Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T23:13:40.818Z Has data issue: false hasContentIssue false

3 - Sweet Dreams Are Made of This

The Role of Openness in Creativity and Brain Networks

from Part I - Process and Structure of the Creative Personality

Published online by Cambridge University Press:  19 May 2017

Gregory J. Feist
Affiliation:
San José State University, California
Roni Reiter-Palmon
Affiliation:
University of Nebraska, Omaha
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, A., Beudt, S., Ott, D. V., & Yves von Cramon, D. (2012). Creative cognition and the brain: dissociations between frontal, parietal-temporal and basal ganglia groups. Brain Research, 1482, 5570. doi:10.1016/j.brainres.2012.09.007CrossRefGoogle ScholarPubMed
Adelstein, J. S., Shehzad, Z., Mennes, M., Deyoung, C. G., Zuo, X. N., et al. (2011). Personality is reflected in the brain’s intrinsic functional architecture. PloS One, 6(11), e27633. doi:10.1371/journal.pone.0027633CrossRefGoogle ScholarPubMed
Allen, T. A., & DeYoung, C. G. (2016). Personality Neuroscience and the Five Factor Model. In Widiger, T. A. (ed.), Oxford Handbook of the Five Factor Model. New York: Oxford University Press.Google Scholar
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65, 550–62.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2015a). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 8795. doi:10.1016/j.tics.2015.10.004CrossRefGoogle ScholarPubMed
Beaty, R. E., Kaufman, S. B., Benedek, M., Jung, R. E., Kenett, Y. N., et al. (2015b). Personality and complex brain networks: the role of openness to experience in default network efficiency. Human Brain Mapping, 37(2), 773–9. doi:10.1002/hbm.23065Google ScholarPubMed
Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: an empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 147.CrossRefGoogle Scholar
Cattell, R. B., & Drevdahl, J. E. (1955). A comparison of the personality profile (16 P.F.) of eminent researchers with that of eminent teachers and administrators, and of the general population. British Journal of Psychology, 46(4), 248–61.CrossRefGoogle ScholarPubMed
Cohen, M. X., Schoene-Bake, J. C., Elger, C. E., & Weber, B. (2009). Connectivity-based segregation of the human striatum predicts personality characteristics. Nature Neuroscience, 12(1), 32–4. doi:10.1038/nn.2228CrossRefGoogle ScholarPubMed
Danielian, L. E., Iwata, N. K., Thomasson, D. M., & Floeter, M. K. (2010). Reliability of fiber tracking measurements in diffusion tensor imaging for longitudinal study. Neuroimage, 49(2), 1572–80. doi:10.1016/j.neuroimage.2009.08.062CrossRefGoogle ScholarPubMed
Deary, I. J. (2012). Intelligence. Annual Review of Psychology, 63, 453–82. doi: 10.1146/Annurev-Psych-120710-100353CrossRefGoogle ScholarPubMed
Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews Neuroscience, 11(3), 201–11. doi: 10.1038/Nrn2793CrossRefGoogle ScholarPubMed
Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22(3), 491517; discussion 518–19.CrossRefGoogle ScholarPubMed
DeYoung, C. G. (2006). Higher-order factors of the Big Five in a multi-informant sample. Journal of Personality and Social Psychology, 91(6), 1138–51. doi:10.1037/0022-3514.91.6.1138CrossRefGoogle Scholar
DeYoung, C. G., & Grazioplene, R. G. (2013). “They who dream by day”: parallels between openness to experience and dreaming. Behavioral and Brain Sciences, 36(6), 615; discussion 634–59. doi:10.1017/S0140525X13001283CrossRefGoogle ScholarPubMed
