Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T16:39:10.616Z Has data issue: false hasContentIssue false

Part IV - Data Analysis and Data Presentation

Published online by Cambridge University Press:  19 July 2018

Elisabeth Brauner
Affiliation:
Brooklyn College, City University of New York
Margarete Boos
Affiliation:
University of Göttingen
Michaela Kolbe
Affiliation:
ETH Zürich
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Barron, B. (2003). When smart groups fail. The Journal of the Learning Sciences 12 (3), 307359. doi:10.1207/S15327809JLS1203_1CrossRefGoogle Scholar
Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete multivariate analysis. Cambridge, MA: MIT Press.Google Scholar
Bryman, A. (2008). Why do researchers integrate/combine/mesh/blend/mix/merge/fuse quantitative and qualitative research? In Bergman, M. (Ed.), Advances in mixed methods research. Thousand Oaks, CA: Sage.Google Scholar
Contractor, N., & Su, C. (2011). Understanding groups from a network perspective. In Hollingshead, A. & Poole, M. S. (Eds.), Research methods for studying groups and teams: A guide to approaches, tools, and technologies (pp. 284310). New York, NY: Routledge.Google Scholar
Creswell, J. W., & Plano Clark, V. L. (2011). Designing and conducting mixed methods research. Thousand Oaks, CA: Sage.Google Scholar
Creswell, J. W., Plano Clark, V. L., & Garrett, A. L. (2008). Methodological issues in conducting mixed methods research designs. In Bergman, M. M. (Ed.), Advances in mixed methods research (pp. 6683). London: Sage.Google Scholar
Crone, L., & Teddlie, C. (1995). Further examination of teacher behavior in differentially effective schools: Selection and socialization processes. Journal of Classroom Interaction, 30(1), 19.Google Scholar
Erzberger, C., & Kelle, U. (2003). Making inferences in mixed methods: The rules of integration. In Tashakkori, A. & Teddlie, C. (Eds.), Handbook of mixed methods in social behavioral research (pp. 457490). Thousand Oaks, CA: Sage.Google Scholar
Fairhurst, G. T., Rogers, L. E., & Sarr, R. A. (1987). Manager-subordinate control patterns and judgements about the relationship. In McLaughlin, M. L. (Ed.), Communication yearbook 10 (pp. 395415). Newbury Park, CA: Sage.Google Scholar
Goodman, L. A. (1971). The analysis of multidimensional contingency tables: Stepwise procedures and direct estimation methods for building models for multiple classifications. Technometrics, 13, 3361.CrossRefGoogle Scholar
Haberman, S. J. (1972). Algorithm AS 51: Log-linear fit for contingency tables. Applied Statistics, 21, 218225.CrossRefGoogle Scholar
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Hendrix, C. C., Fournier, D. G., & Briggs, K. (2001). Impact of co-therapy teams on client outcomes and therapist training in marriage and family therapy. Contemporary Family Therapy, 23(1), 6382.CrossRefGoogle Scholar
Hutchins, E. (1995). How a cockpit remembers its speeds. Cognitive Science, 19, 265288.CrossRefGoogle Scholar
Hyndman, R. J., Einbeck, J., & Wand, M. (2009). The hdrcde package (highest density regions and conditional density estimation). R package version, 3.1.Google Scholar
Johnson, R., Onwuegbuzie, A., & Turner, L. (2007). Toward a definition of mixed methods research. Journal of Mixed Methods Research, 1(2), pp. 112133.CrossRefGoogle Scholar
Kashy, D. A., & Hagiwara, N. (2012). Analyzing group data. In Hollingshead, A. & Poole, S., (Eds.), Research methods for studying groups: A guide to approaches, tools, and technologies (pp. 311328). New York, NY: Routledge.Google Scholar
Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cognitive Science, 18(4), 513549.CrossRefGoogle Scholar
Kolbe, M., Burtscher, M. J., & Manser, T. (2013). Co-ACT – A framework for observing coordination behavior in acute care teams, BMJ Quality & Safety, 22596605.CrossRefGoogle ScholarPubMed
Kvan, T. (2000). Collaborative design: What is it? Automation in Construction 9, 409415.CrossRefGoogle Scholar
Lienert, G. A. (1971). Die Konfigurationsfrequenzanalyse. I. Ein neuer Weg zu Typen und Syndromen. Zeitschrift für Klinische Psychologie und Psychotherapie, 19, 99115.Google Scholar
Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39, 447462.CrossRefGoogle Scholar
Mateescu, M., Klinkhammer, D., Reiterer, H., & Zahn, C. (2015). Influence of Interactive Multi-User Tabletop Technology on Shared Mental Models and Performance: An Experimental Study. Talk at the 17. European Congress of Work and Organizational Psychology, Symposium “Dynamics of team cognition and team adaptation I – Focus on team cognition.”Google Scholar
Mateescu, M., Zahn, C., Klinkhammer, D., Rack, O., & Reiterer, H. (2016). Potenziale kollaborativer Medien: Eine empirische Untersuchung am Beispiel interaktiven Tischen. [Potential collaborative media: An empirical study using the example of interactive tables.] Forschungsbeitrag zum 50. Kongress der Deutschen Gesellschaft für Psychologie [Presentation at the 50th Congress of the German Society for Psychology], Leipzig Deutschland (18–22. 9. 2016).Google Scholar
Neuendorf, K. A. (2002). The content analysis guidebook. Thousand Oaks, CA: Sage.Google Scholar
Olson, B. (1994). Sex and the soaps: A comparative content analysis of health issues. Journalism Quarterly, 71, 840850.CrossRefGoogle Scholar
Olzak, L. A., & Wickens, T. D. (1983). The interpretation of detection data through direct multivariate frequency analysis. Psychological Bulletin, 93, 574585.CrossRefGoogle ScholarPubMed
Pearson, K. (1916). On a brief proof of the fundamental formula for testing the goodness of fit of frequency distributions and of the probable error of “p”. Philosophical Magazine, 31, 369378.Google Scholar
Peng, R., & Hengartner, H. (2002). Quantitative analysis of literary styles. The American Statistician, 56(3), 1538.CrossRefGoogle Scholar
R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved February 15, 2018, from www.R-project.org/.Google Scholar
Rack, O., Ellwart, T., Hertel, G., & Konradt, U. (2011). Team-based rewards in computer-mediated groups. Journal of Managerial Psychology, 26 (5), 419438. doi:10.1108/02683941111139029CrossRefGoogle Scholar
Robbins, N. B. (2005). Creating more effective graphs, Hoboken: Wiley-Interscience.Google Scholar
Stahl, G., Koschmann, T., & Suthers, D. D. (2006). Computer-supported Collaborative Learning. In Sawyer, R. K., (Ed.), The Cambridge handbook of the learning sciences (pp. 409474). Cambridge, UK: Cambridge University Press.Google Scholar
Vokey, J. R. (2003). Multiway frequency analysis for experimental psychologists. Canadian Journal of Experimental Psychology = Revue Canadienne De Psychologie Experimentale, 57, 257264.CrossRefGoogle ScholarPubMed
Walter, S. G., & Rack, O. (2010). Eine anwendungsbezogene Einführung in die Hierarchisch Lineare Modellierung (HLM). In Albers, S., Klapper, D., Konradt, U., Walter, A., & Wolf, J. (Eds.). Methoden der empirischen Forschung, S. 293310. Wiesbaden: Gabler.Google Scholar
Wickens, T. D. (1993). Analysis of contingency tables with between-subjects variability. Psychological Bulletin, 113, 191204.CrossRefGoogle Scholar
Wickham, H. (2006). ggplot: An implementation of the grammar of graphics. R package version 2.0.0.Google Scholar
Witcher, A. E., Onwuegbuzie, A. J., & Minor, L. C. (2001). Characteristics of effective teachers: Perceptions of preservice teachers. Research in the Schools, 8(2), 4557.Google Scholar
Zahn, C. (2017). Digital design and learning. Cognitive-constructivist perspectives. In Schwan, S. & Cress, U. (Eds.), The psychology of digital learning: Constructing, exchanging, and acquiring knowledge with digital media (pp. 147170). Springer International Publishing AG.CrossRefGoogle Scholar
Zahn, C., Krauskopf, K., Hesse, F. W., & Pea, R. (2009). Participation in knowledge building “revisited”: Reflective discussion and information design with advanced digital video technology. In O’Malley, C., Suthers, D., Reimann, P., & Dimitracopoulou, A. (Eds.), Computer supported collaborative learning practices: CSCL2009 Conference Proceedings. (pp. 596600). New Brunswick, NJ: International Society of the Learning Sciences (ISLS).Google Scholar
Zahn, C., Pea, R., Hesse, F. W., & Rosen, J. (2010). Comparing simple and advanced video tools as supports for complex collaborative design processes. The Journal of the Learning Sciences, 19(3), 403440. doi:10.1080/10508401003708399CrossRefGoogle Scholar

