Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T11:29:03.029Z Has data issue: false hasContentIssue false

19 - Development of Executive Function Skills in Childhood

Relevance for Important Life Outcomes

from Subpart II.2 - Childhood and Adolescence: The Development of Human Thinking

Published online by Cambridge University Press:  24 February 2022

Olivier Houdé
Affiliation:
Université de Paris V
Grégoire Borst
Affiliation:
Université de Paris V
Get access

Summary

Executive function (EF) skills are a set of neurocognitive skills required for the conscious, goal-directed control of thought, action, and emotion. These skills make it possible to sustain attention, keep goals and information in mind, refrain from responding immediately, resist distraction, tolerate frustration, consider the consequence of different behaviors, reflect on past experiences, and plan for the future (e.g., Diamond, 2013; Zelazo et al., 2016).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, N. P., Hume, L. E., Allan, D. M., Farrington, A. L., & Lonigan, C. J. (2014). Relations between inhibitory control and the development of academic skills in preschool and kindergarten: A meta-analysis. Developmental Psychology, 50, 23682379.CrossRefGoogle ScholarPubMed
Allan, N. P., & Lonigan, C. J. (2014). Exploring dimensionality of effortful control using hot and cool tasks in a sample of preschool children. Journal of Experimental Child Psychology, 122, 3347.CrossRefGoogle Scholar
Alloway, T. P., Gathercole, S. E., Kirkwood, H., & Elliott, J. (2009). The Working Memory Rating Scale: A classroom-based behavioral assessment of working memory. Learning and Individual Differences, 19, 242245.CrossRefGoogle Scholar
Archibald, S. J., & Kerns, K. A. (1999). Identification and description of new tests of executive functioning in children. Child Neuropsychology, 5, 115129.CrossRefGoogle Scholar
Bargh, J. A., & Morsella, E. (2008). The unconscious mind. Perspectives on Psychological Science, 3, 7379.CrossRefGoogle ScholarPubMed
Barnes, J. J. M., Dean, A. J., Nandam, L. S., O’Connell, R. G., & Bellgrove, M. A. (2011). The molecular genetics of executive function: Role of monoamine system genes. Biological Psychiatry, 69, e127e143.CrossRefGoogle ScholarPubMed
Bassett, H. H., Denham, S., Wyatt, T. M., & Warren-Khot, H. K. (2012). Refining the Preschool Self-Regulation Assessment for use in preschool classrooms. Infant and Child Development, 21, 596616.CrossRefGoogle Scholar
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 715.CrossRefGoogle ScholarPubMed
Bechara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6, 215225.CrossRefGoogle ScholarPubMed
Becker, M. G., Isaac, W., & Hynd, G. W. (1987). Neuropsychological development of nonverbal behaviors attributed to “frontal lobe” functioning. Developmental Neuropsychology, 3, 275298.CrossRefGoogle Scholar
Bernier, A., Carlson, S. M., Deschênes, M., & Matte‐Gagné, C. (2012). Social factors in the development of early executive functioning: A closer look at the caregiving environment. Developmental Science, 15, 1224.CrossRefGoogle Scholar
Bernier, A., Carlson, S. M., & Whipple, N. (2010). From external regulation to self‐regulation: Early parenting precursors of young children’s executive functioning. Child Development, 81, 326339.CrossRefGoogle ScholarPubMed
Bernstein, A., Hadash, Y., Lichtash, Y., Tanay, G., Shepherd, K., & Fresco, D. M. (2015). Decentering and related constructs: A critical review and metacognitive processes model. Perspectives on Psychological Science, 10, 599617.CrossRefGoogle ScholarPubMed
Best, J. R. Miller, P. H., & Naglieri, J. A. (2011). Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learning and Individual Differences, 21, 327336.CrossRefGoogle Scholar
Blair, C., Granger, D., & Razza, R. P. (2005). Cortisol reactivity is positively related to executive function in preschool children attending head start. Child Development, 76, 554567.CrossRefGoogle ScholarPubMed
Blair, C., Granger, D., Willoughby, M., Mills-Koonce, R., Cox, M., Greenberg, M. T., et al. (2011). Salivary cortisol mediates effects of poverty and parenting on executive functions in early childhood. Child Development, 82, 19701984.CrossRefGoogle ScholarPubMed
Blair, C., & Raver, C. C. (2015). School readiness and self-regulation: A developmental psychobiological approach. Annual Review of Psychology, 66, 711731.CrossRefGoogle ScholarPubMed
Blair, C., & Raver, C. C. (2016). Poverty, stress, and brain development: New directions for prevention and intervention. Academic Pediatrics, 16, S30S36.CrossRefGoogle ScholarPubMed
Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78, 647680.CrossRefGoogle ScholarPubMed
Bodrova, E., & Leong, D. J. (2001). Tools of the mind: A case study of implementing the Vygotskian approach in American early childhood and primary classrooms. Innodata Monographs, 7. Geneva: UNESCO International Bureau of Education.Google Scholar
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539546.CrossRefGoogle ScholarPubMed
Bradley, R. H., McKelvey, L. M., & Whiteside‐Mansell, L. (2011). Does the quality of stimulation and support in the home environment moderate the effect of early education programs? Child Development, 82, 21102122.CrossRefGoogle ScholarPubMed
Brock, L. L., Rimm-Kaufman, S. E., Nathanson, L., & Grimm, K. J. (2009). The contributions of “hot” and “cool” executive function to children’s academic achievement, learning-related behaviors, and engagement in kindergarten. Early Childhood Research Quarterly, 24, 337349.CrossRefGoogle Scholar
Bronfenbrenner, U. (1979). The Ecology of Human Development: Experiments by Nature and Design. Cambridge, MA: Harvard University Press.Google Scholar