DeYoung, C. G., Hirsh, J. B., Shane, M. S., Papademetris, X., Rajeevan, N. et al. (2010). Testing predictions from personality neuroscience brain structure and the Big Five. Psychological Science, 21, 820–8.CrossRefGoogle ScholarPubMed
DeYoung, C. G., Peterson, J. B., & Higgins, D. M. (2002). Higher-order factors of the Big Five predict conformity: Are there neuroses of health? Personality and Individual Differences, 33(4), 533–52.CrossRefGoogle Scholar
DeYoung, C. G., Peterson, J. G., & Higgins, D. M. (2005). Sources of openness/intellect: cognitive and neuropsychological correlates of the fifth factor of personality. Journal of Personality, 73(4), 825–58.CrossRefGoogle ScholarPubMed
DeYoung, C. G., Quilty, L. C., & Peterson, J. B. (2007). Between facets and domains: 10 aspects of the Big Five. Journal of Personality and Social Psychology, 93(5), 880896.CrossRefGoogle ScholarPubMed
DeYoung, C. G., Shamosh, N. A., Green, A. E., Braver, T. S., & Gray, J. R. (2009). Intellect as distinct from openness: differences revealed by fMRI of working memory. Journal of Personality and Social Psychology, 97(5), 883–92. doi:10.1037/a0016615CrossRefGoogle ScholarPubMed
Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review, 11, 1011–26.CrossRefGoogle ScholarPubMed
Digman, J. M. (1997). Higher-order factors of the Big Five. Journal of Personality and Social Psychology, 73(6), 1246–56.CrossRefGoogle ScholarPubMed
Eysenck, H. J. (1990). Biological Dimensions of Personality. New York: Guilford Press.Google Scholar
Eysenck, H. J., & Eysenck, S. B. J. (1976). Psychoticism as a Dimension of Personality. London: Hodder & Stoughton.Google Scholar
Feist, G. J. (1998). A meta-analysis of personality in scientific and artistic creativity. Personality and Social Psychology Review, 2(4), 290309.CrossRefGoogle ScholarPubMed
Fox, K. C., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. Neuroimage, 111, 611–21. doi:10.1016/j.neuroimage.2015.02.039CrossRefGoogle ScholarPubMed
Friedman, S. D., Brooks, W. M., Jung, R. E., Chiulli, S. J., Sloan, J. H., et al. (1999). Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology, 52(7), 1384–91.Google ScholarPubMed
Friedman, S. D., Brooks, W. M., Jung, R. E., Hart, B. L., & Yeo, R. A. (1998). Proton MR spectroscopic findings correspond to neuropsychological function in traumatic brain injury. American Journal of Neuroradiology, 19(10), 1879–85.Google ScholarPubMed
Gasparovic, C., Bedrick, E. J., Mayer, A. R., Yeo, R. A., Chen, H., et al. (2010). Test-retest reliability and reproducibility of short-echo-time spectroscopic imaging of human brain at 3T. Magnetic Resonance in Medicine, 66(2), 324–32. doi:10.1002/mrm.22858Google Scholar
Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316–22.CrossRefGoogle ScholarPubMed
Green, A. E., Fugelsang, J. A., Kraemer, D. J., Shamosh, N. A., & Dunbar, K. N. (2006). Frontopolar cortex mediates abstract integration in analogy. Brain Research, 1096(1), 125–37. doi:10.1016/j.brainres.2006.04.024CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2010). Connecting long distance: semantic distance in analogical reasoning modulates frontopolar cortex activity. Cerebral Cortex, 20(1), 70–6. doi:10.1093/cercor/bhp081CrossRefGoogle ScholarPubMed
Grove, M., Pearce, E., & Dunbar, R. I. (2012). Fission-fusion and the evolution of hominin social systems. Journal of Human Evolution, 62(2), 191200. doi:10.1016/j.jhevol.2011.10.012CrossRefGoogle ScholarPubMed
Hirsh, J. B., Deyoung, C. G., & Peterson, J. B. (2009). Metatraits of the Big Five differentially predict engagement and restraint of behavior. Journal of Personality, 77(4), 10851102. doi:10.1111/j.1467-6494.2009.00575.xCrossRefGoogle ScholarPubMed
