benes, F. M., Turtle, M., Khan, Y., & Farol, P. (1994). Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Archives of General Psychiatry, 51, 477484.CrossRefGoogle ScholarPubMed
Bjork, J.M., Knutson, B., Fong, G. W., Caggiano, D. M., Bennett, S. M., & Hommer, D. W. (2004). Incentive-elicited brain activation in adolescents: Similarities and differences from young adults. Journal of Neuroscience, 24, 17931802.CrossRefGoogle ScholarPubMed
Bjork, J. M., Smith, A. R., Chen, G., & Hommer, D. W. (2010). Adolescents, adults and rewards: Comparing motivational neurocircuitry recruitment using fMRI. PLoS.ONE, 5, e11440.CrossRefGoogle ScholarPubMed
Blakemore, S.-J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9, 267277.CrossRefGoogle ScholarPubMed
Blum, K., Braverman, E. R., Holder, J. M., Lubar, J. F., Monastra, V. J., Miller, D., … & Comings, D. E. (2000). The reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive and compulsive behaviors. Journal of psychoactive drugs, 32(sup1), 1–112.CrossRefGoogle Scholar
Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L., & Snyder, A. (2001). Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cerebral Cortex, 11, 825836.CrossRefGoogle ScholarPubMed
Casey, B. J., Jones, R. M., & Hare, T. A. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124, 111126.CrossRefGoogle ScholarPubMed
Casey, B. J., Jones, R. M., Levita, L., Libby, V., Pattwell, S. S., Ruberry, E. J., … Somerville, L. H. (2010). The storm and stress of adolescence: Insights from human imaging and mouse genetics. Developmental Psychobiology, 52, 225235.CrossRefGoogle ScholarPubMed
Calabro, F. J., Murty, V. P., Jalbrzikowski, M., Tervo-Clemmens, B., & Luna, B. (2020). Development of hippocampal-prefrontal cortex interactions through adolescence. Cerebral Cortex, 30(3), 1548–1558.CrossRefGoogle Scholar
Caviness, V. S., Kennedy, D. N., Bates, J. F., & Makris, N. (1996). The developing human brain: A morphometric profile. In Thatcher, R. W., Lyon, G. R., Rumsey, J., & Krasnegor, N. (eds.), Developmental Neuroimaging: Mapping the Development of Brain and Behavior (pp. 314). New York: Academic Press.Google Scholar
Chambers, R. A., Taylor, J. R., & Potenza, M. N. (2003). Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. The American Journal of Psychiatry, 160, 10411052.CrossRefGoogle ScholarPubMed
Chein, J., Albert, D., O’Brien, L., Uckert, K., & Steinberg, L. (2011). Peers increase adolescent risk taking by enhancing activity in the brain’s reward circuitry. Developmental Science, 14(2), F110.CrossRefGoogle ScholarPubMed
Conklin, H. M., Luciana, M., Hooper, C. J., & Yarger, R. S. (2007). Working memory performance in typically developing children and adolescents: Behavioral evidence of protracted frontal lobe development. Developmental Neuropsychology, 31, 103128.CrossRefGoogle ScholarPubMed
Crone, E. A., Wendelken, C., Donohue, S., van Leijenhorst, L., & Bunge, S. A. (2006). Neurocognitive development of the ability to manipulate information in working memory. Proceedings of the National Academy of Sciences, 103, 93159320.CrossRefGoogle ScholarPubMed
Daugherty, A. M., Bender, A. R., Raz, N., & Ofen, N. (2016). Age differences in hippocampal subfield volumes from childhood to late adulthood. Hippocampus, 26, 220228.CrossRefGoogle ScholarPubMed
Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging. Developmental Review, 12, 4575.CrossRefGoogle Scholar
Diamond, A., & Goldman-Rakic, P. S. (1989). Comparison of human infants and rhesus monkeys on Piaget’s AB task: Evidence for dependence on dorsolateral prefrontal cortex. Experimental Brain Research, 74, 2440.CrossRefGoogle ScholarPubMed
Dwyer, D. B., Harrison, B. J., Yücel, M., Whittle, S., Zalesky, A., Pantelis, C., … Fornito, A. (2014). Large-scale brain network dynamics supporting adolescent cognitive control. The Journal of Neuroscience, 34, 1409614107.CrossRefGoogle ScholarPubMed
Eaton, D. K., Kann, L., Kinchen, S., Shanklin, S., Flint, K. H., Hawkins, J., … Wechsler, H. (2012). Youth risk behavior surveillance –United States, 2011. Morbidity and Mortality Weekly Report Surveillance Summaries, 61, 1162.Google Scholar
Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U. F., Church, J. A., Miezin, F. M., … Petersen, S. E. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology, 5, e1000381.CrossRefGoogle Scholar
Finn, A. S., Sheridan, M. A., Kam, C. L. H., Hinshaw, S. & D’Esposito, M. (2010). Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain. The Journal of Neuroscience, 30, 1106211067.CrossRefGoogle ScholarPubMed
Fransson, P., Aden, U., Blennow, M., & Lagercrantz, H. (2011). The functional architecture of the infant brain as revealed by resting-state fMRI. Cerebral Cortex, 21, 145154.CrossRefGoogle ScholarPubMed
Fuster, J. M. (2008). The Prefrontal Cortex. London: Academic Press.CrossRefGoogle Scholar
Gabard-Durnam, L. J., Flannery, J., Goff, B., Gee, D. G., Humphreys, K. L., Telzer, E., … Tottenham, N. (2014). The development of human amygdala functional connectivity at rest from 4 to 23 years: A cross-sectional study. NeuroImage, 95, 193207.CrossRefGoogle ScholarPubMed
Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., … Tottenham, N. (2013). A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33, 45844593.CrossRefGoogle ScholarPubMed
Geier, C. F., Garver, K., Terwilliger, R., & Luna, B. (2009). Development of working memory maintenance. Journal of Neurophysiology, 101, 8499.CrossRefGoogle ScholarPubMed
Geier, C. F., & Luna, B. (2012). Developmental effects of incentives on response inhibition. Child Development, 83, 12621274.CrossRefGoogle ScholarPubMed
Geier, C. F., Terwilliger, R., Teslovich, T., Velanova, K., & Luna, B. (2010). Immaturities in reward processing and its influence on inhibitory control in adolescence. Cerebral Cortex, 20, 16131629.CrossRefGoogle ScholarPubMed
Ghetti, S., & Bunge, S. A. (2012). Neural changes underlying the development of episodic memory during middle childhood. Developmental Cognitive Neuroscience, 2, 381395.CrossRefGoogle ScholarPubMed
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., … Rapoport, J. L. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861863.CrossRefGoogle ScholarPubMed
Glasser, M. F., & Van Essen, D. C. (2011). Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31, 1159711616.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences (USA), 101, 81748179.CrossRefGoogle ScholarPubMed
Grydeland, H., Walhovd, K. B., Tamnes, C. K., Westlye, L. T., & Fjell, A. M. (2013). Intracortical myelin links with performance variability across the human lifespan: Results from T1- and T2-weighted MRI myelin mapping and diffusion tensor imaging. The Journal of Neuroscience, 33, 1861818630.CrossRefGoogle ScholarPubMed
Guyer, A. E., Monk, C. S., McClure-Tone, E. B., Nelson, E. E., Roberson-Nay, R., Adler, A. D., … Ernst, M. (2008). A developmental examination of amygdala response to facial expressions. Journal of Cognitive Neuroscience, 20, 15651582.CrossRefGoogle ScholarPubMed
Hallquist, M. N., Hwang, K., & Luna, B. (2013). The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage, 82, 208225.CrossRefGoogle Scholar
Hare, T. A., Tottenham, N., Galvan, A., Voss, H. U., Glover, G. H., & Casey, B. J. (2008). Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-no go task. Biological Psychiatry, 63, 927934.CrossRefGoogle Scholar
Hodes, G. E., & Shors, T. J. (2005). Distinctive stress effects on learning during puberty. Hormones and Behavior, 48, 163171.CrossRefGoogle ScholarPubMed
Houdé, O. (2001). Interference and inhibition (psychology of -). In Smelser, N. J. and Baltes, P. B. (eds.), International Encyclopedia of the Social and Behavioral Sciences (pp. 77187722). Oxford: Elsevier Science.CrossRefGoogle Scholar
Houdé, O. (2004). Activation/inhibition. In Houdé, O. (ed.), Dictionary of Cognitive Science (pp. 1315). New York: Routledge.CrossRefGoogle Scholar
Houdé, O. (2019). 3-System Theory of the Cognitive Brain: A Post-Piagetian Approach. New York: Routledge.CrossRefGoogle Scholar