Bruce, J., Fisher, P. A., Pears, K. C., & Levine, S. (2008). Morning cortisol levels in preschool-aged foster children: Differential effects of maltreatment type. Developmental Psychobiology, 51, 1423.CrossRefGoogle Scholar
Brydges, C. R., Reid, C. L., Fox, A. M., & Anderson, M. (2012). A unitary executive function predicts intelligence in children. Intelligence, 40, 458469.CrossRefGoogle Scholar
Bugental, D. B., Schwartz, A. & Lynch, C. (2010). Effects of an early family intervention on children’s memory: The mediating effects of cortisol levels. Mind, Brain, and Education, 4, 159170.CrossRefGoogle ScholarPubMed
Bunge, S. A. (2004). How we use rules to select actions: A review of evidence from cognitive neuroscience. Cognitive, Affective, and Behavioral Neuroscience, 4, 564579.CrossRefGoogle ScholarPubMed
Bunge, S. A., & Wallis, J. D. (2008). Perspectives on Rule Guided Behavior. New York: Oxford University Press.Google Scholar
Bunge, S. A., & Zelazo, P. D. (2006). A brain-based account of the development of rule use in childhood. Current Directions in Psychological Science, 15, 118121.CrossRefGoogle Scholar
Carlson, S. M. (2005). Developmentally sensitive measures of executive function in preschool children. Developmental Neuropsychology, 28, 595616.CrossRefGoogle ScholarPubMed
Carlson, S. M., & Moses, L. J. (2001). Individual differences in inhibitory control and children’s theory of mind. Child Development, 72, 10321053.CrossRefGoogle ScholarPubMed
Carlson, S. M., White, R. E., & Davis-Unger, A. C. (2014). Evidence for a relation between executive function and pretense representation in preschool children. Cognitive Development, 29, 116.CrossRefGoogle ScholarPubMed
Carlson, S. M., & Zelazo, P. D. (2014). Minnesota Executive Function Scale. Saint Paul, MN: Reflection Sciences, LLC.Google Scholar
Carthy, T., Horesh, N., Apter, A., Edge, M. D., & Gross, J. J. (2010). Emotional reactivity and cognitive regulation in anxious children. Behaviour Research and Therapy, 48, 384393.CrossRefGoogle ScholarPubMed
Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H. L., Israel, S., et al. (2014). The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2, 119137.CrossRefGoogle Scholar
Castellanos, F. X., Sonuga-Barke, E. J. S., Milham, M. P., & Tannock, R. (2006). Characterizing cognition in ADHD: Beyond executive dysfunction. Trends in Cognitive Sciences, 10, 117123.CrossRefGoogle ScholarPubMed
Castellanos-Ryan, N., Brière, F. N., O’Leary-Barrett, M., Banaschewski, T., Bokde, A., Bromberg, U., et al. (2016). The structure of psychopathology in adolescence and its common personality and cognitive correlates. Journal of Abnormal Psychology, 125, 10391052.CrossRefGoogle ScholarPubMed
Checa, P., & Fernández-Berrocal, P. (2019). Cognitive control and emotional intelligence: Effect of the emotional content of the task: Brief Reports. Frontiers in Psychology, 10, 195.CrossRefGoogle ScholarPubMed
Cicchetti, D. (1984). The emergence of developmental psychopathology. Child Development, 55, 17.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (2001). Diverse patterns of neuroendocrine activity in maltreated children. Development and Psychopathology, 13, 677693.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Tucker, D. (1994). Development and self-regulatory structures of the mind. Development and Psychopathology, 6, 533549.CrossRefGoogle Scholar
Cirino, P. T., Ahmed, Y., Miciak, J., Taylor, W. P., Gerst, E. H., & Barnes, M. A. (2018). A framework for executive function in the late elementary years. Neuropsychology, 32, 176189.CrossRefGoogle ScholarPubMed
Ciurli, P., Bivona, U., Barba, C., Onder, G., Silvestro, D., Azicnuda, E., et al. (2010). Metacognitive unawareness correlates with executive function impairment after severe traumatic brain injury. Journal of the International Neuropsychological Society, 16, 360.CrossRefGoogle ScholarPubMed
Clark, A. S., & Goldman-Rakic, P. S. (1989). Gonadal hormones influence the emergence of cortical function in nonhuman primates. Behavioral Neuroscience, 103, 12871295.CrossRefGoogle ScholarPubMed
Clark, C. A., Martinez, M. M., Nelson, J. M., Wiebe, S. A., & Andrews Espy, K. (2014). Children's self‐regulation and executive control: Critical for later years. Wellbeing: A Complete Reference Guide (pp. 130). Wiley Online Library.Google Scholar
Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16, 13481355.CrossRefGoogle ScholarPubMed
Conger, R. D., Wallace, L. B., Sun, Y., Simons, R. L., McLoyd, V., & Brody, G. H. (2002). Economic pressure in African American families: A replication and extension of the family stress model. Developmental Psychology, 38, 179193.CrossRefGoogle ScholarPubMed
Conway, A., & Stifter, C. A. (2012). Longitudinal antecedents of executive function in preschoolers. Child Development, 83, 10221036.CrossRefGoogle ScholarPubMed
Crone, E., & Steinbeis, N. (2017). Neural perspectives on cognitive control development during childhood and adolescence. Trends in Cognitive Sciences, 21, 205215.CrossRefGoogle ScholarPubMed
Cunningham, W. A., & Zelazo, P. D. (2007). Attitudes and evaluations: A social cognitive neuroscience perspective. Trends in Cognitive Sciences, 11, 97104.CrossRefGoogle ScholarPubMed
Delis, D., Kramer, J., Kaplan, E., & Holdnack, J. (2004). Reliability and validity of the Delis-Kaplan Executive Function System: An update. Journal of the International Neuropsychological Society, 10, 301303.CrossRefGoogle ScholarPubMed
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168.CrossRefGoogle ScholarPubMed
