Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T06:34:22.307Z Has data issue: false hasContentIssue false

20 - Sexual Behavior in Neanderthals

from Part III - Nonhuman Primate Sexual Behavior

Published online by Cambridge University Press:  30 June 2022

Todd K. Shackelford
Affiliation:
Oakland University, Michigan
Get access

Summary

Improved clarity of Neanderthal ways of life brought about by advancements in analysing the fossil and archaeological records, accompanied by increased willingness to accept complex Neanderthal cognition, makes it appropriate to begin to understand their sexual behavior. In this chapter, we briefly review current understandings about Neanderthals based on anatomy, genetics, and behavior evidenced from the archaeological record. We then integrate this with broad behavioral ecology and evolutionary sexual selection concepts to consider potential selection pressures on Neanderthals’ sexual and reproductive behaviors. Large adult brain size, rapid infant brain growth, and protracted offspring development, similar to Homo sapiens, were supported by adaptations in social organization, mating and parental effort. It is likely that male provisioning and investment in offspring strengthened reproductive pair bonds, improved infant survival, and impacted mate choice in both sexes. Systematic collaborative subsistence strategies were probably matched by a heavy reliance on kin and other trusted adults within the cooperative breeding group, reducing the energy burden on reproducing females, and enabling shorter lactation and reduced interbirth intervals. Neanderthals’ wide ecological tolerances and behavioral flexibility suggest that they also adjusted their sexual and reproductive behavior according to environmental circumstances. Small group size, local-to-regional social networks and potentially seasonal breeding enabled populations to adapt to fluctuating energy availability. During harsher climatic phases, limited access to mating opportunities may have favored social monogamy, with genetic isolation and inbreeding more likely. When conditions were milder (during interglacials, in warmer regions or seasons) with more plentiful resources, group sizes and social networks may have permitted polygyny. Finally we explore the behavioral implications of genetic evidence that Neanderthals interbred with other hominins including H. sapiens. This suggests that differences in physical appearance and social structures did not prevent copulation or raising hybrid infants, although sterility and lower fitness of the latter may have limited the spread of genes between species.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, R. R. (2010). Phenotypic traits of primate hybrids: Recognizing admixture in the fossil record. Evolutionary Anthropology, 19, 258270.Google Scholar
Adler, D. S., & Bar-Oz, G. (2009). Seasonal patterns of prey acquisition and inter-group competition during the Middle and Upper Palaeolithic of the Southern Caucasus. In Hublin, J.-J. & Richards, M. (Eds.), The evolution of hominin diets (pp. 127140). New York: Springer.Google Scholar
Aiello, L., & Dunbar, R. I. M. (1993). Neocortex size, group size, and the evolution of language. Current Anthropology, 34(2), 184193.Google Scholar
Aiello, L. C., & Key, C. (2002). Energetic consequences of being a Homo erectus female. American Journal of Human Biology, 14, 551565.Google Scholar
Alvergne, A., Faurie, C., & Raymond, M. (2009). Variation in testosterone levels and male reproductive effort: Insight from a polygynous human population. Hormones and Behavior, 56, 491497.Google Scholar
Arsuaga, J. H., Carreteroc, J.-M., Lorenzod, C., Gómez-Olivenciaf, A., Pablosi, A., Rodríguez, L., … & Carbonell, E. (2015). Postcranial morphology of the middle Pleistocene humans from Sima de los Huesos, Spain. Proceedings of the National Academy of Sciences USA, 112(37), 1152411529.Google Scholar
Arsuaga, J. L., Villaverde, V., Quam, R., Martínez, I., Carretero, J. M., Lorenzo, C., & Gracia, A. (2007). New Neandertal remains from Cova Negra (Valencia, Spain). Journal of Human Evolution, 52(1), 3158.Google Scholar
Atkinson, E. G., Audesse, A. J., Palacios, J. A., Bobo, D. M., Webb, A. E., Ramachandran, S., & Henn, B. M. (2018). No evidence for recent selection at FOXP2 among diverse human populations. Cell, 174, 14241435.Google Scholar
Austin, C., Smith, T. M., Bradman, A., Hinde, K., Joannes-Boyau, R., Bishop, D., … & Arora, M. (2013). Barium distributions in teeth reveal early-life dietary transitions in primates. Nature, 498, 216219.Google Scholar
Balzeau, A., Turq, A., Talamo, S., Daujeard, C., Guérin, G., Welker, F., … & Gómez-Olivencia, A. (2020). Pluridisciplinary evidence for burial for the La Ferrassie 8 Neandertal child. Scientific Reports, 10(1), 110.CrossRefGoogle Scholar
Bartsiokas, A., & Arsuaga, J.-L. 2020. Hibernation in hominins from Atapuerca, Spain half a million years ago. L’Anthropologie, 124(5), 102797.CrossRefGoogle Scholar
Bermúdez de Castro, J. M., Martinón-Torres, M., Martínez de Pinillos, M., García-Campos, C., Modesto-Mata, M., Martín-Francés, L., & Arsuaga, J. L. (2019). Metric and morphological comparison between the Arago (France) and Atapuerca-Sima de los Huesos (Spain) dental samples, and the origin of Neanderthals. Quaternary Science Reviews, 217, 4561.CrossRefGoogle Scholar
Bermúdez de Castro, J. M., Martinón-Torres, M., Prado, L., Gómez-Robles, A., Rosell, J., López-Polín, L., … & Carbonell, E. (2010). New immature hominin fossil from European Lower Pleistocene shows the earliest evidence of a modern human dental development pattern. Proceedings of the National Academy of Sciences, USA, 107(26), 1173911744.CrossRefGoogle ScholarPubMed
Binford, L. R. (2001). Constructing frames of reference: An analytical method for archaeological theory building using hunter-gatherer and environmental data sets. Berkeley, CA: University of California Press.Google Scholar
Blasco, R. (2008). Human consumption of tortoises at Level IV of Bolomor Cave (Valencia, Spain). Journal of Archaeological Science, 35, 839284.CrossRefGoogle Scholar
Blasco, R., Finlayson, C., Rosell, J., Marco, A. S., Finlayson, S., Finlayson, G., … & Rodriguez, J. (2014). The earliest pigeon fanciers. Scientific Reports, 4, 5971.Google Scholar
Bocherens, H., Billiou, D., Mariotti, A., Toussaint, M., Patou-Mathis, M., Bonjean, D., & Otte, M. (2001). New isotopic evidence for dietary habits of Neandertals from Belgium. Journal of Human Evolution, 40, 497505.Google Scholar
Bogin, B. (2003). The human pattern of growth and development in paleontological perspective. In Thompson, J. H., Krovitz, G. E., & Nelson, A. J. (Eds.), Patterns of growth and development in the genus Homo (pp. 1544). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bourguignon, L., Sellami, F., Deloze, V., Sellier-Segard, N., Beyries, S., & Emery-Barbier, A. (2002). L’habitat moustérien de La Folie (Poitiers, Vienne): Synthèse des premiers résultats. Paléo, 14, 2948.CrossRefGoogle Scholar