Houdé, O., & Borst, G. (2015). Evidence for an inhibitory-control theory of the reasoning brain. Frontiers in Human Neuroscience, 9, 148.CrossRefGoogle ScholarPubMed
Houdé, O., Pineau, A., Leroux, G., Poirel, N., Perchey, G., Lanoë, C., … Mazoyer, B. (2011). Functional MRI study of Piaget’s conservation-of-number task in preschool and school-age children: A neo-Piagetian approach. Journal of Experimental Child Psychology, 110, 332346.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28, 517527.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387, 167178.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Hwang, K., Hallquist, M. N., & Luna, B. (2013). The development of hub architecture in the human functional brain network. Cerebral Cortex, 23, 23802393.CrossRefGoogle ScholarPubMed
National Research Council (2013). Improving the Health, Safety, and Well-Being of Young Adults – Workshop Summary. Washington, DC: National Academies Press.Google Scholar
Jalbrzikowski, M., Larsen, B., Hallquist, M. N., Foran, W., Calabro, F., & Luna, B. (2017). Development of white matter microstructure and intrinsic functional connectivity between the amygdala and ventromedial prefrontal cortex: Associations with anxiety and depression. Biological Psychiatry, 82, 511521.CrossRefGoogle ScholarPubMed
Johnson, M. H. (1995). The inhibition of automatic saccades in early infancy. Developmental Psychobiology, 28, 281291.CrossRefGoogle ScholarPubMed
Killgore, W. D. S., & Yurgelun-Todd, D. A. (2007). Unconscious processing of facial affect in children and adolescents. Social Neuroscience, 2, 2847.CrossRefGoogle ScholarPubMed
Larsen, B., & Luna, B. (2018). Adolescence as a neurobiological critical period for the development of higher-order cognition. Neuroscience & Biobehavioral Reviews, 94, 179195.CrossRefGoogle ScholarPubMed
Larsen, B., Verstynen, T. D., Yeh, F.-C., & Luna, B. (2018). Developmental changes in the integration of affective and cognitive corticostriatal pathways are associated with reward-driven behavior. Cerebral Cortex, 28, 28342845.CrossRefGoogle ScholarPubMed
Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., & Beaulieu, C. (2012). Diffusion tensor imaging of white matter tract evolution over the lifespan. NeuroImage, 60, 340352.CrossRefGoogle ScholarPubMed
Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience & Biobehavioral Reviews, 30, 718729.CrossRefGoogle ScholarPubMed
Luna, B. (2009). Developmental changes in cognitive control through adolescence. Advances in Child Development and Behavior, 37, 233278.CrossRefGoogle ScholarPubMed
Luna, B., Garver, K. E., Urban, T. A., Lazar, N. A., & Sweeney, J. A. (2004). Maturation of cognitive processes from late childhood to adulthood. Child Development, 75, 13571372.CrossRefGoogle ScholarPubMed
Luna, B., Marek, S., Larsen, B., Tervo-Clemmens, B., & Chahal, R. (2015). An integrative model of the maturation of cognitive control. Annual Review of Neuroscience, 38, 151170.CrossRefGoogle ScholarPubMed
Luna, B., Padmanabhan, A., & O’Hearn, K. (2010). What has fMRI told us about the development of cognitive control through adolescence? Brain and Cognition, 72, 101113.CrossRefGoogle ScholarPubMed
Luna, B., Thulborn, K. R., Munoz, D. P., Merriam, E. P., Garver, K. E., Minshew, N. J., … Sweeney, J. A. (2001). Maturation of widely distributed brain function subserves cognitive development. NeuroImage, 13, 786793.CrossRefGoogle ScholarPubMed
Luna, B., & Wright, C. (2016). Adolescent brain development: Implications for the juvenile criminal justice system. In Heilbrun, K., DeMatteo, D., & Goldstein, N. E. S. (eds.), APA Handbook of Psychology and Juvenile Justice (pp. 91116). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Marek, S., Hwang, K., Foran, W., Hallquist, M. N., & Luna, B. (2015). The contribution of network organization and integration to the development of cognitive control. PLoS Biology, 13, e1002328.CrossRefGoogle Scholar
Marsh, R., Zhu, H., Schultz, R. T., Quackenbush, G., Royal, J., Skudlarski, P., & Peterson, B. S. (2006). A developmental fMRI study of self-regulatory control. Human Brain Mapping, 27, 848863.CrossRefGoogle ScholarPubMed