Diamond, A., & Doar, B. (1989). The performance of human infants on a measure of frontal cortex function, the delayed response task. Developmental Psychobiology, 22, 271294.CrossRefGoogle ScholarPubMed
Diamond, A., & Ling, D. S. (2016). Conclusions about interventions, programs and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience, 18, 3448.CrossRefGoogle ScholarPubMed
DiStefano, R., Galinsky, E., McClelland, M. M., Zelazo, P. D., & Carlson, S. M. (2018). Autonomy-supportive parenting and associations with child and parent executive function. Journal of Applied Developmental Psychology, 58, 7785.CrossRefGoogle Scholar
Duncan, J. (2013). The structure of cognition: Attentional episodes in mind and brain. Neuron, 80, 3550.CrossRefGoogle ScholarPubMed
Enlow, M. B., Petty, C. R., Svelnys, C., Gusman, M., Huezo, M., Malin, A., et al. (2019). Differential effects of stress exposures, caregiving quality, and temperament in early life on working memory versus inhibitory control in preschool-aged children. Developmental Neuropsychology, 44, 339356.CrossRefGoogle Scholar
Eslinger, P. J., Flaherty-Craig, C. V., Benton, A. L. (2004). Developmental outcomes after early prefrontal cortex damage. Brain and Cognition, 55, 84103.CrossRefGoogle ScholarPubMed
Espinet, S. D., Anderson, J. E., & Zelazo, P. D. (2012). N2 amplitude as a neural marker of executive function in young children: An ERP study of children who switch versus perseverate on the Dimensional Change Card Sort. Developmental Cognitive Neuroscience, 2, S49–S58.CrossRefGoogle Scholar
Espinet, S. D., Anderson, J. E., & Zelazo, P. D. (2013). Reflection training improves executive function in preschool children: Behavioral and neural effects. Developmental Cognitive Neuroscience, 4, 315.CrossRefGoogle ScholarPubMed
Espy, K. A. (1997). The shape school: Assessing executive function in preschool children. Developmental Neuropsychology, 13, 495499.CrossRefGoogle Scholar
Espy, K. A., Kaufmann, P. M., McDiarmid, M. D., & Glisky, M. L. (1999). Executive functioning in preschool children: Performance on A-not-B and other delayed response format tasks. Brain and Cognition, 41, 178199.CrossRefGoogle ScholarPubMed
Evans, G. W. (2004). The environment of childhood poverty. American Psychologist, 59, 7792.CrossRefGoogle ScholarPubMed
Evans, G. W., & Schamberg, M. A. (2009). Childhood poverty, chronic stress, and adult working memory. Proceedings of the National Academy of Sciences (USA), 106, 65456549.CrossRefGoogle ScholarPubMed
Farah, M. J., Shera, D. M., Savage, J. H., Betancourt, L., Giannetta, J. M., Brodsky, N. L., et al. (2006). Childhood poverty: Specific associations with neurocognitive development. Brain Research, 1110, 166174.CrossRefGoogle ScholarPubMed
Fellows, L. K., & Farah, M. J. (2005). Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15, 5863.CrossRefGoogle ScholarPubMed
Fitzpatrick, C., McKinnon, R. D., Blair, C. B., & Willoughby, M. T. (2014). Do preschool executive function skills explain the school readiness gap between advantaged and disadvantaged children? Learning and Instruction, 30, 2531.CrossRefGoogle Scholar
Fonseca, R. P., Zimmermann, N., Cotrena, C., Cardoso, C., Kristensen, C. H., & Grassi-Oliveira, R. (2012). Neuropsychological assessment of executive functions in traumatic brain injury: Hot and cold components. Psychology & Neuroscience, 5, 183190.CrossRefGoogle Scholar
Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology: General, 137, 201225.CrossRefGoogle ScholarPubMed
Frye, D., Zelazo, P. D., & Palfai, T. (1995). Theory of mind and rule-based reasoning. Cognitive Development, 10, 483527.CrossRefGoogle Scholar
Gandolfi, E., Viterbori, P., Traverso, L., & Usai, M. C. (2014). Inhibitory processes in toddlers: A latent-variable approach. Frontiers in Psychology, 5, 381.CrossRefGoogle ScholarPubMed
Gathercole, S. E. (1998). The development of memory. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 39, 327.CrossRefGoogle ScholarPubMed
Gerstadt, C., Hong, Y., & Diamond, A. (1994). The relationship between cognition and action: Performance of children 3 ½–7 years old on a Stroop-like day-night test. Cognition, 53, 129153.CrossRefGoogle ScholarPubMed
Gottlieb, G. (1992). Individual Development and Evolution: The Genesis of Novel Behavior. New York: Oxford University Press.Google Scholar
Groppe, K., & Elsner, B. (2014). Executive function and food approach behavior in middle childhood. Frontiers in Psychology, 5, 477.CrossRefGoogle ScholarPubMed
Hackman, D. A., Gallop, R., Evans, G. W., & Farah, M. J. (2015). Socioeconomic status and executive function: Developmental trajectories and mediation. Developmental Science, 18, 686702.CrossRefGoogle ScholarPubMed
Hadley, L. V., Acluche, F., & Chevalier, N. (2019). Encouraging performance monitoring promotes proactive control in children. Developmental Science, e12861.Google Scholar
Hammond, S. I., Müller, U., Carpendale, J. I. M., Bobok, M. B., & Liebermann-Finestone, D. P. (2012). The effects of parental scaffolding on preschoolers’ executive function. Developmental Psychology, 48, 271281.CrossRefGoogle ScholarPubMed
Hanson, J. L., Chung, M. K., Avants, B. B., Shirtcliff, E. A., Gee, J. C., Davidson, R. J., et al. (2010). Early stress is associated with alterations in the orbitofrontal cortex: A tensor-based morphometry investigation of brain structure and behavioral risk. Journal of Neuroscience, 30, 74667472.CrossRefGoogle ScholarPubMed
Happaney, K., Zelazo, P. D., & Stuss, D. T. (2004). Development of orbitofrontal function: Current themes and future directions. Brain and Cognition, 55, 110.CrossRefGoogle ScholarPubMed
Hart, B., & Risley, T. (1995). Meaningful Differences in the Everyday Experience of Young American Children. Baltimore, MD: Brookes.Google Scholar