References

Allison, P. D., & Liker, J. K. (1982). Analyzing sequential categorical data on dyadic interaction: A comment on Gottman. Psychological Bulletin, 91, 393403. doi:10.1037/0033-2909.91.2.393CrossRefGoogle Scholar
Bakeman, R. (1978). Untangling streams of behavior: Sequential analyses of observation data. In Sackett, G. P. (Ed.), Observing behavior (Vol. 2, Data collection and analysis methods, pp. 6378). Baltimore, MD: University Park Press.Google Scholar
Bakeman, R. (2000). Behavioral observations and coding. In Reis, H. T. & Judd, C. K. (Eds.), Handbook of research methods in social psychology (pp. 138159). New York, NY: Cambridge University Press.Google Scholar
Bakeman, R. (2004). Sequential analysis. In Lewis-Beck, M., Bryman, A. E., & Liao, T. F. (Eds.), The SAGE encyclopedia of social science research methods (Vol. 3, pp. 10241026). Thousand Oaks, CA: SAGE Publications.Google Scholar
Bakeman, R. (2010). Reflections on measuring behavior: Time and the grid. In Walford, G., Viswanathan, M., & Tucker, E. (Eds.), The SAGE handbook of measurement (pp. 221237). Thousand Oaks, CA: SAGE Publications.CrossRefGoogle Scholar
Bakeman, R., Adamson, L. B., & Strisik, P. (1995). Lags and logs: Statistical approaches to interaction (SPPS version). In Gottman, J. M. (Ed.), The analysis of change (pp. 279308). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Bakeman, R., Deckner, D. F., & Quera, V. (2005). Analysis of behavioral streams. In Teti, D. M. (Ed.), Handbook of research methods in developmental science (pp. 394420). Oxford, UK: Blackwell Publishers.CrossRefGoogle Scholar
Bakeman, R., & Gottman, J. M. (1986). Observing interaction: An introduction to sequential analysis. New York, NY: Cambridge University Press.Google Scholar
Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis (2nd edn.). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Bakeman, R., McArthur, D., & Quera, V. (1996). Detecting group differences in sequential association using sampled permutations: Log odds, kappa, and phi compared. Behavior Research Methods, Instruments, and Computers, 28, 446457. doi:10.3758/BF03200524CrossRefGoogle Scholar
Bakeman, R., & Quera, V. (1992). SDIS: A sequential data interchange standard. Behavior Research Methods, Instruments, and Computers, 24, 554559. doi:10.3758/BF03203604CrossRefGoogle Scholar
Bakeman, R., & Quera, V. (1995a). Analyzing interaction: Sequential analysis with SDIS and GSEQ. New York, NY: Cambridge University Press.Google Scholar
Bakeman, R., & Quera, V. (1995b). Log-linear approaches to lag-sequential analysis when consecutive codes may and cannot repeat. Psychological Bulletin, 118, 272284. doi:10.1037/0033-2909.118.2.272CrossRefGoogle Scholar
Bakeman, R., & Quera, V. (2008). ActSds and OdfSds: Programs for converting INTERACT and The Observer data files into SDIS timed-event sequential data files. Behavior Research Methods, 40, 869872. doi:10.3758/BRM.40.3.869CrossRefGoogle ScholarPubMed
Bakeman, R., & Quera, V. (2011). Sequential analysis and observational methods for the behavioral sciences. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Bakeman, R., & Quera, V. (2012). Behavioral observation. In Cooper, H. (Ed.-in-Chief), Camic, P., Long, D., Panter, A., Rindskopf, D., & Sher, K. J. (Assoc. Eds.), APA handbooks in psychology: Vol. 1. APA handbook of research methods in psychology: Psychological research: Foundations, planning, methods, and psychometrics (pp. 207225). Washington, DC: American Psychological Association.Google Scholar
Bakeman, R., & Quera, V. (2017). GSEQ 5.1 [Computer software and manual]. Retrieved May 10, 2017, from www.gsu.edu/~psyrab/gseq/gseq.html.Google Scholar
Bakeman, R., Quera, V., & Gnisci, A. (2009). Observer agreement for timed-event sequential data: A comparison of time-based and event-based algorithms. Behavior Research Methods, 41, 137147. doi:10.3758/BRM.41.1.137CrossRefGoogle Scholar
Bakeman, R., Quera, V., McArthur, D., & Robinson, B. F. (1997). Detecting sequential patterns and determining their reliability with fallible observers. Psychological Methods, 2, 357370. doi:10.1037/1082-989X.2.4.357CrossRefGoogle Scholar
Bakeman, R., Robinson, B. F., & Quera, V. (1996). Testing sequential association: Estimating exact p values using sampled permutations. Psychological Methods, 1, 415. doi:10.1037/1082-989X.1.1.4CrossRefGoogle Scholar
Buder, E. H., Warlaumont, A. S., Oller, D. K., & Chorna, L. B. (2010). Dynamic indicators of mother-infant prosodic and illocutionary coordination. Proceedings of Speech Prosody 2010, Chicago, IL.Google Scholar
Chorney, J. M., Garcia, A. M., Berlin, K., Bakeman, R., & Kain, Z. N. (2010). Time-window sequential analysis: An introduction for pediatric psychologists. Journal of Pediatric Psychology, 35(10), 10611070. doi:10.1093/jpepsy/jsq022CrossRefGoogle ScholarPubMed
Dale, R., Warlaumont, A. S., & Richardson, D. C. (2011). Nominal cross recurrence as a generalized lag sequential analysis for behavioral streams. International Journal of Bifurcation and Chaos, 21, 11531161. doi:10.1142/S0218127411028970CrossRefGoogle Scholar
Gottman, J., Notarius, C., Gonso, J., & Markman, H. (1976). A couple’s guide to communication. Champaign, IL: Research Press.Google Scholar
Gottman, J. M., & Roy, A. K. (1990). Sequential analysis: A guide for behavioral research. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Hall, S., & Oliver, C. (1997). A graphical method to aid the sequential analysis of observational data. Behavior Research Methods, Instruments, and Computers, 29, 563573. doi:10.3758/BF03210609CrossRefGoogle Scholar
Klonek, F., Quera, V., Burba, M., & Kauffeld, S. (2016). Group interactions and time: Using sequential analysis to study group dynamics in project meetings. Group Dynamics: Theory, Research, and Practice, 20(3), 209222. doi:10.1037/gdn0000052CrossRefGoogle Scholar
Mangold, P. (2006). Getting better results in less time: When using audio/video recordings in research applications makes sense. Paper presented at the 3rd Congress of the European Society on Family Relations, Darmstadt, Germany.Google Scholar
Martin, P., & Bateson, P. (2007). Measuring behaviour: An introductory guide (3rd edn.). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Miller, R. G. Jr. (1966). Simultaneous statistical inference. New York: McGraw-Hill.Google Scholar
Noldus Information Technology (2003). The Observer: Professional system for collection, analysis, presentation and management of observational data [Reference manual, Version 5.0]. Wageningen, The Netherlands: Author.Google Scholar
Quera, V. (2008). RAP: A computer program for exploring similarities in behavior sequences using random projections. Behavior Research Methods, 40, 2132. doi:10.3758/BRM.40.1.21CrossRefGoogle Scholar
Quera, V., & Bakeman, R. (2000). Quantification strategies in behavioral observation research. In Thompson, T., Felce, D., & Symons, F. (Eds.), Behavioral observation: Technology and applications in developmental disabilities (pp. 297315). Baltimore, MAD: Brookes Publishing Company.Google Scholar
Quera, V., Bakeman, R., & Gnisci, A. (2007). Observer agreement for event sequences: Methods and software for sequence alignment and reliability estimates. Behavior Research Methods, 39, 3949. doi:10.3758/BF03192842CrossRefGoogle ScholarPubMed
Reynolds, H. T. (1977). The analysis of cross-classifications. New York, NY: The Free Press.Google Scholar
Rowland, S. B. (1995). Effects of adolescent mother-infant and grandmother-infant interaction on infant attention: A normative study of an African American sample. Unpublished doctoral dissertation, Georgia State University, Atlanta.Google Scholar
Sackett, G. P. (1979). Lag sequential analysis of contingency and cyclicity in behavioral interaction research. In Osofsky, J. D. (Ed.), Handbook of infant development (pp. 623649). New York, NY: Wiley.Google Scholar
Stewart, W. J. (1994). Introduction to the numerical solution of Markov chains. Princeton, NJ: Princeton University Press.Google Scholar
Wickens, T. D. (1982). Models for behavior. Stochastic processes in psychology. San Francisco, CA: Freeman.Google Scholar
Yoder, P., & Symons, F. (2010). Observational measurement of behavior. New York, NY: Springer.Google Scholar