Menon, V. (2013). Developmental pathways to functional brain networks: Emerging principles. Trends in Cognitive Sciences, 17, 627640.CrossRefGoogle ScholarPubMed
Mills, K. L., Goddings, A.-L., Herting, M. M., Meuwese, R., Blakemore, S.-J., Crone, E. A., … Tamnes, C. K. (2016). Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. NeuroImage, 141, 273281.CrossRefGoogle ScholarPubMed
Montez, D. F., Calabro, F. J., & Luna, B. (2017). The expression of established cognitive brain states stabilizes with working memory development. ELife, 6, e25606.CrossRefGoogle ScholarPubMed
Murty, V. P., Calabro, F., & Luna, B. (2016). The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neuroscience and Biobehavioral Reviews, 70, 4658.CrossRefGoogle ScholarPubMed
Newman, M. E. J. (2010). Networks: An Introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
Nigg, J. T. (2017). Annual research review: On the relations among self-regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 58, 361383.CrossRefGoogle Scholar
O’Donnell, P. (2010). Adolescent maturation of cortical dopamine. Neurotoxicity Research, 18, 306312.CrossRefGoogle ScholarPubMed
Ofen, N., Kao, Y.-C., Sokol-Hessner, P., Kim, H., Whitfield-Gabrieli, S., & Gabrieli, J. D. E. (2007). Development of the declarative memory system in the human brain. Nature Neuroscience, 10, 11981205.CrossRefGoogle ScholarPubMed
O’Hare, E. D., Lu, L. H., Houston, S. M., Bookheimer, S. Y., & Sowell, E. R. (2008). Neurodevelopmental changes in verbal working memory load-dependency: An fMRI investigation. NeuroImage, 42, 16781685.CrossRefGoogle ScholarPubMed
Ordaz, S. J., Foran, W., Velanova, K., & Luna, B. (2013). Longitudinal growth curves of brain function underlying inhibitory control through adolescence. Journal of Neuroscience, 33, 1810918124.CrossRefGoogle ScholarPubMed
Padmanabhan, A., Geier, C. F., Ordaz, S. J., Teslovich, T., & Luna, B. (2011). Developmental changes in brain function underlying the influence of reward processing on inhibitory control. Developmental Cognitive Neuroscience, 1, 517529.CrossRefGoogle ScholarPubMed
Padmanabhan, A., & Luna, B. (2014). Developmental imaging genetics: Linking dopamine function to adolescent behavior. Brain and Cognition, 89, 2738.CrossRefGoogle ScholarPubMed
Parent, A.-S., Teilmann, G., Juul, A., Skakkebaek, N. E., Toppari, J., & Bourguignon, J.-P. (2003). The timing of normal puberty and the age limits of sexual precocity: Variations around the world, secular trends, and changes after migration. Endocrine Reviews, 24, 668693.CrossRefGoogle ScholarPubMed
Parr, A. C., Calabro, F., Larsen, B., Tervo-Clemmens, B., Elliot, S., Foran, W., Olafsson, V., & Luna, B. (2021). Dopamine-related striatal neurophysiology is associated with specialization of frontostraital reward circuitry through adolescence. Progress in Neurobiology, 201: 101997.Google Scholar
Paulsen, D. J., Hallquist, M. N., Geier, C. F., & Luna, B. (2015). Effects of incentives, age, and behavior on brain activation during inhibitory control: A longitudinal fMRI study. Developmental Cognitive Neuroscience, 11, 105115.CrossRefGoogle ScholarPubMed
Paus, T. (2010). Growth of white matter in the adolescent brain: Myelin or axon? Brain and Cognition, 72, 2635.CrossRefGoogle ScholarPubMed
Paus, T., Keshavan, M., & Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? Nature Reviews Neuroscience, 9, 947957.CrossRefGoogle ScholarPubMed
Perrin, J. S., Hervé, P.-Y., Leonard, G., Perron, M., Pike, G. B., Pitiot, A., … Paus, T. (2008). Growth of white matter in the adolescent brain: Role of testosterone and androgen receptor. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28, 95199524.CrossRefGoogle ScholarPubMed
Perrin, J. S., Leonard, G., Perron, M., Pike, G. B., Pitiot, A., Richer, L., … Paus, T. (2009). Sex differences in the growth of white matter during adolescence. NeuroImage, 45, 10551066.CrossRefGoogle ScholarPubMed