Hinson, J. M., Jameson, T. L., & Whitney, P. (2003). Impulsive decision making and working memory. Journal of Experimental Psychology; Learning Memory and Cognition, 29, 298306.CrossRefGoogle ScholarPubMed
Hongwanishkul, D., Happaney, K. R., Lee, W., & Zelazo, P. D. (2005). Hot and cool executive function: Age-related changes and individual differences. Developmental Neuropsychology, 28, 617644.CrossRefGoogle ScholarPubMed
Hostinar, C. E., Sullivan, R. M., & Gunnar, M. R. (2014). Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: A review of animal models and human studies across development. Psychological Bulletin, 140, 256282.CrossRefGoogle Scholar
Hughes, C., & Ensor, R. (2009). How do families help or hinder the emergence of early executive function? New Directions in Child and Adolescent Development, 123, 3550.CrossRefGoogle Scholar
Hunter, W. S. (1917). The delayed reaction in a child. Psychological Review, 24, 7487.CrossRefGoogle Scholar
Jacobsen, C. F. (1936). Studies of cerebral function in primates. I. The functions of the frontal association areas in primates. Comparative Psychology Monographs, 13, 160.Google Scholar
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences (USA), 105, 68296833.CrossRefGoogle ScholarPubMed
Jester, J. M., Nigg, J. T., Puttler, L. I., Long, J. C., Fitzgerald, H. E., & Zucke, R. A. (2009). Intergenerational transmission of neuropsychological executive functioning. Brain and Cognition, 70, 145153.CrossRefGoogle ScholarPubMed
Joensson, M., Thomsen, K. R., Andersen, L. M., Gross, J., Mouridsen, K., Sandberg, K., et al. (2015). Making sense: Dopamine activates conscious self-monitoring through medial prefrontal cortex. Human Brain Mapping, 36, 18661877.CrossRefGoogle ScholarPubMed
Johnson, M. H. (2011). Interactive specialization: A domain-general framework for human functional brain development? Developmental Cognitive Neuroscience, 1, 721.CrossRefGoogle ScholarPubMed
Kaller, M. S., Lazari, A., Blanco-Duque, C., Sampaio-Baptista, C., & Johansen-Berg, H. (2017). Myelin plasticity and behaviour: Connecting the dots. Current Opinion in Neurobiology, 47, 8692.CrossRefGoogle ScholarPubMed
Kerr, A., & Zelazo, P. D. (2004). Development of “hot” executive function: The Children’s Gambling Task. Brain and Cognition, 55, 148157.CrossRefGoogle ScholarPubMed
Kesek, A., Cunningham, W. A., Packer, D. J., & Zelazo, P. D. (2011). Indirect goal priming is more powerful than explicit instruction in children. Developmental Science, 14, 944948.CrossRefGoogle ScholarPubMed
Kim, S., Nordling, J. K., Yoon, J. E., Boldt, L. J., & Kochanska, G. (2013). Effortful control in “hot” and “cool” tasks differentially predicts children’s behavior problems and academic performance. Journal of Abnormal Child Psychology, 41, 4356.CrossRefGoogle ScholarPubMed
Kishiyama, M. M., Boyce, W. T., Jimenez, A. M., Perry, L. M., & Knight, R. T. (2009). Socioeconomic disparities affect prefrontal function in children. Journal of Cognitive Neuroscience, 21, 1106-1115.CrossRefGoogle ScholarPubMed
Kolb, B., Harker, L., de Melo, S., & Gibb, R. (2017). Stress and pre-frontal cortical plasticity in the developing brain. Cognitive Development, 42, 1526.CrossRefGoogle Scholar
Korucu, I., Rolan, E., Napoli, A. R., Purpura, D. J., & Schmitt, S. A. (2019). Development of the Home Executive Function Environment (HEFE) scale: Assessing its relation to preschoolers’ executive function. Early Childhood Research Quarterly, 47, 919.CrossRefGoogle Scholar
Koss, K. J., & Gunnar, M. R. (2018). Annual research review: Early adversity, the hypothalamic-pituitary-adrenocortical axis, and child psychopathology. Journal of Child Psychology and Psychiatry, 59, 327346.CrossRefGoogle ScholarPubMed
Kross, E., Duckworth, A., Ayduk, O., Tsukayama, E., & Mischel, W. (2011). The effect of self-distancing adaptive versus maladaptive self-reflection in children. Emotion, 11, 10321039.CrossRefGoogle ScholarPubMed
Lahey, B. B., Krueger, R. F., Rathouz, P. J., Waldman, I. D., & Zald, D. H. (2017). A hierarchical causal taxonomy of psychopathology across the life span. Psychological Bulletin, 143, 142186.CrossRefGoogle ScholarPubMed
Lee, K., Bull, R., & Ho, R.M. (2013). Developmental changes in executive functioning. Child Development, 84, 19331953.CrossRefGoogle ScholarPubMed
Lehto, J. E., Juujarvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21, 5980.CrossRefGoogle Scholar
Lengua, L. J., Honorado, E., & Bush, N. R. (2007). Contextual risk and parenting as predictors of effortful control and social competence in preschool children. Journal of Applied Developmental Psychology, 28, 4055.CrossRefGoogle ScholarPubMed
Lerner, M. D., & Lonigan, C. J. (2014). Executive function among preschool children: Unitary versus distinct abilities. Journal of Psychopathology and Behavioral Assessment, 36, 626639.CrossRefGoogle ScholarPubMed
Levin, H. S., Culhane, K. A., Hartmann, J., Evankovich, K., Mattson, A. J., Harward, H., et al. (1991). Developmental-changes in performance on tests of purported frontal-lobe functioning. Developmental Neuropsychology, 7, 377395.CrossRefGoogle Scholar
Lhermitte, F. (1983). “Utilization behavior” and its relation to lesions to the frontal lobes. Brain, 106, 237255.CrossRefGoogle Scholar
Liston, C., McEwen, B. S., & Casey, B. J. (2009). Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proceedings of the National Academy of Science (USA), 106, 912917.CrossRefGoogle ScholarPubMed
Logue, S. F., & Gould, T. J. (2014). The neural and genetic basis of executive function: Attention, cognitive flexibility, and response inhibition. Pharmacology Biochemistry and Behavior, 123, 4554.CrossRefGoogle ScholarPubMed