References

Anolli, L., Duncan, S. J., Magnusson, M. S., & Riva, G. (2005). The hidden structure of interaction: From neurons to culture patterns. Amsterdam, The Netherlands: IOS Press.Google Scholar
Borrie, A., Jonsson, G. K., & Magnusson, M. S. (2002). Temporal pattern analysis and its applicability in sport: An explanation and exemplar data. Journal of Sports Sciences, 20(10), 845852.CrossRefGoogle ScholarPubMed
Burgoon, J. K., Wilson, D., Hass, M., & Schuetzler, R. (2016). Interactive deception in group decision-making: New insights from communication pattern analysis. In Magnusson, M. S., Burgoon, J. K., & Casarrubea, M. (Eds.), Discovering hidden temporal patterns in behavior and interaction: T-pattern detection and analysis with THEME™ (pp. 3762). Totowa, NJ, US: Humana Press. doi:10.1007/978-1-4939-3249-8_2.CrossRefGoogle Scholar
Casarrubea, M., Jonsson, G. K., Faulisi, F., Sorbera, F., Di Giovanni, G., Benigno, A., … Magnusson, M. S. (2015). T-pattern analysis for the study of temporal structure of animal and human behavior: A comprehensive review. Journal of Neuroscience Methods, 23, 934946. doi:10.1016/j.jneumeth.2014.09.024.Google Scholar
Castañer, M., Camerino, O., Anguera, M. T., & Jonsson, G. K. (2016). Paraverbal communicative teaching T-patterns using SOCIN and SOPROX observational systems. In Magnusson, M. S., Burgoon, J. K., & Casarrubea, M. (Eds.), Discovering hidden temporal patterns in behavior and interaction: T-pattern detection and analysis with THEME™ (pp. 83100). Totowa, NJ: Humana Press. doi:10.1007/978-1-4939-3249-8_4.CrossRefGoogle Scholar
Chomsky, N. (1957). Syntactic structures. The Hague, The Netherlands: Mouton.CrossRefGoogle Scholar
Devlin, K. (2003). Mathematics: The science of patterns: The search for order in life, mind, and the universe. New York, NY: Henry Holt.Google Scholar
Duncan, S. D. Jr., & Fiske, D. W. (1977). Face-to-face interaction: Research, methods and theory. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Gabin, B., Camerino, O., Anguera, M. T., & Castañer, M. (2012). Lince: Multiplatform sport analysis software. Procedia-Social and Behavioral Sciences, 46, 46924694.CrossRefGoogle Scholar
Hardway, C. L. & Duncan, S. D. Jr. (2005). Me first! Structure and dynamics of a four-way family conflict. In Anolli, L., Duncan, S. D. Jr., & Magnusson, M. (Eds.), The hidden structure of social interaction: From neurons to culture patterns. Amsterdam, The Netherlands: IOS Press.Google Scholar
Hirschenhauser, K., Frigerio, D., Grammer, K., & Magnusson, M. S. (2002). Monthly patterns of testosterone and behavior in prospective fathers. Hormones And Behavior, 42(2), 172181. Retrieved February 14, 2018, from https://doi.org/10.1006/hbeh.2002.1815.CrossRefGoogle ScholarPubMed
Magnusson, M. S. (1981). Temporal configuration analysis: Detection of a meaningful underlying structure through artificial categorization of a real-time behavioral stream. Workshop on Artificial Intelligence Uppsala University. (Part of a 1983 Doctoral Thesis at the Psychological laboratory), University of Copenhagen. Download from http://hbl.hi.is, www.dropbox.com/s/g0iag0fhv4ubmlm/Magnusson%20Uppsala%201981%20paper.pdf.Google Scholar
Magnusson, M. S. (1983). Theme and syndrome: Two programs for behavior research. In Edwards, D. & Hoeskuldsson, A. (Eds.), Symposium in applied statistics (pp. 1742). Copenhagen: NEUCC, RECKU & RECAU.Google Scholar
Magnusson, M. S. (1996). Hidden real-time patterns in intra- and inter-individual behavior: Description and detection. European Journal of Psychological Assessment, 12(2), 112123. doi:10.1027/1015-5759.12.2.112CrossRefGoogle Scholar
Magnusson, M. S. (2000). Discovering hidden time patterns in behavior: T-patterns and their detection. Behavior Research Methods, Instruments & Computers, 32(1), 93110. doi:10.3758/BF03200792CrossRefGoogle ScholarPubMed
Magnusson, M. S. (2004). Repeated patterns in behavior and other biological phenomena. In Griebel, U. & Oller, D. K. (Eds.) (2004). Evolution of communication systems: A comparative approach (pp. 111128). Cambridge, MA: A Bradford Book.CrossRefGoogle Scholar
Magnusson, M. S. (2005). Understanding social interaction: Discovering hidden structure with model and algorithms. In Anolli, L., Duncan, S. D. Jr., & Magnusson, M. S. (Eds.), The hidden structure of social interaction: From neurons to culture patterns (pp. 322). Amsterdam, The Netherlands: IOS Press.Google Scholar
Magnusson, M. S. (2006). Structure and communication in interaction. In Riva, G., Anguera, M. T., Wiederhold, B. K., & Mantovani, F. (Eds.), From communication to presence: Cognition, emotions and culture towards the ultimate communicative experience. Festschrift in honor of Luigi Anolli (pp. 127–46). Amsterdam, The Netherlands: IOS Press.Google Scholar
Magnusson, M. S. (2016). Time and self-similar structure in behavior and interactions: From sequences to symmetry and fractals. In Magnusson, M. S., Burgoon, J. K., & Casarrubea, M. (Eds.), Discovering hidden temporal patterns in behavior and interaction: T-pattern detection and analysis with THEME™ (pp. 335). Totowa, NJ: Humana Press. doi:10.1007/978-1-4939-3249-8_1CrossRefGoogle Scholar
Magnusson, M. S. (2017a). Why search for hidden repeated temporal behavior patterns: T-pattern analysis with Theme. International Journal of Clinical Pharmacology & Pharmacotherapy, 2, 128. https://doi.org/10.15344/2017/2456-3501/128.CrossRefGoogle Scholar
Magnusson, M. S., & Beaudichon, J. (1997). Détection de “marqueurs” dans la communication référentielle entre enfants [Detection of “markers” in referential communication among children]. In Bernicot, J., Caron-Pargue, J., & Trognon, A., (Eds.), Conversation, interaction et fonctionnement cogniti [Conversation, interaction and cognitive functioning] (pp. 315335). Nancy, France: Presse Universitaire de Nancy.Google Scholar
Magnusson, M. S., Burgoon, J. K., & Casarrubea, M. (2016). Discovering hidden temporal patterns in behavior and interaction: T-pattern detection and analysis with THEME™. Totowa, NJ: Humana Press. doi:10.1007/978-1-4939-3249-8CrossRefGoogle Scholar
Montagner, H. (1971). Les communications interindividuelles dans les sociétés de guêpes [Interindividual communication in societies of wasps]. Journal de Psychologie Normale et Pathologique: Intercommunications Chez les Animaux, 3–4, 281296.Google Scholar
Montagner, H. (2012). L’enfant et la communication: Comment gestes, attitudes, vocalisations deviennent des messages [Child and communication: How gestures, postures, vocalizations become messages]. Collection: Enfances [Collections: Childhood]. Paris, France: Dunod.CrossRefGoogle Scholar
Nicol, A. U., Segonds-Pichon, A., & Magnusson, M. S. (2015). Complex spike patterns in olfactory bulb neuronal networks. Journal of Neuroscience Methods, 239, 1117. doi:10.1016/j.jneumeth.2014.09.016CrossRefGoogle ScholarPubMed
Physiology or Medicine (1973). Press Release. Nobelprize.org. Nobel Media AB 2014. Retrieved February 14, 2018, from www.nobelprize.org/nobel_prizes/medicine/laureates/1973/press.html.Google Scholar
Skinner, B. F. (1957). Verbal behavior (1st edn.). New York, NY: Appleton-Century-Crofts.CrossRefGoogle Scholar
Teerikorpi, P., & Baryshev, Y. (2002). Discovery of cosmic fractals. United States of America: World Scientific.Google Scholar
Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410433. doi:10.1111/j.1439-0310.1963.tb01161.xCrossRefGoogle Scholar