Petanjek, Z., Judaš, M., Šimić, G., Rašin, M. R., Uylings, H. B. M., Rakic, P., & Kostović, I. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences (USA), 108, 1328113286.CrossRefGoogle ScholarPubMed
Pfeifer, J. H., Masten, C. L., Moore, W. E., Oswald, T. M., Mazziotta, J. C., Iacoboni, M., & Dapretto, M. (2011). Entering adolescence: resistance to peer influence, risky behavior, and neural changes in emotion reactivity. Neuron, 69, 10291036.CrossRefGoogle ScholarPubMed
Pierpaoli, C., Barnett, A., Pajevic, S., Chen, R., Penix, L. R., Virta, A., & Basser, P. (2001). Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. NeuroImage, 13, 11741185.CrossRefGoogle ScholarPubMed
Posner, M. I. & Fan, J. (2008). Attention as an organ system. In Pomerantz, J. R. (ed.), Topics in Integrative Neuroscience (Ch. 2; pp. 3161). New York: Cambridge University Press.CrossRefGoogle Scholar
Posner, M. I., Rothbart, M. K., Sheese, B. E., & Voelker, P. (2014). Developing attention: Behavioral and brain mechanisms. Advances in Neuroscience, 2014, 405094.CrossRefGoogle ScholarPubMed
Postle, B. R., Druzgal, T. J., & D’Esposito, M. (2003). Seeking the neural substrates of visual working memory storage. Cortex, 39, 927946.CrossRefGoogle ScholarPubMed
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59, 21422154.CrossRefGoogle ScholarPubMed
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., … Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72, 665678.CrossRefGoogle ScholarPubMed
Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84, 320341.CrossRefGoogle ScholarPubMed
Qin, S., Cho, S., Chen, T., Rosenberg-Lee, M., Geary, D. C., & Menon, V. (2014). Hippocampal-neocortical functional reorganization underlies children’s cognitive development. Nature Neuroscience, 17, 12631269.CrossRefGoogle ScholarPubMed
Ravindranath, O., Ordaz, S. J., Padmanabhan, A., Foran, W., Jalbrzikowski, M., Calabro, F. J., & Luna, B. (2020). Influences of affective context on amygdala functional connectivity during cognitive control from adolescence through adulthood. Developmental cognitive neuroscience, 45, 100836.CrossRefGoogle Scholar
Raznahan, A., Shaw, P. W., Lerch, J. P., Clasen, L. S., Greenstein, D., Berman, R., … Giedd, J. N. (2014). Longitudinal four-dimensional mapping of subcortical anatomy in human development. Proceedings of the National Academy of Sciences (USA), 111, 15921597.CrossRefGoogle ScholarPubMed
Riggins, T., Geng, F., Blankenship, S. L., & Redcay, E. (2016). Hippocampal functional connectivity and episodic memory in early childhood. Developmental Cognitive Neuroscience, 19, 5869.CrossRefGoogle ScholarPubMed
Rowley, C. D., Sehmbi, M., Bazin, P.-L., Tardif, C. L., Minuzzi, L., Frey, B. N., & Bock, N. A. (2017). Age-related mapping of intracortical myelin from late adolescence to middle adulthood using T1-weighted MRI. Human Brain Mapping, 38, 36913703.CrossRefGoogle Scholar
Satterthwaite, T. D., Wolf, D. H., Erus, G., Ruparel, K., Elliott, M. A., Gennatas, E. D., … Gur, R. E. (2013). Functional maturation of the executive system during adolescence. The Journal of Neuroscience, 33, 1624916261.CrossRefGoogle ScholarPubMed
Shafee, R., Buckner, R. L., & Fischl, B. (2015). Gray matter myelination of 1555 human brains using partial volume corrected MRI images. NeuroImage, 105, 473485.CrossRefGoogle ScholarPubMed
Shulman, E. P., Smith, A. R., Silva, K., Icenogle, G., Duell, N., Chein, J., & Steinberg, L. (2016). The dual systems model: Review, reappraisal, and reaffirmation. Developmental Cognitive Neuroscience, 17, 103117.CrossRefGoogle ScholarPubMed
Silvers, J. A., Insel, C., Powers, A., Franz, P., Helion, C., Martin, R., … Ochsner, K. N. (2017). The transition from childhood to adolescence is marked by a general decrease in amygdala reactivity and an affect-specific ventral-to-dorsal shift in medial prefrontal recruitment. Developmental Cognitive Neuroscience, 25, 128137.CrossRefGoogle Scholar
Simmonds, D. J., Hallquist, M. N., Asato, M., & Luna, B. (2014). Developmental stages and sex differences of white matter and behavioral development through adolescence: A longitudinal diffusion tensor imaging (DTI) study. NeuroImage, 92, 356368.CrossRefGoogle ScholarPubMed