Luciana, M., & Nelson, C. A. (1998). The functional emergence of prefrontally-guided working memory systems in four-to-eight-year-old children. Neuropsychologia, 36. 273293.CrossRefGoogle ScholarPubMed
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445.CrossRefGoogle ScholarPubMed
Luria, A. R. (1966). Higher Cortical Functions in Man (2nd ed.). New York: Basic Books.Google Scholar
Luria, A. R., & Vinogradova, O. S. (1959). An objective investigation of the dynamics of semantic systems. British Journal of Psychology, 50, 89105.CrossRefGoogle Scholar
Lyons, K. E., & Zelazo, P. D. (2011). Monitoring, metacognition, and executive function: Elucidating the role of self-reflection in the development of self-regulation. Advances in Child Development and Behavior, 40, 379412.CrossRefGoogle ScholarPubMed
Maccoby, E. E. (1980). Social Development. San Diego, CA: Harcourt Brace Jovanovich.Google Scholar
Mackey, A. P., Hill, S. S., Stone, S. I., & Bunge, S. A. (2011). Differential effects of reasoning and speed training in children. Developmental Science, 14, 582590.CrossRefGoogle ScholarPubMed
Manes, F., Sahakian, B., Clark, L., Rogers, R., Antoun, N., Aitken, M., et al. (2002). Decision-making processes following damage to prefrontal cortex. Brain, 125, 624639.CrossRefGoogle ScholarPubMed
Mann, T. D., Hund, A. M., Hesson-McInnis, M. S., & Roman, Z. J. (2017). Pathways to school readiness: Executive functioning predicts academic and social-emotional aspects of school readiness. Mind, Brain, and Education, 11, 2131.CrossRefGoogle Scholar
Martel, M. M., Pan, P. M, Hoffmann, M. S., Gadelha, A., do Rosário, M. C., Jair, J., et al. (2017). A general psychopathology factor (p factor) in children: Structural model analysis and external validation through familial risk and child global executive function. Journal of Abnormal Psychology, 126, 137148.CrossRefGoogle ScholarPubMed
Marulis, L., Baker, S., & Whitebread, D. (2020). Integrating metacognition and executive function to enhance young children’s perception of and agency in their learning. Early Childhood Research Quarterly, 50, 4654.CrossRefGoogle Scholar
Masten, A. S., Herbers, J. E., Desjardins, C. D., Cutuli, J. J., McCormick, C. M., Sapienza, J. K., et al. (2012). Executive function skills and school success in young children experiencing homelessness. Educational Researcher, 41, 373384.CrossRefGoogle Scholar
Matheny, A., Jr., Wachs, T. D., Ludwig, J., & Phillips, K. (1995). Bringing order out of chaos: Psychometric characteristics of the Confusion, Hub-bub, and Order Scale. Journal of Applied Developmental Psychology, 16, 429444.CrossRefGoogle Scholar
Matte-Gagne, C., & Bernier, A. (2011). Prospective relations between maternal autonomy support and child executive functioning: Investigating the mediating role of child language ability. Journal of Experimental Child Psychology, 110, 611625.CrossRefGoogle ScholarPubMed
McAuley, T., & White, D. A. (2011). A latent variables examination of processing speed, response inhibition, and working memory during typical development. Journal of Experimental Child Psychology, 108, 453468.CrossRefGoogle ScholarPubMed
McClelland, M. M., Cameron, C. E., Duncan, R., Bowles, R. P., Acock, A. C., Miao, A., et al. (2014). Predictors of early growth in academic achievement: The Head-Toes-Knees-Shoulders task. Frontiers in Psychology, 5, 599.CrossRefGoogle ScholarPubMed
McLaughlin, K. A. (2016). Future directions in childhood adversity and youth psychopathology. Journal of Clinical Child & Adolescent Psychology, 45, 361382.CrossRefGoogle ScholarPubMed
McLoyd, V. (1998). Socioeconomic disadvantage and child development. American Psychologist, 53, 185204.CrossRefGoogle ScholarPubMed
Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of “far transfer”: Evidence from a meta-analytic review. Perspectives on Psychological Science, 11, 512534.CrossRefGoogle ScholarPubMed
Meuwissen, A. S., & Carlson, S. M. (2018). An experimental study of the effects of autonomy support on preschoolers’ self-regulation. Journal of Applied Developmental Psychology, 60, 1123.CrossRefGoogle Scholar
Mezzacappa, E., Buckner, J. C., & Earls, F. (2011). Prenatal cigarette exposure and infant learning stimulation as predictors of cognitive control in childhood. Developmental Science, 14, 881891.CrossRefGoogle ScholarPubMed
Micalizzi, L., Brick, L. A., Flom, M., Ganiban, J. M., & Saudino, K. J. (2019). Effects of socioeconomic status and executive function on school readiness across levels of household chaos. Early Childhood Research Quarterly, 47, 331340.CrossRefGoogle ScholarPubMed
Miller, M. R., Giesbrecht, G. F., Muller, U., McInerney, R. J., & Kerns, K. A. (2012). A latent variable approach to determining the structure of executive function in preschool children. Journal of Cognition and Development, 13, 395423.CrossRefGoogle Scholar
Milner, B. (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9, 90100.CrossRefGoogle Scholar
Mischel, W., Shoda, Y., & Rodriguez, M. L. (1989). Delay of gratification in children. Science, 244, 933938.CrossRefGoogle ScholarPubMed
Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychology, 21, 814.CrossRefGoogle ScholarPubMed
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). the unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100.CrossRefGoogle ScholarPubMed
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., et al. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences (USA), 108, 26932698.CrossRefGoogle ScholarPubMed
Montroy, J. J., Merz, C., Williams, J. M., Landry, S. H., Johnson, U. Y., Zucker, T. A., et al. (2019). Hot and cool dimensionality of executive function: Model invariance across age and maternal education in preschool children. Early Childhood Research Quarterly, 49, 188201.CrossRefGoogle Scholar