References

Asparouhov, T., Hamaker, E., & Muthén, B. (2017). Dynamic structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25, 359388. https://doi.org/10.1080/10705511.2017.1406803CrossRefGoogle Scholar
Asparouhov, T., & Muthen, B. (2008). Multilevel mixture models. In Hancock, G. R. & Samuelsen, K. M. (Eds.), Advances in latent variable mixture models (pp. 2751). Charlotte, NC: Information Age Publishing.Google Scholar
Auld, F. Jr., & White, A. M. (1956). Rules for dividing interviews into sentences. Journal of Psychology: Interdisciplinary & Applied, 42, 273281. https://doi.org/10.1080/00223980.1956.9713040CrossRefGoogle Scholar
Back, M. D., & Kenny, D. A. (2010). The social relations model: How to understand dyadic processes. Social and Personality Psychology Compass, 4(10), 855870. https://doi.org/10.1111/j.1751-9004.2010.00303.xCrossRefGoogle Scholar
Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis (Vol. 2nd). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Bakeman, R., & Quera, V. (2011). Sequential analysis and observational methods for the behavioral sciences. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Bales, R. F. (1950). Interaction process analysis: A method for the study of small groups. Cambridge, MA: Addison-Wesley.Google Scholar
Bales, R. F., Cohen, S. P., & Williamson, S. A. (1979). SYMLOG: A system for the multiple level observation of groups. New York: Free Press.Google Scholar
Balkwell, J. W. (1994). Status. In Foschi, M. & Lawler, E. J. (Eds.), Group processes: Sociological analyses (pp. 119148). Chicago: Nelson-Hall.Google Scholar
Bonito, J. A. (2001). An information-processing approach to participation in small groups. Communication Research, 28(3), 275303. https://doi.org/10.1177/009365001028003002CrossRefGoogle Scholar
Bonito, J. A. (2002). The analysis of participation in small groups: Methodological and conceptual issues related to interdependence. Small Group Research, 33(4), 412438. https://doi.org/10.1177/104649640203300402CrossRefGoogle Scholar
Bonito, J. A. (2007). A local model of information sharing in small groups. Communication Theory, 17(3), 252280. https://doi.org/10.1111/j.1468-2885.2007.00295.xCrossRefGoogle Scholar
Bonito, J. A., Ervin, J. N., & Staggs, S. M. (2016). Estimation and application of the latent group model. Group Dynamics: Theory, Research, and Practice, 20(3), 126143. https://doi.org/10.1037/gdn0000044CrossRefGoogle Scholar
Bonito, J. A., & Hollingshead, A. B. (1997). Participation in small groups. In Burleson, B. R. (Ed.), Communication yearbook 20 (Vol. 20, pp. 227261). Newbury Park, CA: Sage.Google Scholar
Bonito, J. A., & Meyers, R. A. (2011). Examining functional communication as egocentric or group-centric: Application of a latent group model. Communication Monographs, 78(4), 463485. https://doi.org/10.1080/03637751.2011.618138CrossRefGoogle Scholar
Bonito, J. A., & Ruppel, E. K. (2011). An application of the socioegocentric model to information-sharing discussions: In search of group-level communication influences. Communication Research, 38(3), 356375. https://doi.org/10.1177/0093650210377195CrossRefGoogle Scholar
Bonito, J. A., Ruppel, E. K., & Keyton, J. (2012). Reliability estimates for multilevel designs in group research. Small Group Research, 43(4), 443467. https://doi.org/10.1177/1046496412437614CrossRefGoogle Scholar
Bonito, J. A., & Sanders, R. E. (2009). A different approach to answering a good question: A response to Hewes’s models of communication effects on small group outcomes. Human Communication Research, 35(2), 296303. https://doi.org/10.1111/j.1468-2958.2009.01351.xCrossRefGoogle Scholar
Bonito, J. A., & Sanders, R. E. (2011). The existential center of small groups: Member’s conduct and interaction. Small Group Research, 42(3), 343358. https://doi.org/10.1177/1046496410385472CrossRefGoogle Scholar
Carron, A. V., & Brawley, L. R. (2000). Cohesion: Conceptual and measurement issues. Small Group Research, 31(1), 89106. https://doi.org/10.1177/104649640003100105CrossRefGoogle Scholar
Corman, S. R., & Kuhn, T. (2005). The detectability of socio-egocentric group speech: A quasi-Turing test. Communication Monographs, 72(2), 117143. https://doi.org/10.1080/03637750500111849CrossRefGoogle Scholar
Cornwell, B. (2015). Social sequence analysis: Methods and applications. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Coulter, P. (1989). Measuring inequality: A methodological handbook. Boulder: Westview Press.Google Scholar
Craig, R. T., & Tracy, K. (1983). Introduction. In Craig, R. T. & Tracy, K. (Eds.), Conversational coherence: Form, structure, and strategy (pp. 1022). Beverly Hills, CA: Sage.Google Scholar
Dansereau, F. (2006). Avoiding the “fallacy of the wrong level”: A within and between analysis (WABA) approach. Group & Organization Management, 31(5), 536577. https://doi.org/10.1177/1059601106291131CrossRefGoogle Scholar
De Dreu, C. K. W., & Weingart, L. R. (2002). Task versus relationship conflict: A meta-analysis. Academy of Management Proceedings, 2002(1), B1B6. https://doi.org/10.5465/APBPP.2002.7516590CrossRefGoogle Scholar
Edwards, J. A. (1993). Principles and contrasting systems of discourse transcription. In Edwards, J. A. & Lampert, M. D. (Eds.), Talking data: Transcription and coding in discourse research (pp. 331). Hillsdale, NJ: Erlbaum.Google Scholar
Ervin, J. N., Bonito, J. A., & Keyton, J. (2017). Convergence of intrapersonal and interpersonal processes across group meetings. Communication Monographs, 84(2), 200220. https://doi.org/10.1080/03637751.2016.1185136CrossRefGoogle Scholar
Fisek, M. H., & Ofshe, R. (1970). The process of status evolution. Sociometry, 33(3), 327346. https://doi.org/10.2307/2786161CrossRefGoogle Scholar
Folger, J. P., Hewes, D. E., & Poole, M. S. (1984). Coding social interaction. In Dervin, B. & Voight, M. J. (Eds.), Progress in communication sciences (pp. 115161). Norwood, NJ: Ablex.Google Scholar
Gonzalez, R., & Griffin, D. (2002). Modeling the personality of dyads and groups. Journal of Personality, 70(6), 901924. https://doi.org/10.1111/1467-6494.05027CrossRefGoogle ScholarPubMed
Gottman, J. M., & Roy, A. K. (1990). Sequential analysis: A guide for behavorial researchers. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Gouran, D. S., & Hirokawa, R. Y. (1996). Functional theory and communication in decision-making and problem-solving groups: An expanded view. In Hirokawa, R. Y. & Poole, M. S. (Eds.), Communication and group decision making (pp. 5580). Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
Grice, H. P. (1975). Logic and conversation. In Morgan, P. C. (Ed.) pp. (4158). New York, NY: Academic Press.Google Scholar
Guetzkow, H. (1950). Unitizing and categorizing problems in coding qualitative data. Journal of Clinical Psychology, 6, 4758. https://doi.org/http://dx.doi.org/10.1002/1097-4679(195001)6:1%3C47::AID-JCLP2270060111%3E3.0.CO;2-I3.0.CO;2-I>CrossRefGoogle Scholar
Heck, R. H., & Thomas, S. L. (2015). An introduction to multilevel modeling techniques: MLM and SEM approaches using Mplus (3rd edn.). New York, NY: Routledge.CrossRefGoogle Scholar
Hewes, D. E. (1996). Small group communication may not influence decision making: An amplification of socio-egocentric theory. In Hirokawa, R. Y. & Poole, M. S. (Eds.), Communication and group decision making (2nd edn., pp. 179212). Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
Hewes, D. E. (2009). The influence of communication processes on group outcomes: Antithesis and thesis. Human Communication Research, 35(2), 249271. https://doi.org/10.1111/j.1468-2958.2009.01347.xCrossRefGoogle Scholar
Hirokawa, R. Y. (1982). Group communication and problem-solving effectiveness I: A critical review of inconsistent findings. Communication Quarterly, 30(2), 134141. https://doi.org/10.1080/01463378209369440CrossRefGoogle Scholar
Hirokawa, R. Y. (1988). Group communication and decision-making performance: A continued test of the functional perspective. Human Communication Research, 14(4), 487515. https://doi.org/10.1111/j.1468-2958.1988.tb00165.xCrossRefGoogle Scholar
Hirokawa, R. Y. (1990). The role of communication in group decision-making efficacy: A task-contingency perspective. Small Group Research, 21(2), 190204. https://doi.org/10.1177/1046496490212003CrossRefGoogle Scholar
Hox, J. J. (2010). Multilevel analysis: Techniques and applications (2nd edn). New York, NY: Routledge.CrossRefGoogle Scholar
Ilgen, D. R., Hollenbeck, J. R., Johnson, M., & Jundt, D. (2005). Teams in organizations: From input-process-output models to IMOI models. Annual Review of Psychology, 56, 517543. https://doi.org/10.1146/annurev.psych.56.091103.070250CrossRefGoogle ScholarPubMed
Janis, I. L. (1971). Groupthink. Psychology Today, 5, 4346.Google Scholar
Jones, E. E., & Gerard, H. (1967). Foundations of social psychology. Oxford, UK: John Wiley & Sons Inc.Google Scholar
Kameda, T., Ohtsubo, Y., & Takezawa, M. (1997). Centrality in sociocognitive networks and social influence: An illustration in a group decision-making context. Journal of Personality & Social Psychology, 73(2), 296309. https://doi.org/10.1037/0022-3514.73.2.296CrossRefGoogle Scholar
Kashy, D. A., & Kenny, D. A. (2000). The analysis of data from dyads and groups. In Reis, H. T. & Judd, C. M. (Eds.), Handbook of research methods in social psychology (pp. 451477). New York, NY: Cambridge University Press.Google Scholar
Kenny, D. A. (1994). Interpersonal perception: A social relations analysis. New York, NY: Guilford Press.Google ScholarPubMed
Kenny, D. A., & Garcia, R. L. (2012). Using the actor–partner interdependence model to study the effects of group composition. Small Group Research, 43(4), 468496. https://doi.org/10.1177/1046496412441626CrossRefGoogle Scholar