Simmonds, D. J., Hallquist, M. N., & Luna, B. (2017). Protracted development of executive and mnemonic brain systems underlying working memory in adolescence: A longitudinal fMRI study. NeuroImage, 157, 695704.CrossRefGoogle ScholarPubMed
Smith, A. R., Steinberg, L., Strang, N., & Chein, J. (2015). Age differences in the impact of peers on adolescents’ and adults’ neural response to reward. Developmental Cognitive Neuroscience, 11, 7582.CrossRefGoogle ScholarPubMed
Somerville, L. H., & Casey, B. J. (2010). Developmental neurobiology of cognitive control and motivational systems. Current Opinion in Neurobiology, 20, 236241.CrossRefGoogle ScholarPubMed
Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2, 859861.CrossRefGoogle ScholarPubMed
Spear, L. P. (2000). Neurobehavioral changes in adolescence. Current Directions in Psychological Science, 9, 111114.CrossRefGoogle Scholar
Stansfield, K. H., & Kirstein, C. L. (2006). Effects of novelty on behavior in the adolescent and adult rat. Developmental Psychobiology, 48, 1015.CrossRefGoogle ScholarPubMed
Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28, 78106.CrossRefGoogle ScholarPubMed
Steinberg, L., Albert, D., Cauffman, E., Banich, M., Graham, S., & Woolard, J. (2008). Age differences in sensation seeking and impulsivity as indexed by behavior and self-report: Evidence for a dual systems model. Developmental Psychology, 44, 17641778.CrossRefGoogle ScholarPubMed
Steinberg, L., Icenogle, G., Shulman, E. P., Breiner, K., Chein, J., Bacchini, D., … Takash, H. M. S. (2018). Around the world, adolescence is a time of heightened sensation seeking and immature self-regulation. Developmental Science, 21, e12532.CrossRefGoogle ScholarPubMed
Tamnes, C. K., Fjell, A. M., Østby, Y., Westlye, L. T., Due-Tønnessen, P., Bjørnerud, A., & Walhovd, K. B. (2011). The brain dynamics of intellectual development: Waxing and waning white and gray matter. Neuropsychologia, 49, 36053611.CrossRefGoogle ScholarPubMed
Tamnes, C. K., Walhovd, K. B., Engvig, A., Grydeland, H., Krogsrud, S. K., Østby, Y., … Fjell, A. M. (2014). Regional hippocampal volumes and development predict learning and memory. Developmental Neuroscience, 36, 161174.CrossRefGoogle ScholarPubMed
van Duijvenvoorde, A. C. K., Achterberg, M., Braams, B. R., Peters, S., & Crone, E. A. (2016). Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses. NeuroImage, 124, 409420.CrossRefGoogle ScholarPubMed
Velanova, K., Wheeler, M. E., & Luna, B. (2008). Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. Cerebral Cortex, 18, 25052522.CrossRefGoogle ScholarPubMed
Vijayakumar, N., Op de Macks, Z., Shirtcliff, E. A., & Pfeifer, J. H. (2018). Puberty and the human brain: Insights into adolescent development. Neuroscience & Biobehavioral Reviews, 92, 417436.CrossRefGoogle ScholarPubMed
Von Der Heide, R. J., Skipper, L. M., Klobusicky, E., & Olson, I. R. (2013). Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain, 136, 16921707.CrossRefGoogle ScholarPubMed
Voss, J. L., O’Neil, J. T., Kharitonova, M., Briggs-Gowan, M. J., & Wakschlag, L. S. (2015). Adolescent development of context-dependent stimulus-reward association memory and its neural correlates. Frontiers in Human Neuroscience, 9, 581.CrossRefGoogle ScholarPubMed
Yakovlev, P. I., Lecours, A. R., & Minkowski, A. (1967). The myelogenetic cycles of regional maturation of the brain. In Minkowski, A. (ed.), Regional Development of the Brain in Early Life (pp. 370). Oxford: Blackwell Scientific.Google Scholar
Yeh, F.-C., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C., & Tseng, W.-Y. I. (2013). Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS ONE, 8, e80713.CrossRefGoogle ScholarPubMed
Zuckerman, M. (2008). Personality and sensation seeking. In Boyle, G. J., Matthews, G., & Saklofske, D. H. (eds.), The SAGE Handbook of Personality Theory and Assessment: Personality Theories and Models. Thousand Oaks, CA: SAGE.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×