Moriguchi, Y., Sakata, Y., Ishibashi, M., & Ishikawa, Y. (2015) Teaching others rule-use improves executive function and prefrontal activations in young children. Frontiers in Psychology, 6, 894.CrossRefGoogle ScholarPubMed
Moriguchi, Y., & Shinahara, I. (2019). Less Is More activation: The involvement of the lateral prefrontal regions in a “Less Is More” task. Developmental Neuropsychology, 44, 273281.CrossRefGoogle Scholar
Moritz, S., Andreou, C., Schneider, B. C., Wittekind, C. E., Menon, M., Balzan, R. P., et al. (2014). Sowing the seeds of doubt: A narrative review on metacognitive training in schizophrenia. Clinical Psychology Review, 34, 358366.CrossRefGoogle Scholar
Mulder, H., Hoofs, H., Verhagen, J., van der Veen, I., & Leseman, P. P. (2014). Psychometric properties and convergent and predictive validity of an executive function test battery for two-year-olds. Frontiers in Psychology, 5, 733.CrossRefGoogle ScholarPubMed
Mungas, D., Widaman, K., Zelazo, P.D., Tulsky, D., Heaton, R. K., Slotkin, J., et al. (2013). VII. NIH toolbox Cognition Battery (CB): Factor structure for 3- to 15-year-olds. Monographs of the Society for Research in Child Development, 78, 103118.CrossRefGoogle Scholar
Nejati, V., Salehinejad, M. A., & Nitsche, M. A. (2018). Interaction of the left dorsolateral prefrontal cortex (L-dlPFC) and right orbitofrontal cortex (OFC) in hot and cold executive functions: Evidence from transcranial direct current stimulation (tDCS). Neuroscience, 369(Suppl C), 109123.CrossRefGoogle ScholarPubMed
Nelson, T. D., Kidwell, K. M., Nelson, J. M., Tomaso, C. C., Hankey, M., & Espy, K. A. (2018). Preschool executive control and internalizing symptoms in elementary school. Journal of Abnormal Child Psychology, 46, 15091520.CrossRefGoogle ScholarPubMed
Nesbitt, K. T., Baker-Ward, L., & Willoughby, M. T. (2013). Executive function mediates socio-economic and racial differences in early academic achievement. Early Childhood Research Quarterly, 28, 774783.CrossRefGoogle Scholar
Noble, K. G., Houston, S. M, Brito, N. H., Bartsch, H., Kan., E., Kuperman, J. M., et al. (2015). Family income, parental education and brain structure in children and adolescents. Nature Neuroscience, 18, 773778.CrossRefGoogle ScholarPubMed
Noble, K. G., McCandliss, B. D., & Farah, M. J. (2007). Socioeconomic gradients predict individual differences in neurocognitive abilities. Developmental Science, 10, 464480.CrossRefGoogle ScholarPubMed
Normann, N., & Morina, N. (2018). The efficacy of metacognitive therapy: A systematic review and meta-analysis. Frontiers in Psychology, 9, 2211.CrossRefGoogle ScholarPubMed
O’Hearn, K., Osato, M., Ordaz, S., & Luna, B. (2008). Neurodevelopment and executive function in autism. Development and Psychopathology, 20, 11031132.CrossRefGoogle ScholarPubMed
Overman, W. H., Bachevalier, J., Schumann, E., & Ryan, P. (1996). Cognitive gender differences in very young children parallel biologically based cognitive gender differences in monkeys. Behavioral Neuroscience, 110, 673684.CrossRefGoogle ScholarPubMed
Passler, M. A., Isaac, W., & Hynd, G. W. (1985). Neuropsychological development of behavior attributed to frontal lobe functioning in children. Developmental Neuropsychology, 1, 349370.CrossRefGoogle Scholar
Peterson, E., & Welsh, M. C. (2014). The development of hot and cool executive functions in childhood and adolescence: Are we getting warmer? In Goldstein, S., & Naglieri, J. (eds.), Executive Functioning Handbook (pp. 4565). New York: Springer.CrossRefGoogle Scholar
Petrides, M., & Milner, B. (1982). Deficits on subject-ordered tasks after frontal-and temporal-lobe lesions in man. Neuropsychologia, 20, 249262.CrossRefGoogle ScholarPubMed
Pickering, S. J., & Gathercole, S. E. (2001). Working Memory Test Battery for Children. London: Psychological Corp.Google Scholar
Pietrefesa, A. S., & Evans, D. W. (2007). Affective and neuropsychological correlates of children’s rituals and compulsive-like behaviors: Continuities and discontinuities with Obsessive-Compulsive Disorder. Brain and Cognition, 65, 3646.CrossRefGoogle ScholarPubMed
Plamondon, A., Akbari, E., Atkinson, L., Steiner, M., Meaney, M. J., & Fleming, A. S. (2015). Spatial working memory and attention skills are predicted by maternal stress during pregnancy. Early Human Development, 91, 2329.CrossRefGoogle ScholarPubMed
Plessow, F., Fischer, R., Kirschbaum, C., & Goschke, T. (2011). Inflexibly focused under stress: Acute psychosocial stress increases shielding of action goals at the expense of reduced cognitive flexibility with increasing time lag to the stressor. Journal of Cognitive Neuroscience, 23, 32183227.CrossRefGoogle Scholar
Pozuelos, J. P., Combita, L. M., Abundis, A., Paz-Alonso, P. M., Conejero, A., Guerra, S., et al. (2019). Metacognitive scaffolding boosts cognitive and neural benefits following executive attention training in children. Developmental Science, 22, e12756.CrossRefGoogle ScholarPubMed
Prencipe, A., Kesek, A., Cohen, J., Lamm, C., & Zelazo, P. D. (2011). Development of hot and cool executive function during the transition to adolescence. Journal of Experimental Child Psychology, 108, 621637.CrossRefGoogle ScholarPubMed
Prencipe, A., & Zelazo, P. D. (2005). Development of affective decision-making for self and other: Evidence for the integration of first- and third-person perspectives. Psychological Science, 16, 501505.CrossRefGoogle ScholarPubMed
Pribram, K. H. (1973). The primate frontal cortex: Executive of the brain. In Pribram, K. H., & Luria, A. R. (eds.), Psychophysiology of the Frontal Kobes (pp. 293314). New York: Academic Press.CrossRefGoogle Scholar