Ishizu, T., & Zeki, S. (2013). The brain’s specialized systems for aesthetic and perceptual judgment. European Journal of Neuroscience, 37(9), 1413–20. doi:10.1111/ejn.12135CrossRefGoogle ScholarPubMed
Jung, C. G. (1921). Psychologische Typen. Zurich: Rascher Verlag.Google Scholar
Jung, R. E. (2014). Evolution, creativity, intelligence, and madness: “Here Be Dragons”. Frontiers of Psychology, 5, 784. doi:10.3389/fpsyg.2014.00784CrossRefGoogle Scholar
Jung, R. E., Brooks, W. M., Chiulli, S. J., Weers, D. C., Yeo, R. A., et al. (1999a). The biochemical markers of intelligence and cognition in normal human brain. Journal of Cognitive Neuroscience, 1999, 61.Google Scholar
Jung, R. E., Brooks, W. M., Yeo, R. A., Chiulli, S. J., Weers, D. C., et al. (1999b). Biochemical markers of intelligence: a proton MR spectroscopy study of normal human brain. Proceedings of the Royal Society of London Series B: Biological Sciences, 266(1426), 1375–9.CrossRefGoogle ScholarPubMed
Jung, R. E., Chiulli, S. J., Yeo, R. A., & Brooks, W. M. (1999c). “Myths of neuropsychology”: intelligence and cognitive ability revisited. Archives of Clinical Neuropsychology, 14(8), 720–1.Google Scholar
Jung, R. E., Gasparovic, C., Chavez, R. S., Caprihan, A., Barrow, R., et al. (2009a). Imaging intelligence with proton magnetic resonance spectroscopy. Intelligence, 37(2), 192–8. doi: 10.1016/J.Intell.2008.10.009CrossRefGoogle ScholarPubMed
Jung, R. E., Gasparovic, C., Chavez, R. S., Flores, R. A., Smith, S. M., et al. (2009b). Biochemical support for the “threshold” theory of creativity: a magnetic resonance spectroscopy study. Journal of Neuroscience, 29(16), 5319–25. doi: 10.1523/Jneurosci.0588-09.2009CrossRefGoogle ScholarPubMed
Jung, R. E., Grazioplene, R., Caprihan, A., Chavez, R. S., & Haier, R. J. (2010a). White matter integrity, creativity, and psychopathology: disentangling constructs with diffusion tensor imaging. PloS ONE, 5(3), e9818. doi: 10.1371/journal.pone.0009818CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135. doi: 10.1017/S0140525x07001185.CrossRefGoogle ScholarPubMed
Jung, R. E., Haier, R. J., Yeo, R. A., Rowland, L. M., Petropoulos, H., et al. (2005). Sex differences in N-acetylaspartate correlates of general intelligence: an H-1-MRS study of normal human brain. Neuroimage, 26(3), 965–72. doi: 10.1016/J.Neuroimage.2005.02.039CrossRefGoogle Scholar
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 330. doi: 10.3389/Fnhum.2013.00330CrossRefGoogle ScholarPubMed
Jung, R. E., Segall, J. M., Bockholt, H. J., Flores, R. A., Smith, S. M., et al. (2010b). Neuroanatomy of creativity. Human Brain Mapping, 31(3), 398409. doi: 10.1002/Hbm.20874CrossRefGoogle ScholarPubMed
Jung, R. E., Yeo, R. A., Chiulli, S. J., Sibbitt, W. L., Weers, D. C., et al. (1999d). Biochemical markers of cognition: a proton MR spectroscopy study of normal human brain. Neuroreport, 10(16), 3327–31. doi: 10.1097/00001756-199911080-00014CrossRefGoogle ScholarPubMed
Jung, R. E., Yeo, R. A., Sibbitt, W. L., Ford, C. C., Hart, B. L., et al. (2001). Gerstmann syndrome in systemic lupus erythematosus: neuropsychological, neuroimaging and spectroscopic findings. Neurocase, 7(6), 515–21. doi: 10.1093/Neucas/7.6.515CrossRefGoogle ScholarPubMed
Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychonomic Bulletin and Review, 9(4), 637–71.CrossRefGoogle ScholarPubMed