Kenny, D. A., & Judd, C. M. (1986). Consequences of violating the independence assumption in analysis of variance. Psychological Bulletin, 99(3), 422431. https://doi.org/10.1037/0033-2909.99.3.422CrossRefGoogle Scholar
Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). Dyadic data analysis. New York, NY: Guilford Press.Google Scholar
Keyton, J. (1991). Evaluating individual group member satisfaction as a situational variable. Small Group Research, 22(2), 200219. https://doi.org/10.1177/1046496491222004CrossRefGoogle Scholar
Keyton, J. (1999). Relational communication in groups. In Frey, L. R., Gouran, D. S., & Poole, M. S. (Eds.), The handbook of group communication theory and research (pp. 192224). Thousand Oaks, CA: Sage.Google Scholar
Kolbe, M., Grote, G., Waller, M. J., Wacker, J., Grande, B., Burtscher, M. J., & Spahn, D. R. (2014). Monitoring and talking to the room: Autochthonous coordination patterns in team interaction and performance. Journal of Applied Psychology, 99(6), 12541267. https://doi.org/10.1037/a0037877CrossRefGoogle Scholar
Larson, J. R. (1997). Modeling the entry of shared and unshared information into group discussion: A review and BASIC language computer program. Small Group Research, 28(3), 454479. https://doi.org/10.1177/1046496497283007CrossRefGoogle Scholar
Lehmann-Willenbrock, N., Allen, J. A., & Kauffeld, S. (2013). A sequential analysis of procedural meeting communication: How teams facilitate their meetings. Journal of Applied Communication Research, 41(4), 365388. https://doi.org/10.1080/00909882.2013.844847CrossRefGoogle Scholar
Lei, Z., Waller, M. J., Hagen, J., & Kaplan, S. (2016). Team adaptiveness in dynamic contexts: Contextualizing the roles of interaction patterns and in-process planning. Group & Organization Management, 41(4), 491525. https://doi.org/10.1177/1059601115615246CrossRefGoogle Scholar
Levinson, S. C. (1983). Pragmatics. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Li, F., Duncan, T. E., & Hops, H. (2001). Examining developmental trajectories in adolescent alcohol use using piecewise growth mixture modeling analysis. Journal of Studies on Alcohol, 62(2), 199210. https://doi.org/10.15288/jsa.2001.62.199CrossRefGoogle ScholarPubMed
Littlepage, G. E., Schmidt, G. W., Whisler, E. W., & Frost, A. G. (1995). An input-process-output analysis of influence and performance in problem-solving groups. Journal of Personality & Social Psychology, 69(5), 877889. https://doi.org/10.1037/0022-3514.69.5.877CrossRefGoogle Scholar
Meyers, R. A., & Brashers, D. E. (2010). Extending the conversational argument coding scheme: Argument categories, units, and coding procedures. Communication Methods and Measures, 4(1), 27. https://doi.org/10.1080/19312451003680467CrossRefGoogle Scholar
Nguyen, V.-A., Boyd-Graber, J., Resnik, P., Cai, D. A., Midberry, J. E., & Wang, Y. (2014). Modeling topic control to detect influence in conversations using nonparametric topic models. Machine Learning, 95(3), 381421. https://doi.org/10.1007/s10994-013-5417-9CrossRefGoogle Scholar
Parker, K. C. (1988). Speaking turns in small group interaction: A context-sensitive event sequence model. Journal of Personality and Social Psychology, 54(6), 965971. https://doi.org/10.1037/0022-3514.54.6.965CrossRefGoogle Scholar
Pavitt, C. (2014). An interactive input–process–output model of social influence in decision-making groups. Small Group Research, 45(6), 704730. https://doi.org/10.1177/1046496414548353.CrossRefGoogle Scholar
Pavitt, C., & Johnson, K. K. (1999). An examination of the coherence of group discussions. Communication Research, 26(3), 303321. https://doi.org/10.1177/009365099026003002CrossRefGoogle Scholar
Pavitt, C., & Johnson, K. K. (2002). Scheidel and Crowell revisited: A descriptive study of group proposal sequencing. Communication Monographs, 69(1), 1932. https://doi.org/10.1080/03637750216535CrossRefGoogle Scholar
Poole, M. S. (1998). The small group should be the fundamental unit of communication research. In Trent, J. S. (Ed.), Communication: Views from the helm for the 21st century (pp. 9497). Boston, MA: Allyn & Bacon.Google Scholar
Poole, M. S., Van de Ven, A. H., Dooley, K., & Holmes, M. E. (2000). Organizational change and innovation processes: Theory and methods for research. Oxford, UK, and New York, NY: Oxford University Press.CrossRefGoogle Scholar
Putnam, L. L., & Jones, T. S. (1982). The role of communication in bargaining. Human Communication Research, 8(3), 262280. http://dx.doi.org/10.1111/j.1468-2958.1982.tb00668.xCrossRefGoogle Scholar
Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). Generalized multilevel structural equation modeling. Psychometrika, 69(2), 167190. https://doi.org/10.1007/BF02295939CrossRefGoogle Scholar
Sackett, G. P. (1979). The lag sequential analysis of contingency and cyclicity in behavioral interaction research. In Osofsky, J. D. (Ed.), Handbook of infant development (Vol. 1, pp. 623649). New York, NY: Wiley.Google Scholar
Seibold, D. R., & Meyers, R. A. (2007). Group argument: A structuration perspective and research program. Small Group Research, 38(3), 312336. https://doi.org/10.1177/1046496407301966CrossRefGoogle Scholar
Shelly, R. K., & Troyer, L. (2001). Emergence and completion of structure in initially undefined and partially defined groups. Social Psychology Quarterly, 64(4), 318332. https://doi.org/10.2307/3090157CrossRefGoogle Scholar
Skvoretz, J. (1988). Models of participation in status-differentiated groups. Social Psychology Quarterly, 51(1), 4357. https://doi.org/10.2307/2786983.CrossRefGoogle Scholar
Smith-Lovin, L., Skvoretz, J., & Hudson, C. G. (1986). Status and participation in six-person groups: A test of Skvoretz’s comparative status model. Social Forces, 64(4), 9921005. https://doi.org/10.1093/sf/64.4.992CrossRefGoogle Scholar
Soller, A. (2004). Understanding knowledge-sharing breakdowns: A meeting of the quantitative and qualitative minds. Journal of Computer Assisted Learning, 20(3), 212223. https://doi.org/10.1111/j.1365-2729.2004.00081.xCrossRefGoogle Scholar
Soller, A., & Lesgold, A. (2003). A computational approach to analyzing online knowledge sharing interaction. In U. Hoppe, F. Verdejo, & J. Kay (Eds.), Artificial intelligence in education: Shaping the future of learning through intelligent technologies (pp. 253–260). Amsterdam, NL: IOS Press.Google Scholar
Stapleton, L. M., Yang, J. S., & Hancock, G. R. (2016). Construct meaning in multilevel settings. Journal of Educational and Behavioral Statistics, 41(5), 481520. https://doi.org/10.3102/1076998616646200CrossRefGoogle Scholar
Stasser, G., & Taylor, L. A. (1991). Speaking turns in face-to-face discussions. Journal of Personality and Social Psychology, 60(5), 675684. https://doi.org/10.1037/0022-3514.60.5.675CrossRefGoogle Scholar
Stasser, G., & Titus, W. (2003). Hidden profiles: A brief history. Psychological Inquiry, 14(3), 304313. https://doi.org/10.1207/S15327965PLI1403&4_21CrossRefGoogle Scholar
Stasser, G., & Vaughan, S. I. (1996). Models of participation during face-to-face unstructured discussion. In Witte, E. H. & Davis, J. H. (Eds.), Understanding group behavior (Vol. 2, pp. 165192). Mahwah, NJ: Erlbaum.Google Scholar
Thibaut, J. W., & Kelley, H. H. (1959). The social psychology of groups. New York, NY: John Wiley.Google Scholar
Tschan, F. (1995). Communication enhances small group performance if it conforms to task requirements: The concept of ideal communication cycles. Basic and Applied Social Psychology, 17(3), 371393. https://doi.org/10.1207/s15324834basp1703_6CrossRefGoogle Scholar
Van Lange, P. A. M., & Balliet, D. (2015). Interdependence theory. In Mikulincer, M., Shaver, P. R., Simpson, J. A., & Dovidio, J. F. (Eds.), APA handbook of personality and social psychology, Volume 3: Interpersonal relations (pp. 6592). Washington, DC: American Psychological Association. https://doi.org/10.1037/14344-003CrossRefGoogle Scholar
Weingart, L. R., Brett, J. M., Olekalns, M., & Smith, P. L. (2007). Conflicting social motives in negotiating groups. Journal of Personality and Social Psychology, 93(6), 9941010. https://doi.org/10.1037/0022-3514.93.6.994CrossRefGoogle ScholarPubMed
Weingart, L. R., Prietula, M. J., Hyder, E. B., & Genovese, C. R. (1999). Knowledge and the sequential processes of negotiation: A Markov chain analysis of response-in-kind. Journal of Experimental Social Psychology, 35(4), 366393. http://dx.doi.org/10.1006/jesp.1999.1378CrossRefGoogle Scholar
Wickham, R. E., & Knee, C. R. (2012). Interdependence theory and the actor–partner interdependence model: Where theory and method converge. Personality and Social Psychology Review, 16(4), 375393. https://doi.org/10.1177/1088868312447897CrossRefGoogle ScholarPubMed
Wittenbaum, G. M., Hollingshead, A. B., & Botero, I. C. (2004). From cooperative to motivated information sharing in groups: Moving beyond the hidden profile paradigm. Communication Monographs, 71(3), 286310. https://doi.org/10.1080/0363452042000299894CrossRefGoogle Scholar
Wittenbaum, G. M., Hollingshead, A. B., Paulus, P. B., Hirokawa, R. Y., Ancona, D. G., Peterson, R. S., … Yoon, K. (2004). The functional perspective as a lens for understanding groups. Small Group Research, 35(1), 1743. https://doi.org/10.1177/1046496403259459CrossRefGoogle Scholar
Zijlstra, F. R. H., Waller, M. J., & Phillips, S. I. (2012). Setting the tone: Early interaction patterns in swift-starting teams as a predictor of effectiveness. European Journal of Work and Organizational Psychology, 21(5), 749777. https://doi.org/10.1080/1359432X.2012.690399CrossRefGoogle Scholar