Rhoades, R. D., Greenberg, M. C., & Domitrovich, T. (2009). The contribution of inhibitory control to preschoolers’ social–emotional competence. Journal of Applied Developmental Psychology, 30, 310320.CrossRefGoogle Scholar
Riggs, N. R., Greenberg, M. T., Kusché, C. A., & Pentz, M. A. (2006). The mediational role of neurocognition in the behavioral outcomes of a social-emotional prevention program in elementary school students: Effects of the PATHS curriculum. Prevention Science, 7, 91102.CrossRefGoogle ScholarPubMed
Robbins, T. W., & Arnsten, A. F. (2009). The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation. Annual Review of Neuroscience, 32, 267287.CrossRefGoogle ScholarPubMed
Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., McInnes, L., & Rabbitt, P. (1994). Cambridge Neuropsychological Test Automated Battery (CANTAB): A factor analytic study of a large sample of normal elderly volunteer. Dementia, 5, 266281.Google Scholar
Roebers, C. (2017). Executive function and metacognition: Towards a unifying framework of cognitive self-regulation. Developmental Review, 45, 3151.CrossRefGoogle Scholar
Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55, 1129.CrossRefGoogle ScholarPubMed
Rubia, K. (2011). “Cool” inferior frontostriatal dysfunction in attention-deficit/hyperactivity disorder versus “hot” ventromedial orbitofrontal-limbic dysfunction in conduct disorder: A review. Biological Psychiatry, 69, e69e87.CrossRefGoogle ScholarPubMed
Sameroff, A. J. (1983). Developmental systems: Contexts and evolution. In Kessen, W. (Series ed.) & Mussen, P. H. (Vol ed.), Handbook of Child Psychology: Vol. 1. History, Theories, and Methods (pp. 238294). New York: Wiley.Google Scholar
Saver, J. L., & Damasio, A. R. (1991). Preserved access and processing of social knowledge in a patient with acquired sociopathy due to ventromedial frontal damage. Neuropsychologia, 29, 12411249.CrossRefGoogle Scholar
Schmitt, S. A., Simpson, A. M., & Friend, M. (2011). A longitudinal assessment of the home literacy environment and early language. Infant and Child Development, 20, 409431.CrossRefGoogle ScholarPubMed
Schoemaker, K., Bunte, T., Wiebe, S. A., Espy, K. A., Deković, M., & Matthys, W. (2012). Executive function deficits in preschool children with ADHD and DBD. Journal of Child Psychology and Psychiatry, 53, 111119.CrossRefGoogle ScholarPubMed
Sheppes, G., Suri, G., & Gross, J. J. (2015). Emotion regulation and psychopathology. Annual Review of Clinical Psychology, 11, 379405.CrossRefGoogle ScholarPubMed
Sheridan, M. A., Peverill, M., Finn, A. S., & McLaughlin, K. A. (2017). Dimensions of childhood adversity have distinct associations with neural systems underlying executive functioning. Development and Psychopathology, 29, 17771794.CrossRefGoogle ScholarPubMed
Sheridan, M. A., Sarsour, K., Jutte, D., D’Esposito, M., & Boyce, W. T. (2012). The impact of social disparity on prefrontal function in childhood. PLoS ONE, 7, e35744.CrossRefGoogle ScholarPubMed
Shi, R., Sharpe, L., & Abbott, M. (2017). A meta-analysis of the relationship between anxiety and attentional control. Clinical Psychology Review, 72, 101754.CrossRefGoogle Scholar
Shields, G. S., Sazma, M. A., & Yonelinas, A. P. (2016). The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neuroscience & Biobehavioral Review, 68, 651668.CrossRefGoogle ScholarPubMed
Shinaver, C. S., Entwistle, P. C., & Söderqvist, S. (2014). Cogmed WM training: Reviewing the reviews. Applied Neuropsychology: Child, 3, 163172.CrossRefGoogle ScholarPubMed
Shing, Y.L., Lindenberger, U., Diamond, A., Li, S.C., & Davidson, M. C. (2010). Memory maintenance and inhibitory control differentiate from early childhood to adolescence. Developmental Neuropsychology, 35, 679697.CrossRefGoogle ScholarPubMed
Shoda, Y., Mischel, W., & Peake, P. K. (1990). Predicting adolescent cognitive and self-regulatory competencies from preschool delay of gratification: Identifying diagnostic conditions. Developmental Psychology, 26, 978986.CrossRefGoogle Scholar
Shonkoff, J. P. (2011). Protecting brains, not simply stimulating minds. Science, 333, 982983.CrossRefGoogle Scholar
Shonkoff, J. P., Garner, A. S., Siegel, B. S., Dobbins, M. I., Earls, M. F., Garner, A. S., et al. (2012). The lifelong effects of early childhood adversity and toxic stress. Pediatrics, 129, e232e246.CrossRefGoogle ScholarPubMed
Smith, S. M. (1982). Enhancement of recall using multiple environmental contexts during learning. Memory & Cognition, 10, 405412.CrossRefGoogle ScholarPubMed
Smith-Donald, R., Raver, C. C., Hayes, T., & Richardson, B. (2007). Preliminary construct and concurrent validity of the preschool self-regulation assessment (PSRA) for field-based research. Early Childhood Research Quarterly, 22, 173187.CrossRefGoogle Scholar
Sonuga-Barke, E. J. S. (2003). The dual pathway model of AD/HD: An elaboration of neuro-developmental characteristics. Neuroscience and Biobehavioral Reviews, 27, 593604.CrossRefGoogle ScholarPubMed
Sroufe, L. A., & Rutter, M. (1984). The domain of developmental psychopathology. Child Development. 55, 1729.CrossRefGoogle ScholarPubMed
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662.CrossRefGoogle Scholar
Stuss, D. T., & Benson, D. F. (1986). The Frontal Lobes. New York: Raven Press.Google Scholar
Thorell, L. B. (2007). Do delay aversion and executive function deficits make distinct contributions to the functional impact of ADHD symptoms? A study of early academic skill deficits. Journal of Child Psychology and Psychiatry, 48, 10611070.CrossRefGoogle Scholar