Bribiescas, R. G. (2001). Reproductive ecology and life history of the human male. American Journal of Physical Anthropology, 33, 148176.Google Scholar
Bribiescas, R. G., Ellison, P. T., & Gray, P. B. (2012). Male life history, reproductive effort, and the evolution of the genus Homo. Current Anthropology, 53(6), S424S435.Google Scholar
Brindle, M., & Opie, C. (2016). Postcopulatory sexual selection influences baculum evolution in primates and carnivores. Proceedings of the Royal Society B, 283, 20161736.CrossRefGoogle ScholarPubMed
Burkart, J. M., Hrdy, S., & Schaik, C. (2009). Cooperative breeding and human cognitive evolution. Evolutionary Anthropology, 18, 175186.Google Scholar
Busk, G. (1861). Translation with comments on the crania of the most ancient races of man by D. Schaaffhausen. Natural History Review, 1, 155186.Google Scholar
Buss, D. M. (2016). The evolution of desire: Strategies of human mating (Revised Edition). New York: Basic Books.Google Scholar
Butovskaya, M. L., Lazebny, O. E., Vasilyev, V. A., Dronova, D. A., Karelin, D. V., Mabulla, A. Z. P., … & Ryskov, A. P. (2015). Androgen receptor gene polymorphism, aggression, and reproduction in Tanzanian foragers and pastoralists. PLOS ONE, 10(8), e0136208.Google Scholar
Cashdan, E. (2008). Waist to hip ratio across cultures: Trade offs between androgen and estrogen dependent traits. Current Anthropology, 49(6), 10991107.CrossRefGoogle Scholar
Caspari, R., & Lee, S. H. (2006). Is human longevity a consequence of cultural change or modern biology? American Journal of Physical Anthropology, 129, 512517.Google Scholar
Caspari, R., Rosenberg, K. R., & Wolpoff, M. H. (2017). Brother or other: The place of Neanderthals in human evolution. In Marom, A. and Hovers, E. (Eds.), Human paleontology and prehistory (pp. 253271). Cham: Springer.CrossRefGoogle Scholar
Chang, M. L., & Nowell, A. (2020). Conceiving of “Them” when before there was only “Us.” In Supernant, K., Baxter, J. E., Lyons, N., & Atalay, S. (Eds.), Archaeologies of the heart (pp. 205223). Cham: Springer.CrossRefGoogle Scholar
Chapais, B. (2013). Monogamy, strongly bonded groups, and the evolution of human social structure. Evolutionary Anthropology, 22, 5265.Google Scholar
Charnov, E. L., & Berrigan, D. (1993). Why do female primates have such long lifespans and so few babies? Or life in the slow lane. Evolutionary Anthropology, 1, 191194.CrossRefGoogle Scholar
Chase, P. G., & Dibble, H. I. (1987). Middle Paleolithic symbolism: A review of current evidence and interpretations. Journal of Anthropological Archaeology, 6(3), 263296.Google Scholar
Churchill, S. (2014). Thin on the ground: Neandertal biology, archaeology, and ecology. Oxford: Wiley Blackwell.Google Scholar
Churchill, S. E., & Rhodes, J. A. (2006). How strong were the Neandertals? Leverage and muscularity at the shoulder and elbow in Mousterian foragers. Periodicum Biologorum, 108(4), 457470.Google Scholar
Collard, M., Tarle, L., Sandgathe, D., & Allan, A. (2016). Faunal evidence for a difference in clothing use between Neanderthals and early modern humans in Europe. Journal of Anthropological Archaeology, 44, 235246.Google Scholar
Conde-Valverde, M., Martínez, I., Quam, R. M., Rosa, M., Velez, A. D., Lorenzo, C., … & Arsuaga, J. L. (2021). Neanderthals and Homo sapiens had similar auditory and speech capacities. Nature Ecology and Evolution, 5(5), 609615.Google Scholar
Curnoe, D., & Thorne, A. (2003). Number of ancestral human species: A molecular perspective. HOMO – Journal of Comparative Human Biology, 53, 201224.CrossRefGoogle ScholarPubMed
Curra, J. O. (2020). The relativity of deviance, 5th ed. California: Sage Publishing Ltd.Google Scholar
Dannemann, M. (2020). The population-specific impact of Neandertal introgression on human disease. Genome Biology and Evolution. doi:10.1093/gbe/evaa250CrossRefGoogle Scholar
Darwin, C. (1871). The descent of man and selection in relation to sex. London: John Murray.Google Scholar
Davies, R., & Underdown, S. (2006). The Neanderthals: A social synthesis. Cambridge Archaeological Journal, 16, 145164.CrossRefGoogle Scholar
DeBruine, L. M., Jones, B. C., Crawford, J. R., Welling, L. L., & Little, A. C. (2010). The health of a nation predicts their mate preferences: Cross-cultural variation in women’s preferences for masculinized male faces. Proceedings of the Royal Society of London B, 277(1692), 24052410.Google Scholar
Dediu, D., & Levinson, S. C. (2018). Neanderthal language revisited: Not only us. Current Opinion in Behavioral Sciences, 21, 4955.Google Scholar
Degano, I., Soriano, S., Villa, P., Pollarolo, L., Lucejko, J. J., Jacobs, Z., … & Tozzi, C. (2019). Hafting of Middle Paleolithic tools in Latium (central Italy): New data from Fossellone and Sant’Agostino caves. PLOS ONE, 14, 129.Google Scholar
Degioanni, A., Bonenfant, C., Cabut, S., & Condemi, S. (2019). Living on the edge: Was demographic weakness the cause of Neanderthal demise? PLOS ONE, 14(5), e0216742.CrossRefGoogle ScholarPubMed
Demuru, E., Ferrari, P. F., & Palagi, E. (2018). Is birth attendance a uniquely human feature? New evidence suggests that Bonobo females protect and support the parturient. Evolution and Human Behavior, 39, 502510.CrossRefGoogle Scholar
Dennell, R. W., Martinón-Torres, M., & Bermúdez de Castro, J. M. (2011). Hominin variability, climatic instability and population demography in Middle Pleistocene Europe. Quaternary Science Reviews, 30(11–12), 15111524.Google Scholar
DeSilva, J. M. (2011). A shift toward birthing relatively large infants early in human evolution. Proceedings of the National Academy of Science, USA, 108(3), 10221027.Google Scholar
Devièse, T., Abrams, G., Hajdinjak, M., Pirson, S., De Groote, I., Di Modica, , K., … & Higham, , T. (2021). Reevaluating the timing of Neanderthal disappearance in Northwest Europe. Proceedings of the National Academy of Sciences USA, 118(12), e2022466118.CrossRefGoogle ScholarPubMed
Dixson, A. F. (2009). Sexual selection and the origins of human mating systems. Oxford: Oxford Biology.Google Scholar
Dunsworth, H., & Eccleston, L. (2015). The evolution of difficult childbirth and helpless hominin infants. Annual Review of Anthropology, 44, 5569.Google Scholar
Dunsworth, H. M., Warrener, A. G., Deacon, T., Ellison, P. T., & Pontzer, H. (2012). Metabolic hypothesis for human altriciality. Proceedings of the National Academy of Sciences, USA, 109(38), 1521215216.Google Scholar