References

Aisenbrey, S., & Fasang, A. E. (2010). New life for old ideas: The “second wave” of sequence analysis: Bringing the “course” back into the life course. Sociological Methods and Research, 38, 420462. doi:10.1177/0049124109357532CrossRefGoogle Scholar
Arrow, H., McGrath, J. E., & Berdahl, J. L. (2000). Small groups as complex systems: Formation, coordination, development, and adaptation. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Bales, R. F. (1950). Interaction process analysis: A method for the study of small groups. Cambridge, MA: Addison-Wesley.Google Scholar
Bales, R. F., & Strodtbeck, F. L. (1951). Phases in group problem-solving. Journal of Abnormal and Social Psychology, 46, 485495.CrossRefGoogle ScholarPubMed
Bavelas, J., Black, A., Chovil, N., & Mullett, J. (1990). Equivocal communication. Newbury Park, CA: Sage.Google Scholar
Bion, W. R. (1961). Experiences in groups, London, UK: Tavistock.Google Scholar
Brzinsky-Fay, C., & Kohler, U. (2010). New developments in sequence analysis. Sociological Methods and Research, 38, 359364. https://doi.org/10.1177/0049124110363371CrossRefGoogle Scholar
Brzinsky-Fay, C., Kohler, U., & Luniak, M. (2006). Sequence analysis with Stata. Stata Journal, 6, 435460.CrossRefGoogle Scholar
Butts, C. T. (2008). A relational event framework for social action. Sociological Methodology, 38, 155200.CrossRefGoogle Scholar
Cornwell, B. (2015). Social sequence analysis: Methods and applications. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Gabadinho, A., Ritschard, G., Müller, N. S., & Studer, M. (2011). Analyzing and visualizing state sequences in R with TraMineR. Journal of Statistical Software, 40, 137.CrossRefGoogle Scholar
Gottman, J. M. (1979). Marital interaction: Experimental investigations. New York, NY: Academic Press.Google Scholar
Gouhier, T. C., & Guichard, F. (2014). Synchrony: Quantifying variability in space and time. Methods in Ecology and Evolution, 5, 524533.CrossRefGoogle Scholar
Hollenstein, T. (2007). State space grids: Analyzing dynamics across development. International Journal of Behavioral Development, 31, 384396. doi:10.1177/0165025407077765CrossRefGoogle Scholar
Holmes, M., & Poole, M. S. (1991). The longitudinal analysis of interaction. In Montgomery, B. & Duck, S. (Eds.), Studying interpersonal interaction (pp. 286302). New York, NY: Guilford.Google Scholar
Kashy, D. A., & Kenny, D. A. (2000). The analysis of data from dyads and groups. In Reis, H. T. & Judd, C. M. (Eds.), Handbook of research methods for social psychology. Cambridge, UK: Cambridge University Press.Google Scholar
Klein, K. J., & Kozlowski, S. W. J. (Eds.) (2000). Multilevel theory, research, and methods in organizations: Foundations, extensions, and new directions. San Francisco, CA: Jossey-Bass.Google Scholar
Kruskal, J. B. (1983). Sequence comparison. In Sankoff, D. & Kruskal, J. B. (Eds.), Time warps, string edits, and macromolecules: The theory and practice of sequence comparison (pp. 121). Reading, MA: Addison-Wesley.Google Scholar
Lewis, M. D., Lamey, A. V., & Douglas, L. (1999). A new dynamic systems method for the analysis of early socioemotional development. Developmental Science, 2, 457475.CrossRefGoogle Scholar
Meyers, R. A., & Brashers, D. E. (2010). Extending the conversational argument coding scheme: Argument categories, units, and coding procedures. Communication Methods and Measures, 4, 2745.CrossRefGoogle Scholar
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 8197.CrossRefGoogle ScholarPubMed
Murase, T., Asencio, R., DeChurch, L. A., Contractor, N., Mathieu, J. E., & Poole, M. S. (2015, November). The effect of synchronization of group processes on multiteam system effectiveness. Group Communication Division, National Communication Association Conference, Las Vegas, NV.Google Scholar
Pilny, A., Schecter, A., Poole, M. S., & Contractor, N. (2016). An illustration of the relational event model to analyze group interaction processes. Group Dynamics: Theory, Research, and Practice, 20, 181195. http://dx.doi.org/10.1037/gdn0000042.CrossRefGoogle Scholar
Poole, M. S., & Holmes, M. E. (1995). Decision development in computer-assisted group decision making. Human Communication Research, 22, 90127.CrossRefGoogle Scholar
Poole, M. S., Lambert, N., Murase, T., Asencio, R., & McDonald, J. (2017). Sequential analysis of processes. In Langley, A. & Tsoukas, H. (Eds.), Sage handbook of process organization studies (pp. 254270). Beverly Hills, CA: Sage.Google Scholar
Poole, M. S., & Roth, J. (1989). Decision development in small groups IV: A typology of decision paths. Human Communication Research, 15, 323356.CrossRefGoogle Scholar
Poole, M. S., Van de Ven, A. H., Dooley, K., & Holmes, M. E. (2000). Organizational change and innovation processes: Theory and methods for research. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Rogers, L. E., & Cummings, J. A. (2017). Relational communication control. In VanLear, C. A. & Canary, D. J. (Eds.) Researching interactive communication behavior (pp. 93106). Thousand Oaks, CA: Sage.Google Scholar
Seibold, D. R., & Weger, H. W. (2017). The conversational argument coding scheme. In VanLear, C. A., & Canary, D. J. (Eds.), Researching interactive communication behavior: A sourcebook of methods and measures (pp. 159174). Los Angeles, CA: Sage.CrossRefGoogle Scholar
Tschan, F. (1995). Communication enhances small group performance if it conforms to task requirements: The concept of ideal communication cycles. Basic and Applied Social Psychology, 17, 371393.CrossRefGoogle Scholar
VanLear, C. A., & Canary, D. J. (2017). Researching interactive communication behavior: A sourcebook of methods and measures. Los Angeles, CA: Sage.CrossRefGoogle Scholar
Weick, K. E. (1979). The social psychology of organizing. Reading, UK: Addison-Wesley.Google Scholar