Krain, A. L., Wilson, A. M., Arbuckle, R., Castellanos, F. X., & Milham, M. P. (2006). Distinct neural mechanisms of risk and ambiguity: a meta-analysis of decision-making. Neuroimage, 32(1), 477–84. doi:10.1016/j.neuroimage.2006.02.047CrossRefGoogle ScholarPubMed
Kugler, L., & Laub, M. (1971). “Puppet show” theta rhythm. Electroencephalography and Clinical Neurophysiology, 31, 532–3.Google Scholar
Le Bihan, D. (2003). Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews Neuroscience, 4, 469–80.CrossRefGoogle ScholarPubMed
Li, W., Li, X., Huang, L., Kong, X., Yang, W., et al. (2015). Brain structure links trait creativity to openness to experience. Social Cognitive and Affective Neuroscience, 10(2), 191–8. doi:10.1093/scan/nsu041CrossRefGoogle ScholarPubMed
Lu, H., Zou, Q., Gu, H., Raichle, M. E., Stein, E. A., et al. (2012). Rat brains also have a default mode network. Proceedings of the National Academy of Science of the United States of America, 109(10), 3979–84. doi:10.1073/pnas.1200506109Google ScholarPubMed
Maulsby, R. L. (1971). An illustration of emotionally evoked theta rhythm in infancy: hedonic hypersynchrony. Electroencephalography and Clinical Neurophysiology, 31(2), 157–65.CrossRefGoogle ScholarPubMed
McCrae, R. R., & Ingraham, L. J. (1987). Creativity, divergent thinking, and openness to experience. Journal of Personality and Social Psychology, 52(6), 1258–65.CrossRefGoogle Scholar
McCrae, R. R., & John, O. P. (1992). An introduction to the five-factor model and its applications. Journal of Personality, 60(2), 175215.CrossRefGoogle Scholar
McIntosh, A. M., Maniega, S. M., Lymer, G. K. S., McKirdy, J., Hall, J., et al. (2008). White matter tractography in bipolar disorder and schizophrenia. Biological Psychiatry, 64, 1088–92.CrossRefGoogle ScholarPubMed
Mellars, P. (2004). Neanderthals and the modern human colonization of Europe. Nature, 432(7016), 461–5. doi:10.1038/nature03103CrossRefGoogle ScholarPubMed
Mellars, P. (2006). Why did modern human populations disperse from Africa ca. 60,000 years ago? A new model. Proceedings of the National Academy of Science of the United States of America, 103(25), 9381–6. doi:10.1073/pnas.0510792103Google Scholar
Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., et al. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective and Behavioral Neuroscience, 12(2), 241–68. doi:10.3758/s13415-011-0083-5CrossRefGoogle ScholarPubMed
Patel, T., & Talcott, J. B. (2014). Moderate relationships between NAA and cognitive ability in healthy adults: implications for cognitive spectroscopy. Frontiers in Human Neuroscience, 8(39), 110.CrossRefGoogle ScholarPubMed
Popa, D., Popescu, A. T., & Pare, D. (2009). Contrasting activity profile of two distributed cortical networks as a function of attentional demands. Journal of Neuroscience, 29(4), 1191–201. doi:10.1523/JNEUROSCI.4867-08.2009CrossRefGoogle ScholarPubMed
Potts, R. (2002). Complexity and Adaptability in Human Evolution. In Moffat, M. G. a. A. S. (ed.), Probing Human Origins. Cambridge, MA: American Academy of Arts and Sciences.Google Scholar
Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1997). Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven’s Progressive Matrices Test. Cognitive Psychology, 33, 4363.CrossRefGoogle ScholarPubMed
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433–47.CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., et al. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–82.Google ScholarPubMed
Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443–7.CrossRefGoogle ScholarPubMed
Ross, A. J., & Sachdev, P. S. (2004). Magnetic resonance spectroscopy in cognitive research. Brain Research Reviews, 44, 83102.CrossRefGoogle ScholarPubMed