Ellison, P. T., Valeggia, C. R., & Sherry, D. S. (2005). Human birth seasonality. In Brockman, D. K. & van Schaik, C. P. (Eds.), Seasonality in primates: Studies of living and extinct human and non-human primates (pp. 379399). Cambridge: Cambridge University Press.Google Scholar
El Zaatari, S., Grine, F. E., Ungar, P. S., & Hublin, J. J. (2016). Neandertal versus modern human dietary responses to climatic fluctuations. PLOS ONE, 11, e0153277.Google Scholar
Emlen, S. T., & Oring, L. W. (1977). Ecology, sexual selection, and the evolution of mating systems. Science, 197, 215223.Google Scholar
Enard, D., & Petrov, D. A. (2018). Evidence that RNA viruses drove adaptive introgression between Neanderthals and modern humans. Cell, 175, 360371.Google Scholar
Estalrrich, A., & Rosas, A. (2015). Division of labor by sex and age in Neandertals: An approach through the study of activity-related dental wear. Journal of Human Evolution, 80, 5163.Google Scholar
Falk, D. (2004). Prelinguistic evolution in early hominins: Whence motherese? Behavioral and Brain Sciences, 27(4), 491503.Google Scholar
Fareed, M., & Afzal, M. (2017). Genetics of consanguinity and inbreeding in health and disease. Annals of Human Biology, 44(2), 99107.Google Scholar
Finlayson, C., Brown, K., Blasco, R., Rosell, J., Negro, J. J., Bortolotti, G. R., … & Rodrígues Llanes, J. M. (2012). Birds of a feather: Neanderthal exploitation of raptors and corvids. PLOS ONE, 7(9), e45927.CrossRefGoogle ScholarPubMed
Fitch, W. T. (2006). The biology and evolution of music: a comparative perspective. Cognition, 100(1), 173215.Google Scholar
Froehle, A., Yokley, T. R., & Churchill, S. (2013). Energetics and the origin of modern humans. In Smith, F. H. & Ahern, J. C. M. (Eds.), The origins of modern humans: Biology reconsidered (pp. 285320). Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
Fu, Q., Hajdinjak, M., Moldovan, O. T., Constantin, S., Mallick, S., Skoglund, P., … & Pääbo, S. (2015). An early modern human from Romania with a recent Neanderthal ancestor. Nature, 524, 216219.Google Scholar
Fuhlrott, C. J. (1859). Menschliche Ueberreste aus einer Felsengrotte des Düsselthals. Ein Beitrag zur Frage über die Existenz fossiler Menschen. Verhandlungen des Nationales Verein des Preusisches Rheinlandisches und Westfalens, 16, 131153.Google Scholar
Galway-Witham, J., Cole, J., & Stringer, C. (2019). Aspects of human physical and behavioural evolution during the last 1 million years. Journal of Quaternary Science, 34, 355378.CrossRefGoogle Scholar
García-Campos, C., Modesto-Mata, M., Martinón-Torres, M., Martínez de Pinillos, M., Martín-Francés, L., Arsuaga, J. L., & Bermúdez de Castro, J. M. (2020). Sexual dimorphism of the enamel and dentine dimensions of the permanent canines of the Middle Pleistocene hominins from Sima de los Huesos (Burgos, Spain). Journal of Human Evolution, 144, 102793.CrossRefGoogle Scholar
García-Martínez, D., Bastir, M., Gómez-Olivencia, A., Maureille, B., Golovanova, L., Doronichev, V., … & Heuzé, Y. (2020). Early development of the Neanderthal ribcage reveals a different body shape at birth compared to modern humans. Science Advances, 6(41), eabb4377.Google Scholar
Garrigan, D., & Kingan, S. B. (2007). Archaic human admixture: A view from the genome. Current Anthropology, 48, 895902.Google Scholar
Gómez-Olivencia, A., Barash, A., García-Martínez, D., Arlegi, M., Kramer, P., Bastir, M., & Been, E. (2018). 3D virtual reconstruction of the Kebara 2 Neandertal thorax. Nature Communications, 9, 4387.Google Scholar
Gómez-Robles, A. (2019). Dental evolutionary rates and its implications for the Neanderthal–modern human divergence. Science Advances, 5(5), eaaw1268.Google Scholar
Goodman, M., Griffin, P. B., Estioko-Griffin, A., & Grove, J. (1985). The compatibility of hunting and mothering among the Agta hunter-gatherers of the Philippines. Sex Roles, 12, 11991209.Google Scholar
Gray, P. B. (2013). Evolution and human sexuality. Yearbook of Physical Anthropology, 152(S57), 94118.Google Scholar
Gray, P. B., Straftis, A. A., Bird, B. M., McHale, T. S., & Zilioli, S. (2019). Human reproductive behavior, life history, and the Challenge Hypothesis: A 30-year review, retrospective and future directions. Hormones and Behavior, 123, 104530.Google Scholar
Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., … & Pääbo, S. (2010). A draft sequence of the Neandertal genome. Science, 328, 710722.Google Scholar
Grove, M., Pearce, E., & Dunbar, R. I. M. (2012). Fission-fusion and the evolution of hominin social systems. Journal of Human Evolution, 62, 191200.Google Scholar
Guatelli‐Steinberg, D. (2009). Recent studies of dental development in Neandertals: Implications for Neandertal life histories. Evolutionary Anthropology, 18, 920.Google Scholar
Gunz, P., Neubauer, S., Maureille, B., & Hublin, J. J. (2010). Brain development after birth differs between Neanderthals and modern humans. Current Biology, 20(21), R921R922.Google Scholar
Haas, R., Watson, J., Buonasera, T., Southon, J., Chen, J. C., Noe, S., … & Parker, G. (2020). Female hunters of the early Americas. Science Advances, 6(45), eabd0310.Google Scholar
Hagen, E. H., & Hammerstein, P. (2009). Did Neanderthals and other early humans sing? Seeking the biological roots of music in the territorial advertisements of primates, lions, hyenas, and wolves. Musicae Scientiae, 13(2), 291320.Google Scholar
Haldane, J. B. S. (1922). Sex ratio and unisexual sterility in hybrid animals. Journal of Genetics, 7, 101109.Google Scholar
Hardy, K., Buckley, S., Collins, M. J., Estalrrich, A., Brothwell, D., Copeland, L., … & Rosas, A. (2012). Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften, 99, 617626.CrossRefGoogle ScholarPubMed
Hardy, B. L., Moncel, M. H., Kerfant, C., Lebon, M., Bellot-Gurlet, L., & Mélard, N. (2020). Direct evidence of Neanderthal fibre technology and its cognitive and behavioral implications. Scientific Reports, 10, 4889.Google Scholar
Hare, B. (2017). Survival of the friendliest: Homo sapiens evolved via selection for prosociality. Annual Psychological Review, 68, 155186.Google Scholar
Harpending, H., & Bertam, J. (1975). Human population dynamics in archaeological time: Some simple models. Memoirs of the Society for American Archaeology, 30, 8291.Google Scholar
Harris, K., & Nielsen, R. (2016). The genetic cost of Neanderthal introgression. Genetics, 203, 881891.CrossRefGoogle ScholarPubMed
Harvati, K., & Harrison, T. (2008). Neanderthals revisited. In Harvati, K. & Harrison, T. (Eds.), Neanderthals revisited: New approaches and perspectives (pp. 17). Dordrecht: Springer.Google Scholar
Harvey, P. H., & Clutton-Brock, T. H. (1985). Life history variation in primates. Evolution, 39, 559581.Google Scholar
Hawkes, K. (2014). Primate sociality to human cooperation. Why us and not them? Human Nature, 25, 2848.Google Scholar