Toll, S. W., Van der Ven, S. H., Kroesbergen, E. H., & Van Luit, J. E. (2011). Executive functions as predictors of math learning disabilities. Journal of Learning Disabilities, 44, 521532.CrossRefGoogle ScholarPubMed
Travers-Hill, E., Dunn, B., Hoppitt, L., Hitchcock, C., & Dalgleish, T. (2017). Beneficial effects of training in self-distancing and perspective broadening for people with a history of recurrent depression. Behaviour Research and Therapy, 95, 1928.CrossRefGoogle ScholarPubMed
Usai, M. C., Viterbori, P., Traverso, L., & De Franchis, V. (2014). Latent structure of executive function in 5- and 6-year-old children: A longitudinal study. European Journal of Developmental Psychology, 11, 447462.CrossRefGoogle Scholar
Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100, 33283342.CrossRefGoogle ScholarPubMed
Wass, S. V., Smith, C. G., Daubney, K. R., Suata, Z. M., Clackson, K., Begum, A., et al. (2019). Influences of environmental stressors on autonomic function in 12-month-old infants: Understanding early common pathways to atypical emotion regulation and cognitive performance. Journal of Child Psychology and Psychiatry, 60, 13231333.CrossRefGoogle ScholarPubMed
Wechsler, D. (1992). Wechsler Intelligence Scale for Children – Third Edition. London: Psychological Corporation.Google Scholar
Welsh, M. C., & Pennington, B. F. (1988). Assessing frontal lobe functioning in children: Views from developmental psychology. Developmental Neuropsychology, 4, 199230.CrossRefGoogle Scholar
Welsh, M. C., Pennington, B. F., & Groisser, D. B. (1991). A normative-developmental study of executive function: A window on prefrontal function in children. Developmental Neuropsychology, 7, 131149.CrossRefGoogle Scholar
Wiebe, S. A., Espy, K. A., & Charak, D. (2008). Using confirmatory factor analysis to understand executive control in preschool children: I. Latent structure. Developmental Psychology, 44, 575587.CrossRefGoogle ScholarPubMed
Wiebe, S. A., Sheffield, T., Nelson, J. M., Clark, C. A. C., Chevalier, N., & Espy, K. A. (2011). The structure of executive function in 3-year-olds. Journal of Experimental Child Psychology, 108, 436452.CrossRefGoogle ScholarPubMed
Willoughby, M., Kupersmidt, J., Voegler-Lee, M., & Bryant, D. (2011). Contributions of hot and cool self-regulation to preschool disruptive behavior and academic achievement. Developmental Neuropsychology, 36, 162180.CrossRefGoogle ScholarPubMed
Xu, F., Han, Y., Sabbagh, M.A., Wang, T., Ren, X., & Li, C. (2013). Developmental differences in the structure of executive function in middle childhood and adolescence. PLoS ONE, 8, e77770.CrossRefGoogle ScholarPubMed
Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2013). Plasticity in gray and white: Neuroimaging changes in brain structure during learning. Nature Neuroscience, 15, 528536.CrossRefGoogle Scholar
Zelazo, P. D. (2006). The dimensional change card sort: A method of assessing executive function in children. Nature Protocols, 1, 297301.CrossRefGoogle Scholar
Zelazo, P. D. (2015). Executive function: Reflection, iterative reprocessing, complexity, and the developing brain. Developmental Review, 38, 5568.CrossRefGoogle Scholar
Zelazo, P. D. (2020). Executive function and psychopathology: A neurodevelopmental perspective. Annual Review of Clinical Psychology, 16, 14.114.24.CrossRefGoogle ScholarPubMed
Zelazo, P. D., Anderson, J. E., Richler, J., Wallner-Allen, K., Beaumont, J. L., Conway, K. P., et al. (2014). NIH Toolbox Cognition Battery (CB): Validation of executive function measures in adults. Journal of the International Neuropsychological Society, 20, 620629.CrossRefGoogle ScholarPubMed
Zelazo, P. D., Anderson, J. E., Richler, J., Wallner-Allen, K., Beamont, J. L., & Weintraub, S. (2013). NIH Toolbox Cognition Battery (CB): Measuring executive function and attention. Monographs of the Society for Research in Child Development, 78, 1633.CrossRefGoogle ScholarPubMed
Zelazo, P. D., Blair, C. B., & Willoughby, M. T. (2016). Executive function: Implications for education. US Department of Education, 1–148. Available from https://ies.ed.gov/ncer/pubs/20172000/pdf/20172000.pdf. Last accessed August 4, 2021.Google Scholar
Zelazo, P. D., Carter, A., Reznick, J. S., & Frye, D. (1997). Early development of executive function: A problem-solving framework. Review of General Psychology, 1, 198226.CrossRefGoogle Scholar
Zelazo, P. D., & Cunningham, W. (2007). Executive function: Mechanisms underlying emotion regulation. In Gross, J. (ed.), Handbook of Emotion Regulation (pp. 135158). New York: Guilford.Google Scholar
Zelazo, P. D., Forston, J. L., Masten, A. S., & Carlson, S. M. (2018). Mindfulness plus reflection training: Effects on executive function in early childhood. Frontiers in Psychology, 9, 112.CrossRefGoogle ScholarPubMed
Zelazo, P. D., Frye, D., & Rapus, T. (1996). An age-related dissociation between knowing rules and using them. Cognitive Development, 11, 3763.CrossRefGoogle Scholar
Zelazo, P. D., & Jacques, S. (1996). Children’s rule use: Representation, reflection, and cognitive control. Annals of Child Development, 12, 119176.Google Scholar
Zelazo, P. D., & Müller, U. (2002). Executive function in typical and atypical development. In Goswami, U. (ed.), Handbook of Childhood Cognitive Development (pp. 445469). Oxford: Blackwell.Google Scholar
Zelazo, P. D., Müller, U., Frye, D., & Marcovitch, S. (2003). The development of executive function in early childhood. Monographs of the Society for Research on Child Development, 68, vii137.CrossRefGoogle ScholarPubMed
Zelazo, P. D., & Reznick, J. S. (1991). Age related asynchrony of knowledge and action. Child Development, 62, 719735.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×