References

Auld, F. Jr., & White, A. M. (1956). Rules for dividing interviews into sentences. Journal of Psychology: Interdisciplinary & Applied, 42, 273281. https://doi.org/10.1080/00223980.1956.9713040CrossRefGoogle Scholar
Bales, R. F. (1950). Interaction process analysis: A method for the study of small groups. Cambridge, MA: Addison-Wesley.Google Scholar
Beck, S. J., & Keyton, J. (2009). Perceiving strategic meeting interaction. Small Group Research, 40, 223246. https://doi.org/10.1177/1046496408330084CrossRefGoogle Scholar
Bonito, J. A. (2001). An information-processing approach to participation in small groups. Communication Research, 28, 275303. https://doi.org/10.1177/009365001028003002CrossRefGoogle Scholar
Bonito, J. A. (2003). A social relations analysis of participation in small groups. Communication Monographs, 70, 8397. https://doi.org/10.1080/0363775032000133755CrossRefGoogle Scholar
Bonito, J. A., Keyton, J., & Ervin, J. N. (2017). Role-related participation in product design teams: Individual- and group-level trends. Communication Research, 44(2), 263286. https://doi.org/10.1177/0093650215618759CrossRefGoogle Scholar
Bonito, J. A., & Meyers, R. A. (2011). Examining functional communication as egocentric or group-centric: Application of a latent group model. Communication Monographs, 78, 463485. https://doi.org/10.1080/03637751.2011.618138CrossRefGoogle Scholar
Burscher, B., Odijk, D., Vliegenthart, R., Rijke, M., & de Vreese, C. H. (2014). Teaching the computer to code frames in news: Comparing two supervised machine learning approaches to frame analysis. Communication Methods and Measures, 8, 190206. https://doi.org/10.1080/19312458.2014.937527CrossRefGoogle Scholar
Burscher, B., van Spanje, J., & de Vreese, C. H. (2015). Owning the issues of crime and immigration: The relation between immigration and crime news and anti-immigrant voting in 11 countries. Electoral Studies, 38, 5969. https://doi.org/10.1016/j.electstud.2015.03.001CrossRefGoogle Scholar
Carletta, J. (2007). Unleashing the killer corpus: Experiences in creating the multi-everything AMI Meeting Corpus. Language Resources and Evaluation, 41, 181190. https://doi.org/10.1007/s10579-007-9040-xCrossRefGoogle Scholar
Carletta, J., Ashby, S., Bourban, S., Flynn, M., Guillemot, M., Hain, T., … Wellner, P. (2006). The AMI meeting corpus: A pre-announcement. In Renals, S. & Bengio, S. (Eds.), Machine learning for multimodal interaction (Vol. 3869, pp. 2839). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/11677482_3CrossRefGoogle Scholar
Colleoni, E., Rozza, A., & Arvidsson, A. (2014). Echo chamber or public sphere? Predicting political orientation and measuring political homophily in twitter using big data. Journal of Communication, 64, 317332. https://doi.org/10.1111/jcom.12084CrossRefGoogle Scholar
Edwards, J. A. (1993). Principles and contrasting systems of discourse transcription. In Edwards, J. A. & Lampert, M. D. (Eds.), Talking data: Transcription and coding in discourse research (pp. 331). Hillsdale, NJ: Erlbaum.Google Scholar
Ervin, J. N., Bonito, J. A., & Keyton, J. (2017). Convergence of intrapersonal and interpersonal processes across group meetings. Communication Monographs, 84, 200220. https://doi.org/10.1080/03637751.2016.1185136CrossRefGoogle Scholar
Feinerer, I., & Hornik, K. (2017). tm: Text Mining Package (Version R package version 0.7–1). Retrieved from https://CRAN.R-project.org/package=tmGoogle Scholar
Fushiki, T. (2011). Estimation of prediction error by using K-fold cross-validation. Statistics and Computing, 21, 137146. https://doi.org/10.1007/s11222-009-9153-8CrossRefGoogle Scholar
Gorisch, J., Wells, B., & Brown, G. J. (2012). Pitch contour matching and interactional alignment across turns: An acoustic investigation. Language and Speech, 55, 5776. https://doi.org/10.1177/0023830911428874CrossRefGoogle ScholarPubMed
Gouran, D. S., Hirokawa, R. Y., Julian, K. M., & Leatham, G. B. (1993). The evolution and current status of the functional perspective on communication in decision-making and problem-solving groups. In Anderson, J. (Ed.), Communication yearbook 16 (pp. 573600). Newbury Park, CA: Sage.Google Scholar
Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis, 21, 267297. https://doi.org/http://dx.doi.org/10.1093/pan/mps028CrossRefGoogle Scholar
Guetzkow, H. (1950). Unitizing and categorizing problems in coding qualitative data. Journal of Clinical Psychology, 6, 4758. https://doi.org/http://dx.doi.org/10.1002/1097-4679(195001)6:1%3C47::AID-JCLP2270060111%3E3.0.CO;2-I3.0.CO;2-I>CrossRefGoogle Scholar
Guidelines for Dialogue Act and Addressee Annotation Version 1.0. (2005). Retrieved February 14, 2018, from http://groups.inf.ed.ac.uk/ami/corpus/Guidelines/dialogue_acts_manual_1.0.pdfGoogle Scholar
Hain, T., Wan, V., Burget, L., Karafiat, M., Dines, J., Vepa, J., & Lincoln, M. (2007). The AMI system for the transcription of speech in meetings. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2007. ICASSP 2007 (Vol. 4, p. IV-357IV-360). https://doi.org/10.1109/ICASSP.2007.366923Google Scholar
Hand, D. J. (2006). Classifier technology and the illusion of progress. Statistical Science, 21, 114. https://doi.org/10.1214/088342306000000060Google Scholar
Interdisciplinary Insights into Group and Team Dynamics. (2017). Special Issue: Small Group Research, 48, 519630.CrossRefGoogle Scholar
Ivezić, Ž., Connolly, A. J., VanderPlas, J. T., & Gray, A. (2014). Statistics, data mining, and machine learning in astronomy: A practical Python guide for the analysis of survey data. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R (1st edn. 2013, Corr. 6th printing 2016 edition). New York, NY: Springer.CrossRefGoogle Scholar
Jarnow, J. (2016). Why our crazy-smart AI still sucks at transcribing speech. Retrieved March 16, 2017, from www.wired.com/2016/04/long-form-voice-transcription/Google Scholar
Jurka, T. P., Collingwood, L., Boydstun, A. E., Grossman, E., & van Atteveldt, W. (2014). RTextTools: Automatic text classification via supervised learning (Version R package version 1.4.2). Retrieved from https://CRAN.R-project.org/package=RTextToolsGoogle Scholar
Keyton, J., & Beck, S. J. (2009). The influential role of relational messages in group interaction. Group Dynamics: Theory, Research, and Practice, 13, 1430. https://doi.org/10.1037/a0013495CrossRefGoogle Scholar
Lambert, B. L. (2001). Automatic content analysis of pharmacist-patient interactions using the Theme Machine document clustering system. In West, M. (Ed.), Progress in communication sciences, Volume 17: Applications of computer content analysis (pp. 103122). Westport, CT: Ablex.Google Scholar
Maas, A. L., Qi, P., Xie, Z., Hannun, A. Y., Lengerich, C. T., Jurafsky, D., & Ng, A. Y. (2017). Building DNN acoustic models for large vocabulary speech recognition. Computer Speech & Language, 41, 195213. https://doi.org/10.1016/j.csl.2016.06.007CrossRefGoogle Scholar
Meyer, D., Hornik, K., & Feinerer, I. (2008). Text mining infrastructure in R. Journal of Statistical Software, 25, 154. https://doi.org/10.18637/jss.v025.i05Google Scholar
Meyers, R. A. (1989). Testing persuasive argument theory’s predictor model: Alternative interactional accounts of group argument and influence. Communication Monographs, 56, 112132. https://doi.org/10.1080/03637758909390254CrossRefGoogle Scholar
Meyers, R. A., & Brashers, D. E. (2010). Extending the conversational argument coding scheme: Argument categories, units, and coding procedures. Communication Methods and Measures, 4, 2745. https://doi.org/10.1080/19312451003680467CrossRefGoogle Scholar
Nguyen, V., Boyd-Graber, J., Resnik, P., Cai, D. A., Midberry, J. E., & Wang, Y. (2014). Modeling topic control to detect influence in conversations using nonparametric topic models. Machine Learning, 95, 381421. doi:10.1007/s10994-013-5417-9CrossRefGoogle Scholar
Poole, M. S., & Folger, J. P. (1981). A method for establishing the representational validity of interaction coding systems: Do we see what they see? Human Communication Research, 8, 2642. https://doi.org/http://dx.doi.org/10.1111/j.1468-2958.1981.tb00654.xCrossRefGoogle Scholar
Putnam, L. L., & Stohl, C. (1990). Bona fide groups: A reconceptualization of groups in context. Communication Studies, 41, 248265. https://doi.org/10.1080/10510979009368307CrossRefGoogle Scholar
Reidsma, D., Heylen, D., & Op Den Akker, R. (2009). On the contextual analysis of agreement scores. In Kipp, M., Martin, J., Paggio, P., & Heylen, D. (Eds.), Multimodal corpora: From models of natural interaction to systems and applications (pp. 122137). Berlin, Germany: Springer-Verlag. Retrieved from http://dl.acm.org/citation.cfm?id=1809277.1809288CrossRefGoogle Scholar
Scheerhorn, D., Geist, P., & Teboul, J. B. (1994). Beyond decision making in decision-making groups: Implications for the study of group communication. In Frey, L. R. (Ed.), Group communication in context: Studies of natural groups. (pp. 247262). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Stasser, G., & Titus, W. (2003). Hidden profiles: A brief history. Psychological Inquiry, 14, 304313. https://doi.org/10.1207/S15327965PLI1403&4_21CrossRefGoogle Scholar
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37, 267307. https://doi.org/10.1162/COLI_a_00049CrossRefGoogle Scholar
Tsai, Y. (1977). Hierarchical structure of participation in natural groups. Behavioral Science, 22(1), 3840. https://doi.org/10.1002/bs.3830220106CrossRefGoogle Scholar
Wittenbaum, G. M., Hollingshead, A. B., Paulus, P. B., Hirokawa, R. Y., Ancona, D. G., Peterson, R. S., & Yoon, K. (2004). The functional perspective as a lens for understanding groups. Small Group Research, 35, 1743. https://doi.org/10.1177/1046496403259459CrossRefGoogle Scholar