Hawkes, K., O’Connell, J., & Blurton Jones, N. (1997). Hadza women’s time allocation, offspring provisioning, and the evolution of long postmenopausal life spans. Current Anthropology, 38(4), 551577.Google Scholar
Hawkes, K., O’Connell, J. J., Blurton Jones, N. G., Alvarez, H., & Charnov, E. L. (1998). Grandmothering, menopause, and the evolution of human life histories. Proceedings of the National Academy of Sciences, USA, 95, 13361339.Google Scholar
Hayden, B. (2012). Neanderthal social structure. Oxford Journal of Archaeology, 31(1), 126.Google Scholar
Hey, J. (2009). The divergence of chimpanzee species and subspecies as revealed in multipopulation isolation-with-migration analyses. Molecular Biology and Evolution, 27, 921933.Google Scholar
Hewlett, B. S., & Winn, S. (2014). Allomaternal nursing in humans. Current Anthropology, 55(2), 200229.Google Scholar
Higham, T., Douka, K., Wood, R., Ramsey, C. B., Brock, F., Basell, L., … & Jacobi, R. (2014). The timing and spatiotemporal patterning of Neanderthal disappearance. Nature, 512, 306309.Google Scholar
Hobaiter, C., & Byrne, R. W. (2014). The meanings of chimpanzee gestures. Current Biology, 24(14), 15961600.Google Scholar
Hockett, B. (2012). The consequences of Middle Paleolithic diets on pregnant Neanderthal women. Quaternary International, 264, 7882.Google Scholar
Hoffecker, J. F., & Cleghorn, N. (2000). Mousterian hunting patterns in the Northwestern Caucasus and the ecology of the Neanderthals. International Journal of Osteoarchaeology, 10, 368378.Google Scholar
Hoffmann, D., Angelucci, D. E., Villaverde, V., Zapata, J., & Zilhão, J. (2018). Symbolic use of marine shells and mineral pigments by Iberian Neandertals 115,000 years ago. Science Advances, 2, eaar5255.Google Scholar
Holliday, T. W. (1997). Postcranial evidence of cold adaptation in European Neandertals. American Journal of Physical Anthropology, 104, 245258.Google Scholar
Holliday, T. W. (2008). Neanderthals and modern humans: An example of a mammalian syngameon? In Harvati, K. & Harrison, T. (Eds.), Neanderthals revisited: New approaches and perspectives (pp. 281297). Dordrecht: Springer.Google Scholar
Hopkinson, T., Nowell, A., & White, M. (2013). Life histories, metapopulation ecology, and innovation in the Acheulian. PaleoAnthropology, 2013, 61−76.Google Scholar
Houldcroft, C. J., & Underdown, S. J. (2016). Neanderthal genomics suggests a Pleistocene time frame for the first epidemiologic transition. American Journal of Physical Anthropology, 160, 379388.Google Scholar
Hrdy, S. B. (2009). Mothers and others: The evolutionary origins of mutual understanding. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
Hublin, J. J., Neubauer, S., & Gunz, P. (2015). Brain ontogeny and life history in Pleistocene hominins. Philosophical Transactions of the Royal Society of London. Series B, 370, 20140062.Google Scholar
Isler, K., & van Schaik, C. P. (2009). The expensive brain: A framework for explaining evolutionary changes in brain size. Journal of Human Evolution, 57(4), 392400.Google Scholar
Isler, K., & van Schaik, C. P. (2012). How our ancestors broke through the gray ceiling: Comparative evidence for cooperative breeding in early Homo. Current Anthropology, 53, S453S465.CrossRefGoogle Scholar
Jackson, K. M., & Nazar, A. M. (2006). Breastfeeding, the immune response, and long-term health. Journal of the American Osteopathic Association, 106, 203207.Google Scholar
Johansson, S. (2015). Language abilities in Neanderthals. Annual Review of Linguistics, 1, 311332.Google Scholar
Kaplan, H., Hill, K., Lancaster, J., & Hurtado, A. M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology, 9, 156185.Google Scholar
Kennair, L. E. O., Grontvedt, M. B., & Amundsen, T. (2017). In Shackelford, T. K. & Weekes-Shackelford, V. A. (Eds.), Encyclopaedia of evolutionary psychological science (pp. 113). Cham: Springer Nature.Google Scholar
Kennedy, G. (2003). Palaeolithic grandmothers? Life history theory and early Homo. Journal of the Royal Anthropological Institute, 9, 549572.Google Scholar
Kennedy, G. E. (2005). From the ape’s dilemma to the weanling’s dilemma: Early weaning and its evolutionary context. Journal of Human Evolution, 48 (2), 123145.CrossRefGoogle Scholar
King, W. (1864). The reputed fossil man of the Neanderthal. Quarterly Journal of Science, 1, 8897.Google Scholar
Koenig, A., & Borries, C. (2012). Hominoid dispersal patterns and human evolution. Evolutionary Anthropology, 21(3), 108112.Google Scholar
Kolobova, K. A., Roberts, R. G., Chabai, B. B., Jacobs, Z., Krajcarz, M. T., Shalagina, A. V., … & Derevianko, A. P. (2020). Archaeological evidence for two separate dispersals of Neanderthals into southern Siberia. Proceedings of the National Academy of Sciences, USA, 117(6), 28792885.Google Scholar
Konner, M. (2010). The evolution of childhood: Relationships, emotion, mind. Cambridge, MA: Belknap Press.Google Scholar
Kramer, K. L. (2014). Why what juveniles do matters in the evolution of cooperative breeding. Human Nature, 25, 4965.Google Scholar
Kramer, K. L., Schacht, R., & Bell, A. (2017). Adult sex ratios and partner scarcity among hunter–gatherers: Implications for dispersal patterns and the evolution of human sociality. Philosophical Transactions of the Royal Society. Series B, 372, 20160316.Google Scholar
Krause, J., Lalueza-Fox, C., Orlando, L., Enard, W., Green, R. E., Burbano, H. A., … & Pääbo, S. (2007). The derived FOXP2 variant of modern humans was shared with Neandertals. Current Biology, 17, 19081912.Google Scholar
Kubicka, A. M., Nowaczewska, W., Balzeau, A., & Piontek, J. (2018). Bilateral asymmetry of the humerus in Neandertals, Australian aborigines and medieval humans. American Journal of Physical Anthropology, 167(1), 4660.Google Scholar
Kuhlwilm, M., & Boeckx, C. (2019). A catalog of single nucleotide changes distinguishing modern humans from archaic hominins. Scientific Reports, 9, 8463.Google Scholar
Kuhlwilm, M., Gronau, I., Hubisz, M. J., De Filippo, C., Prado-Martinez, J., Kircher, M., … & Castellano, S. (2016). Ancient gene flow from early modern humans into Eastern Neanderthals. Nature, 530, 429433.Google Scholar
Kuhn, S. L., & Stiner, M. C. (2006). What’s a mother to do? The division of labor among Neandertals and modern humans in Eurasia. Current Anthropology, 47, 953980.Google Scholar
Kuzawa, C. W., & Bragg, J. M. (2012). Plasticity in human life history strategy implications for contemporary human variation and the evolution of genus Homo. Current Anthropology, 53(6), S369S382.Google Scholar
Lalueza-Fox, C., Rosas, A., Estalrrich, A., Gigli, E., Campos, P. F., García-Tabernero, A., … & de la Rasilla, M. (2011). Genetic evidence for patrilocal mating behavior among Neandertal groups. Proceedings of the National Academy of Sciences USA, 108, 250253.Google Scholar