Rowland, L. M., Mullins, P. G., Jung, R. E., Lenroot, R., Lauriello, J., et al. (2003). Neurochemistry in chronic schizophrenia: a 4T-proton magnetic resonance spectroscopy study. Schizophrenia Research, 60(1), 245–55. doi: 10.1016/S0920-9964(03)81257-4CrossRefGoogle Scholar
Ryman, S. G., Gasparovic, C., Bedrick, E. J., Flores, R. A., Marshall, A. N., et al. (2011). Brain biochemistry and personality: a magnetic resonance spectroscopy study. PloS ONE, 6(11), e26758. doi: 10.1371/journal.pone.0026758CrossRefGoogle ScholarPubMed
Sampaio, A., Soares, J. M., Coutinho, J., Sousa, N., & Goncalves, O. F. (2014). The Big Five default brain: functional evidence. Brain Structure & Function, 219(6), 1913–22. doi:10.1007/s00429-013-0610-yCrossRefGoogle ScholarPubMed
Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., et al. (1997). Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9(5), 648–63. doi:10.1162/jocn.1997.9.5.648Google ScholarPubMed
Stafford, J. M., Jarrett, B. R., Miranda-Dominguez, O., Mills, B. D., Cain, N., et al. (2014). Large-scale topology and the default mode network in the mouse connectome. Proceedings of the National Academy of Sciences of the United States of America, 111(52), 18745–50. doi:10.1073/pnas.1404346111Google ScholarPubMed
Stawarczyk, D., & D’Argembeau, A. (2015). Neural correlates of personal goal processing during episodic future thinking and mind-wandering: an ALE meta-analysis. Human Brain Mapping, 36(8), 2928–47. doi:10.1002/hbm.22818CrossRefGoogle ScholarPubMed
Stough, C., Donaldson, C., Scarlata, B., & Ciorciari, J. (2001). Psychophysiological correlates of the NEO PI-R Openness, Agreeableness and Conscientiousness: preliminary results. International Journal of Psychophysiology, 41(1), 8791. doi:10.1016/S0167-8760(00)00176-8CrossRefGoogle ScholarPubMed
Sutin, A. R., Beason-Held, L. L., Resnick, S. M., & Costa, P. T. (2009). Sex differences in resting-state neural correlates of openness to experience among older adults. Cerebral Cortex, 19(12), 2797–802. doi:10.1093/cercor/bhp066CrossRefGoogle ScholarPubMed
Swick, D., & Turken, A. U. (2002). Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America, 99(25), 16354–9. doi:10.1073/pnas.252521499Google ScholarPubMed
Taki, Y., Thyreau, B., Kinomura, S., Sato, K., Goto, R., et al. (2013). A longitudinal study of the relationship between personality traits and the annual rate of volume changes in regional gray matter in healthy adults. Human Brain Mapping, 34(12), 3347–53. doi:10.1002/hbm.22145Google ScholarPubMed
Vessel, E. A., Starr, G. G., & Rubin, N. (2013). Art reaches within: aesthetic experience, the self and the default mode network. Frontiers of Neuroscience, 7, 258. doi:10.3389/fnins.2013.00258CrossRefGoogle ScholarPubMed
Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., et al. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447(7140), 83–6. doi:10.1038/nature05758CrossRefGoogle ScholarPubMed
Wren, C. D., Xue, J. Z., Costopoulos, A., & Burke, A. (2014). The role of spatial foresight in models of hominin dispersal. Journal of Human Evolution, 69, 70–8. doi:10.1016/j.jhevol.2014.02.004CrossRefGoogle ScholarPubMed
Wynn, T., & Coolidge, F. L. (2010). Beyond symbolism and language. Current Anthropology, 51(1), S5–16.CrossRefGoogle Scholar
Xu, J., & Potenza, M. N. (2012). White matter integrity and five-factor personality measures in healthy adults. Neuroimage, 59(1), 800–7. doi:10.1016/j.neuroimage.2011.07.040CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×