Launay, J., Tarr, B., & Dunbar, R. I. M. (2016). Synchrony as an adaptive mechanism for large‐scale human social bonding. Ethology, 122, 779789.Google Scholar
Lee, P. C. (2012). Growth and investment in hominin life history evolution: Patterns, processes, and outcomes. International Journal of Primatology, 6, 13091331.Google Scholar
Li, Y. P., Zhong, T., Huang, Z. P., Pan, R. L., Garber, P. A., Yu, F.-Q., & Xiao, W. (2020). Male and female birth attendance and assistance in a species of non-human primate (Rhinopithecus bieti). Behaviour Processes, 181, 104248.Google Scholar
Locke, J. L., & Bogin, B. (2006). Language and life history: A new perspective on the development and evolution of human language. Behavior and Brain Sciences, 29(3), 259280.Google Scholar
Lonsdorf, E. V., Wilson, M. L., Boehm, E., Delaney-Soesman, J., Grebey, T., Murray, C., … & Pusey, A. E. (2020). Why chimpanzees carry dead infants: an empirical assessment of existing hypotheses. Royal Society Open Science, 7, 200931.Google Scholar
Low, B. S. (2006). Ecological and sociocultural influences on mating and marriage systems. In Dunbar, R. & Barrett, L. (Eds.), The Oxford handbook of evolutionary psychology. Oxford: Oxford University Press.Google Scholar
Machado, J., Hernandez, C. M., Mallol, C., & Galvan, B. (2013). Lithic production, site formation and Middle Palaeolithic palimpsest analysis: In search of human occupation episodes at Abric del Pastor, Stratigraphic Unit IV (Alicante, Spain). Journal of Archaeological Science, 40, 22542273.Google Scholar
Maclarnon, A., & Hewitt, G. (2004). Increased breathing control: Another factor in the evolution of human language. Evolutionary Anthropology, 13, 181197.Google Scholar
Maner, J. K., & Ackerman, J. M. (2020). Ecological sex ratios and human mating. Trends in Cognitive Sciences, 24(2), 98100.Google Scholar
Manning, J. T. (2002). Digit ratio: A pointer to fertility behavior and health. New Brunswick: Rutgers University Press.Google Scholar
Marlowe, F. W. (2004). Mate preferences among Hadza hunter-gatherers. Human Nature, 15(4), 365376.Google Scholar
Marlowe, F. W. (2005). Hunter-gatherers and human evolution. Evolutionary Anthropology, 14, 5467.Google Scholar
Marlowe, F. W., & Wetsman, A. (2000). Preferred waist-to-hip ratio and ecology. Personality and Individual Differences, 3, 481489.Google Scholar
Marshall-Pescini, S., Cafazzo, S., Virányi, Z., & Range, F. (2017). Integrating social ecology in explanations of wolf–dog behavioral differences. Current Opinion in Behavioral Sciences, 16, 8086.Google Scholar
Martin, R. D. (1996). Scaling of the mammalian brain: The maternal energy hypothesis. Physiology, 11(4), 149156.Google Scholar
Martín-González, J. A., Mateos, A., Goikoetxea, I., Leonard, W. R., & Rodríguez, J. (2012). Differences between Neandertal and modern human infant and child growth models. Journal of Human Evolution, 63, 140149.Google Scholar
Mateos, A., Goikoetxea, I., Leonard, W. R., Martín-González, J. Á., Rodríguez-Gómez, G., & Rodríguez, J. (2014). Neandertal growth: What are the costs? Journal of Human Evolution, 77, 167178.CrossRefGoogle ScholarPubMed
Mazza, P., Martini, F., Sala, B., Magi, M., Colombini, M. P., Giachi, G., … & Ribechini, E. (2006). A new Palaeolithic discovery: Tar-hafted stone tools in a European Mid-Pleistocene bone-bearing bed. Journal of Archaeological Science, 33, 13101318.Google Scholar
McGrath, K., Limmer, L. S., Lockey, A. L., Guatelli-Steinberg, D., Reid, D. J., Witzel, C., & El Zaatari, S. (2021). 3D enamel profilometry reveals faster growth but similar stress severity in Neanderthal versus Homo sapiens teeth. Scientific Reports, 11, 522.Google Scholar
McLean, C. V. Y., Reno, P. L., Pollen, A. A., Bassan, A. I., Capellini, T. D., Guenther, C., … & Kingsley, D. M. (2011). Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature, 471, 216219.Google Scholar
Meyer, M., Arsuaga, J. L., De Filippo, C., Nagel, S., Aximu-Petri, A., Nickel, B., … & Pääbo, S. (2016). Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature, 531, 504507.Google Scholar
Miller, G. F. (1998). How mate choice shaped human nature: A review of sexual selection and human evolution. In Crawford, C. and Krebs, D. (Eds.), Handbook of evolutionary psychology: Ideas, issues, and applications (pp. 87130). New Jersey: Lawrence Erlbaum.Google Scholar
Mithen, S. (2007). The singing Neanderthals. The origins of music, language, mind and body (pp. 374). London: Weidenfeld & Nicholson.Google Scholar
Miyagawa, S., Lesure, C., & Nóbrega, V. A. (2018). Cross-modality information transfer: A hypothesis about the relationship among prehistoric cave paintings, symbolic thinking, and the emergence of language. Frontiers in Psychology, 20(9),115.Google Scholar
Mussi, M. (2007). Women of the middle latitudes: the earliest peopling of Europe from a female perspective. In Roebroeks, W. (Ed.), Guts and brains: An integrative approach to the hominin record (pp. 165184). Leiden: Leiden University Press.Google Scholar
Nava, A., Lugli, F., Romandini, M., Badino, F., Evans, D., Helbling, A. H., … & Benazzi, S. (2020). Early life of Neanderthals. Proceedings of the National Academy of Sciences, USA, 117(46), 2871928726.Google Scholar
Nelson, E., Rolian, C., Cashmore, L., & Shultz, S. (2011). Digit ratios predict polygyny in early apes, Ardipithecus, Neanderthals and early Modern Humans but not in Australopithecus. Proceedings of the Royal Society B, 278, 15561563.Google Scholar
Niekus, M. J. L. T., Kozowyk, P. R. B., Langejans, G. H. J., Ngan-Tillard, D., van Keulen, H., van der Plicht, J., … & Dusseldorp, G. L. (2019). Middle Paleolithic complex technology and a Neandertal tar-backed tool from the Dutch North Sea. Proceedings of the National Academy of Sciences USA, 116(44), 2208122087.CrossRefGoogle Scholar
Nosil, P. (2012). Ecological speciation. Oxford: Oxford University Press.Google Scholar
Nowell, A. (2013). Cognition, behavioral modernity and the archaeological record of the Middle and Early Upper Paleolithic. In Hatfield, G. and Pittman, H. (Eds.), The evolution of mind, brain, and culture (pp. 236262). Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology Press.Google Scholar
Nowell, A. (2018). Paleolithic soundscapes and the emotional resonance of nighttime. In Gonlin, N. & Nowell, A. (Eds.), Archaeology of the night (pp. 2744). Boulder, CO: University Press of Colorado.Google Scholar
Nowell, A. (2021). Growing up in the Ice Age: Fossil and archaeological evidence of the lived lives of Plio-Pleistocene children. Oxford, Oxbow Books.Google Scholar
Nowell, A., & Kurki, H. (2020). Moving beyond the obstetrical dilemma hypothesis: Birth, weaning and infant care in the Plio-Pleistocene . In Gowland, R. & Halcrow, S. (Eds.), The mother–infant nexus in anthropology, bioarchaeology and social theory (pp. 173190). Cham: Springer Nature.Google Scholar
Opie, C., Atkinson, Q. D., Dunbar, R. I., & Shultz, S. (2013). Male infanticide leads to social monogamy in primates. Proceedings of the National Academy of Sciences USA, 110(33), 1332813332.Google Scholar
Overmann, K. A., & Coolidge, F. L. (2013). Human species and mating systems: Neandertal-Homo sapiens reproductive isolation and the archaeological and fossil records. Journal of Anthropological Sciences, 91, 91110.Google Scholar
Palmquist, A. (2020). Cooperative lactation and the mother infant nexus. In Gowland, R. & Halcrow, S. (Eds.), The mother infant nexus in anthropology: Small beginnings, significant outcomes. (pp. 125144). Cham: Springer.Google Scholar
Pearce, E., & Moutsiou, T. (2014). Using obsidian transfer distances to explore social network maintenance in late Pleistocene hunter-gatherers. Journal of Anthropological Archaeology, 36, 1220.Google Scholar
Pearce, E., Stringer, C., & Dunbar, R. I. M. (2013). New insights into differences in brain organization between Neanderthals and anatomically modern humans. Proceedings of the Royal Society B, 280(1758), 20130168.Google Scholar
Pearce, E., Wlodarski, R., Machin, A., & Dunbar, R. I. M. (2017). Variation in the β-endorphin, oxytocin, and dopamine receptor genes is associated with different dimensions of human sociality. Proceedings of the National Academy of Sciences USA, 114(20), 53005305.Google Scholar
Peresani, M., Vanhaeren, M., Quaggiotto, E., Queffelec, A., & D’Errico, F. (2013). An ochered fossil marine shell from the Mousterian of Fumane Cave, Italy. PLOS ONE, 8, e68572.Google Scholar
Peretz, I. (2009). Music, language and modularity framed in action. Psychologica Belgica, 49(2–3), 157175.Google Scholar
Petr, M., Hajdinjak, M., Fu, Q., Essel, E., Rougier, H., Crevecoeur, I., … & Kelso, J., (2020). The evolutionary history of Neanderthal and Denisovan Y chromosomes. Science, 369, 16531656.Google Scholar
Pham, M. N., & Shackelford, T. K. (2015). Sperm competition and the evolution of human sexuality. In Shackelford, T. K. & Hansen, R. D. (Eds.), The evolution of sexuality, evolutionary psychology (pp. 257275). Cham: Springer International Publishing.Google Scholar
Pimenoff, V. N., Mendes de Oliveira, C., & Bravo, I. G. (2016). Transmission between archaic and modern human ancestors during the evolution of the oncogenic human papillomavirus 16. Molecular Biology and Evolution, 34(1), 419.CrossRefGoogle ScholarPubMed
Plavcan, M. J. (2012). Sexual size dimorphism, canine dimorphism, and male–male competition in primates. Where do humans fit in? Human Nature, 23, 4567.Google Scholar
Plavcan, M. J., & van Schaik, C. P. (1997). Interpreting hominid behavior on the basis of sexual dimorphism. Journal of Human Evolution, 32, 345374.Google Scholar
Pomeroy, E., Bennett, P., Hunt, C., Reynolds, T., Farr, L., Frouin, M., … & Barker, G. (2020). New Neanderthal remains associated with the ‘flower burial’ at Shanidar Cave. Antiquity, 94(373), 1126.Google Scholar
Ponce de León, M. S., Bienvenu, T., Akazawa, T., & Zollikofer, C. P. E. (2016). Brain development is similar in Neanderthals and modern humans. Current Biology, 26, R665R666.Google Scholar
Ponce de León, M. S., Golovanova, L., Doronichev, V., Romanova, G., Akazawa, T., Kondo, O., … & Zollikofer, C. P. E. (2008). Neanderthal brain size at birth provides insights into the evolution of human life history. Proceedings of the National Academy of Sciences, USA, 105(37), 1376413768.Google Scholar
Portmann, A. (1990; 1969). A Zoologist Looks at Humankind. Translated, Schaefer, J.. New York: Columbia University Press (from German).Google Scholar
Power, C., Sommer, V., & Watts, I. (2013). The seasonality thermostat: Female reproductive synchrony and male behavior in monkeys, Neanderthals, and modern humans. PaleoAnthropology, 2013, 3360.Google Scholar
Prüfer, K., de Filippo, C., Grote, S., Mafessoni, F., Korlević, P., Hajdinjak, M., … & Pääbo, S. (2017). A high-coverage Neandertal genome from Vindija Cave in Croatia. Science, 358(6363), 655658.Google Scholar
Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., … & Pääbo, S. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505, 4349.Google Scholar
Puts, D. A. (2010). Beauty and the beast: Mechanisms of sexual selection in humans. Evolution and Human Behavior, 31, 157175.Google Scholar
Pussey, A. (2001). The genes of apes: Chimpanzee social organisation and reproduction. In de Waal, F. B. M (Ed.), The tree of origin: What primate behaviour can tell us about human social evolution (pp. 938). Cambridge, MA: Harvard University Press.Google Scholar
Radovčić, D., Birarda, G., Vaccari, L., Sršen, A. O. Radovčić, J., & Frayer, D. W. (2020). Surface analysis of an eagle talon from Krapina. Nature: Scientific Reports, 10, 6329.Google Scholar
Ramirez Rozzi, F. V., & Bermúdez de Castro, J. M. (2004). Surprisingly rapid growth in Neanderthals. Nature, 428(6986), 936939.Google Scholar
Refinetti, R. (2005). Time for sex: Nycthemeral distribution of human sexual behavior. Journal of Circadian Rhythms, 3(1), 4.Google Scholar
Richards, M. P., & Trinkaus, E. (2009). Out of Africa: Modern human origins special feature: isotopic evidence for the diets of European Neanderthals and early modern humans. Proceedings of the National Academy of Sciences, USA, 106(38), 1603416039.Google Scholar
Ríos, L., Kivell, T. L., Lalueza-Fox, C., Estalrrich, A., García-Tabernero, A., Huguet, R., … & Rosas, A. (2019). Skeletal anomalies in the Neandertal Family of El Sidrón (Spain) support a role of inbreeding in Neandertal extinction. Scientific Reports, 9, 1697.Google Scholar
Roebroeks, W., & Soressi, M. (2016). Neandertals revised. Proceedings of the National Academy of Sciences, USA, 113, 63726379.Google Scholar
Rogers, A. R., Harris, N. S., & Achenbach, A. A. (2020). Neanderthal-Denisovan ancestors interbred with a distantly related hominin. Science Advances, 6, eaay5483.Google Scholar
Roney, J. R., Hanson, K. N., Durante, K. M., & Maestripieri, D. (2006). Reading men’s faces: Women’s mate attractiveness judgments track men’s testosterone and interest in infants. Proceedings of the Royal Society B, 273(1598), 21692175.Google Scholar
Roney, J. R., Simmons, Z. L., & Lukaszewski, A. W. (2010). Androgen receptor gene sequence and basal cortisol concentrations predict men’s hormonal responses to potential mates. Proceedings of the Royal Society B, 277(1678), 5763.Google Scholar
Rosas, A., Martínez-Maza, C., Bastir, M., García-Tabernero, A., Lalueza-Fox, C., Huguet, R., … & Fortea, J. (2006). Paleobiology and comparative morphology of a late Neandertal sample from El Sidrón, Asturias, Spain. Proceedings of the National Academy of Sciences, USA, 103(51), 1926619271.Google Scholar
Rosas, A., Ríos, L., Estalrrich, A., Liversidge, H., García-Tabernero, A., Huguet, R., … & Dean, C. (2017). The growth pattern of Neandertals, reconstructed from a juvenile skeleton from El Sidrón (Spain). Science, 357(6357), 12821287.Google Scholar
Rosenberg, K., & Trevathan, W. (1995). Bipedalism and human birth: The obstetrical dilemma revisited. Evolutionary Anthropology, 4, 161168.Google Scholar
Ruff, C. (2002). Variation in human body size and shape. Annual Review of Anthropology, 31, 211232.Google Scholar
Ruff, C. (2010). Body size and body shape in early hominins – implications of the Gona pelvis. Journal of Human Evolution, 58(2), 166178.Google Scholar
Săffa, G., Kubicka, A. M., Hromada, M., & Kramer, K. L. (2019). Is the timing of menarche correlated with mortality and fertility rates? PLOS ONE, 14(4), e0215462.Google Scholar
Sakamaki, T., Ryu, H., Toda, K., Tokuyama, N., & Furuichi, T. (2018). Increased frequency of intergroup encounters in wild bonobos (Pan paniscus) around the yearly peak in fruit abundance at Wamba. International Journal Primatolology, 39, 685704.Google Scholar
Santi, D., Spaggiari, G., Granata, A. R. M., Setti, M., Tagliavini, S., Trenti, T., & Simoni, M. (2020). Seasonal changes of serum gonadotropins and testosterone in men revealed by a large data set of real-world observations over nine years. Frontiers in Endocrinology, 10, 914.Google Scholar
Schacht, R., & Kramer, K. L. (2019). Are we monogamous? A review of the evolution of pair-bonding in humans and its contemporary variation cross-culturally. Frontiers in Ecology and Evolution, 7, 230.Google Scholar
Schwartz, J. H., & Tattersall, I. (2010). Fossil evidence for the origin of Homo sapiens. American Journal of Physical Anthropology, 143(51), 94121.Google Scholar
Sear, R., & Mace, R. (2008). Who keeps children alive? A review of the effects of kin on child survival. Evolution and Human Behavior, 29, 118.Google Scholar
Shea, J. (2008). Transitions or turnovers? Climatically-forced extinctions of Homo sapiens and Neanderthals in the east Mediterranean Levant. Quaternary Science Reviews, 27, 22532270.Google Scholar
Shirley, M. K., Cole, T. J., Arthurs, O. J., Clark, C. A., & Wells, J. (2020). Developmental origins of variability in pelvic dimensions: Evidence from nulliparous South Asian women in the United Kingdom. American Journal of Human, 32(2), e23340.Google Scholar
Shultz, S., & Dunbar, R. (2007). The evolution of the social brain: Anthropoid primates contrast with other vertebrates. Proceedings of the Royal Society B, 274, 24292436.Google Scholar
Shultz, S., Nelson, E., & Dunbar, R. I. (2012). Hominin cognitive evolution: Identifying patterns and processes in the fossil and archaeological record. Philosophical Transactions of the Royal Society of London. Series B, 367(1599), 21302140.Google Scholar
Silk, J. B., Beehner, J. C., Bergman, T. J., Crockford, C., Engh, A. L., Moscovice, L. R., … & Cheney, D. L. (2009). The benefits of social capital: Close social bonds among female baboons enhance offspring survival. Proceedings of the Royal Society B, 276(1670), 30993104.Google Scholar
Slon, V., Mafessoni, F., Vernot, B., Filippo, C., De Grote, S., Viola, B.,… & Pääbo, S. (2018). The genome of the offspring of a Neandertal mother and a Denisovan father. Nature, 561, 113116.Google Scholar
Smith, B .H. (1991). Dental development and the evolution of life history in hominidae. American Journal of Physical Anthropology, 86, 157174.Google Scholar
Smith, T. M., Austin, C., Green, D. R., Joannes-Boyau, R., Bailey, S., Dumitriu, D., … & Arora, M. (2018). Wintertime stress, nursing, and lead exposure in Neanderthal children. Science Advances, 4(10), eaau9483.Google Scholar
Smith, T. M., Toussaint, M., Reid, D. J., Olejniczak, A. J., & Hublin, J.-J. (2007). Rapid dental development in a Middle Paleolithic Belgium Neanderthal. Proceedings of the National Academy of Sciences, USA, 104, 2022020225.Google Scholar
Snodgrass, J. J., & Leonard, W. R. (2009). Neandertal energetics revisited: Insights into population dynamics and life history evolution. PaleoAnthropology, 2009, 220237.Google Scholar
Soressi, M., McPherron, S. P., Lenoir, M., Dogandžić, T., Goldberg, P., Jacobs, Z., … & Texier, J.-P. (2013). Neandertals made the first specialized bone tools in Europe. Proceedings of the National Academy of Sciences, USA, 110(35), 1418614190.Google Scholar
Sparacello, V. S., Villotte, S., Shackelford, L. L., & Trinkaus, E. (2017). Patterns of humeral asymmetry among Late Pleistocene humans. Comptes Rendus – Palevol, 16(5–6), 680689.Google Scholar
Spikins, P., Needham, A., Wright, B., Dytham, C., Gatta, M., & Hitchens, G. (2019). Living to fight another day: The ecological and evolutionary significance of Neanderthal healthcare. Quaternary Science Reviews, 217, 98118.Google Scholar
Sterelny, K. (2007). Social intelligence, human intelligence and niche construction. Philosophical Transactions of the Royal Society of London. Series B, 362(1480), 719730.Google Scholar
Stringer, C. B., Finlayson, J. C., Barton, R. N. E., Fernández-Jalvo, Y., Cáceres, I., Sabin, R. C., … & Riquelme-Cantal, J.-A. (2008). Neanderthal exploitation of marine mammals in Gibraltar. Proceedings of the National Academy of Sciences, USA, 105(38), 1431914324.Google Scholar
Sullivan, A. P., de Manuel, M., Marques-Bonet, T., & Perry, G. H. (2017). An evolutionary medicine perspective on Neandertal extinction. Journal of Human Evolution, 108, 6271.Google Scholar
Swami, V., & Tovée, M. J. (2007). Perceptions of female body weight and shape among indigenous and urban Europeans. Scandinavian Journal of Psychology, 48(10), 4350.Google Scholar
Theofanopoulou, C., Gastaldon, S., O’Rourke, T., Samuels, B. D., Martins, P. T., … & Boeckx, C. (2017). Self-domestication in Homo sapiens: Insights from comparative genomics. PLOS ONE, 13(5), e0196700.Google Scholar
Thompson, J. L., & Nelson, A. J. (2011). Middle childhood and modern human origins. Human Nature, 22(3), 249280.Google Scholar
Thomsen, R., & Sommer, V. (2017). Masturbation. In Fuentes, A. (Ed.), The international encyclopedia of primatology (pp. 12). Boston: Wiley-Blackwell.Google Scholar
Thornton, A., McAuliffe, K., Dall, S. R., Fernandez-Duque, E., Garber, P. A., & Young, A. J. (2016). Fundamental problems with the cooperative breeding hypothesis. A reply to Burkart & van Schaik. Journal of Zoology, 299(2), 8488.Google Scholar
Tokuyama, N., Toda, K., Poiret, M. L., Iyokango, B., Bakaa, B., & Ishizuka, S. (2021). Two wild female bonobos adopted infants from a different social group at Wamba. Nature: Scientific Reports 11, 4967.Google Scholar
Tomasello, M., & Gonzalez-Cabrera, I. (2017). The role of ontogeny in the evolution of human cooperation. Human Nature, 28, 274288.Google Scholar
Tomasello, M., Melis, A. P., Tennie, C., Wyman, E., & Herrmann, E. (2012). Two key steps in the evolution of human cooperation. Current Anthropology, 53, 673692.Google Scholar
Trevathan, W. (2015). Primate pelvic anatomy and implications for birth. Philosophical Transactions of the Royal Society, B, 370, 20140065.Google Scholar
Trinkaus, E. (1980). Sexual differences in Neanderthal limb bones. Journal of Human Evolution, 9, 377397.Google Scholar
Trinkaus, E. (1987). The Neandertal face: Evolutionary and functional perspectives on a recent hominid face. Journal of Human Evolution, 16, 429443.Google Scholar
Trinkaus, E. (1995). Neanderthal mortality patterns. Journal of Archaeological Science, 22, 121142.Google Scholar
Trinkaus, E. (2011). Late Pleistocene adult mortality patterns and modern establishment. Proceedings of the National Academy of Sciences, USA, 108, 12671271.Google Scholar
Trinkaus, E. (2018). An abundance of developmental anomalies and abnormalities in Pleistocene people. Proceedings of the National Academy of Sciences, USA, 115, 1194111946.Google Scholar
Trinkaus, E., Moldovan, O., Milota, S., Bîlgăr, A., Sarcina, L., Athreya, S., … & van der Plicht, J. (2003). An early modern human from the Peştera cu Oase, Romania. Proceedings of the National Academy of Sciences, USA, 100(20), 1123111236.Google Scholar
Trinkaus, E., & Villotte, S. (2017). External auditory exostoses and hearing loss in the Shanidar 1 Neandertal. PLOS ONE, 12(10), e0186684.Google Scholar
Trivers, R. L. (1972). Parental investment and sexual selection. In Campbell, B. (Ed.), Sexual selection and the descent of man, 1871–1971 (pp. 136179). Chicago: Aldine.Google Scholar
Vaesen, K., Dusseldorp, G. L., & Brandt, M. J. (2021). An emerging consensus in palaeoanthropology: Demography was the main factor responsible for the disappearance of Neanderthals. Scientific Reports, 11, 4925.Google Scholar
Vallverdú, J., Vaquero, M., Cáceres, I., Allué, E., Rosell, J., Saladié, P., … & Carbonell, E. (2010). Sleeping activity area within the site structure of archaic human groups: Evidence from Abric Romaní Level N combustion activity areas. Current Anthropology, 51(10), 137145.CrossRefGoogle Scholar
Vandermeersch, B., & Garralda, M. D. (2011). Neanderthal geographical and chronological variation. In Condemi, A. & Weniger, G. C. (Eds.), Continuity and discontinuity in the peopling of Europe (pp. 113125). Dordrecht: Springer.Google Scholar
VanSickle, C., Cofran, Z., & Hunt, D. (2020). Did Neanderthals have large brains: Factors affecting endocranial volume comparisons. American Journal of Physical Anthropology, 173, 768775.Google Scholar
Vigilant, L., & Langergraber, K. E. (2011). Inconclusive evidence for patrilocality in Neandertals. Proceedings of the National Academy of Sciences, USA, 108(18), E87E88.Google Scholar
Walker, R. S., Gurven, M., Burger, O., & Hamilton, M. J. (2008). The trade-off between number and size of offspring in humans and other primates. Proceedings of the Royal Society B, 275(1636), 827833.Google Scholar
Washburn, S. L. (1960). Tools and human evolution. Scientific American, 203, 6375.Google Scholar
Weaver, T. D. (2009). Out of Africa: Modern human origins special feature: the meaning of Neandertal skeletal morphology. Proceedings of the National Academy of Sciences, USA, 106(38), 1602816033.Google Scholar
Weaver, T. D., & Hublin, J.-J. (2009). Neandertal birth canal shape and the evolution of human childbirth. Proceedings of the National Academy of Sciences, USA, 106, 81518156.Google Scholar
Wells, J. C. K. (2012). The capital economy in hominin evolution: How adipose tissue and social relationships confer phenotypic flexibility and resilience in stochastic environments. Current Anthropology, 53(6), S466S478.Google Scholar
Weyrich, L. S., Duchene, S., Soubrier, J., Arriola, L., Llamas, B., Breen, J., … & Cooper, A. (2017). Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature, 544(7650), 357361.Google Scholar
Whallon, R. (2006). Social networks and information: non-“utilitarian” mobility among hunter-gatherers. Journal of Anthropological Archaeology, 25(2), 259270.Google Scholar
White, S., Gowlett, J. A. J., & Grove, M. (2014). The place of the Neanderthals in hominin phylogeny. Journal of Anthropological Archaeology, 35, 3250.Google Scholar
White, T. D., Lovejoy, C. O., Asfaw, B., Carlson, J. P., & Suwa, G. (2015). Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both. Proceedings of the National Academy of Sciences USA, 112(16), 48774884.Google Scholar
White, M., Pettitt, P., & Schreve, D. (2016). Shoot first, ask questions later: Interpretative narratives of Neanderthal hunting. Quaternary Science Reviews, 140, 120.Google Scholar
Wilson, R. A. (2020). Rethinking incest avoidance: Beyond the disciplinary groove of culture-first views. Biological Theory. https://doi.org/10.1007/s13752–019-00338-2Google Scholar
Wilson, A. C., Maxson, L. R., & Sarich, V. M. (1974). Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proceedings of the National Academy of Sciences, USA, 71, 28432847.Google Scholar
Wolff, H., & Greenwood, A. D. (2010). Did viral disease of humans wipe out the Neandertals? Medical Hypotheses, 75, 99105.Google Scholar
Wragg Sykes, R. (2015). To see a world in a hafted tool: Birch pitch composite technology, cognition and memory in Neanderthals. In Coward, F., Hosfield, R., Pope, M., & Wenban-Smith, F. (Eds.), Settlement, society and cognition in human evolution: Landscapes in the mind (pp. 117137). Cambridge: Cambridge University Press.Google Scholar
Wragg Sykes, R. (2020). Kindred: Neanderthal life, love, death and art. London: Bloomsbury Sigma.Google Scholar
Wrangham, R. W. (1980). An ecological model of female bonded primate groups. Behaviour, 75, 262300.Google Scholar
Wrangham, R. W. (2019). Hypotheses for the evolution of reduced reactive aggression in the context of human self-domestication. Frontiers in Psychology, 10, 111.Google Scholar
Wrangham, R., Jones, J. H., Layden, G., Pilbeam, D., & Conklin-Brittain, N. (1999). The raw and the stolen: Cooking and the ecology of human origins. Current Anthropology, 40, 567594.Google Scholar
Zheng, Z., & Cohn, M. J. (2011). Developmental basis of sexually dimorphic digit ratios. Proceedings of the National Academy of Sciences, USA, 108(39), 1628916294.CrossRefGoogle ScholarPubMed
Ziegler, T. E., & Crockford, C. (2017). Neuroendocrine control in social relationships in non-human primates: Field based evidence. Hormones and Behavior, 91, 107121.Google Scholar
Zinner, D., Arnold, M. L., & Roos, C. (2011). The strange blood: Natural hybridization in primates. Evolutionary Anthropology, 20, 96103.CrossRefGoogle ScholarPubMed
Zollikofer, C. P., & Ponce de León, M. S. (2010). The evolution of hominin ontogenies. Seminars in Cell and Developmental Biology, 21(4), 441452.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×