References

Boos, M. (1992). A typology of case studies. In Súilleabháin, M. Ó., Stuhler, E. A., & de Tombe, D. J. (Eds.), Research on cases and theories, Vol. 1 (pp. 516). Mering: Hampp.Google Scholar
Bratman, M. E. (1992). Shared cooperative activity. The Philosophical Review, 101(2), 327341. doi:10.2307/2185537CrossRefGoogle Scholar
Burke, C. S., Stagl, K. C., Salas, E., Pierce, L., & Kendall, D. (2006). Understanding team adaption: A conceptual analysis and model. Journal of Applied Psychology, 91, 11891297. doi:10.1037/0021-9010.91.6.1189CrossRefGoogle ScholarPubMed
Cacciabue, P. C., & Hollnagel, E. (1994). Simulation of cognition: Applications. In Hoc, J.-M., Cacciabue, P. C., & Hollnagel, E. (Eds.), Expertise and technology. Cognition & human-computer cooperation (pp. 5574). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Cooke, N. J., Gorman, J. C., Myers, C. W., & Duran, J. L. (2013). Interactive team cognition. Cognitive Science, 37, 255285. doi:255-285.10.1111/cogs.12009CrossRefGoogle ScholarPubMed
Cooke, N. J., Salas, E., Kiekel, P. A., & Bell, B. (2004). Advances in measuring team cognition. In Salas, E. & Fiore, S. M. (Eds.), Team cognition: Understanding the factors that drive process and performance (pp. 83106). Washington, DC: American Psychological Association. doi:10.1037/10690-005CrossRefGoogle Scholar
Edmondson, A. C. (2003). Speaking up in the operating room: How team leaders promote learning in interdisciplinary action teams. Journal of Management Studies, 40(6), 14191452. doi:10.1111/1467-6486.00386CrossRefGoogle Scholar
Fiore, S., Rosen, M., Smith-Jentsch, K. A., Salas, E., Letsky, M., & Warner, N. (2010). Toward an understanding of macrocognition in teams: Predicting processes in complex collaborative contexts. Human Factors, 52(2), 203224. doi:10.1177/0018720810369807CrossRefGoogle ScholarPubMed
Fruhen, L. S., Flin, R., & McLeod, R. (2014). Chronic unease for safety in managers: A conceptualisation. Journal of Risk Research, 17(8), 869979. doi:10.1080/13669877.2013.822924CrossRefGoogle Scholar
Grote, G., Weichbrodt, J.C., Günter, H., Zala-Mezö, E., & Künzle, B. (2009). Coordination in high-risk organizations: The need for flexible routines. Cognition, Technology & Work, 11, 1727. doi:10.1007/s10111-008-0119-yCrossRefGoogle Scholar
Klein, G., Ross, K. G., Moon, B. M., Klein, D. E., Hoffman, R. R., & Hollnagel, E. (2003). Macrocognition. IEEE Intelligent Systems, 18(3), 8185. doi:10.1109/MIS.2003.1200735CrossRefGoogle Scholar
Künzle, B., Zala-Mezö, E., Wacker, J., Kolbe, M., Spahn, D. R., & Grote, G. (2010). Leadership in anaesthesia teams: The most effective leadership is shared. Quality & Safety in Healthcare, 19, 16. doi:10.1136/qshc.2008.030262Google ScholarPubMed
Letsky, M., Warner, N., Fiore, S. M., Rosen, M. A., & Salas, E. (2007). Macrocognition in complex team problem solving. Proceedings of the 12th International Command and Control Research and Technology Symposium (12th ICCRTS), Newport, RI, June 2007. Washington, DC: US Department of Defense Command and Control Research Program.Google Scholar
Nonaka, I. (1994). A dynamic theory of organizational knowledge creation. Organization Science, 5, 1437. doi:10.1287/orsc.5.1.14CrossRefGoogle Scholar
Patterson, E. S., Miller, J. E., Roth, E. M., & Woods, D. D. (2010). Macrocognition: Where do we stand? In Patterson, E. S. & Miller, J. E. (Eds.), Macrocognition metrics and scenarios: Design and evaluation for real-world teams (pp. xxiiixxxi). Hampshire, UK: Ashgate Publishing.Google Scholar
Perrow, C. (1999). Normal accidents. Living with high-risk technologies. Princeton, NJ: Princeton University Press.Google Scholar
Ritz, F. (2012). Organizational trust and trust in automated systems as predictors for safety related team performance: Results from a cross-cultural study. In Salvendy, G. & Karwowski, W. (Eds.), Advances in human factors and ergonomics 2012, 14 Volume Set: Proceedings of the 4th AHFE Conference 2125 July 2012 (pp. 72497258). Boca Raton, FL: CRC Press.Google Scholar
Ritz, F., Kleindienst, C., Brüngger, J., & Koch, J. (2015). Coping with unexpected safety-critical situations through adaptation: A concept for resilient (simulator) team training. 6th International Conference on Applied Human Factors and Ergonomics, AHFE 2015, Procedia Manufacturing, 3, 18651871.Google Scholar
Ritz, F., & Koch, J. (2015). Die Entwicklung sicherheitsgerichteten Führungsverhaltens zur Bewältigung von kritischen Systemzuständen durch Leitwarten-Teams in der Kerntechnik [The development of safety-oriented leadership behavior to handle critical system conditions by control room teams in nuclear power engineering]. In Grandt, M. & Schmerwitz, S. (Eds.), Kooperation und kooperative Systeme in der Fahrzeug- und Prozessführung [Cooperation and cooperative systems in vehicle and process management] (pp. 171186). Bonn, DE: Deutsche Gesellschaft für Luft- und Raumfahrt.Google Scholar
Rosen, M. A., Fiore, S. M., Salas, E., Letsky, M., & Warner, N. (2008). Tightly coupling cognition: Understanding how communication and awareness drive coordination in teams. The International C2 Journal, 2(1), 129.Google Scholar
Savioja, P., Norros, L., Salo, L., & Aaltonen, I. (2014). Identifying resilience in proceduralised accident management activity of NPP operating crews. Safety Science, 68, 258274. doi: 10.1016/j.ssci.2014.04.008CrossRefGoogle Scholar
Stachowski, A., Kaplan, S. A., & Waller, M. J. (2009). The benefits of flexible team interaction during crises. Journal of Applied Psychology, 94, 15361543. doi:10.1037/a0016903CrossRefGoogle ScholarPubMed
Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28, 675735. doi:10.1017/S0140525X05000129CrossRefGoogle ScholarPubMed
Vidal, M. C. R., Carvalho, P. V. R., Santos, M. S., & dos Santos, I. J. L. (2009). Collective work and resilience of complex systems. Journal of Loss Prevention in the Process Industries, 22, 516527. doi:10.1016/j.jlp.2009.04.005CrossRefGoogle Scholar
Waller, M. J. (1999). The timing of adaptive group responses to nonroutine events. Academy of Management Journal, 42(2), 127137. doi:10.2307/257088CrossRefGoogle Scholar
Waller, M. J., Gupta, N., & Giambatista, R. C. (2004). Effects of adaptive behaviors and shared mental models on control crew performance. Management Science, 50(11), 15341544. doi:10.1287/mnsc.1040.0210CrossRefGoogle Scholar
Yin, R. K. (2009). Case study research: Design and methods (4th edn.). Los Angeles, CA: Sage.Google Scholar
Zala-Mezö, E., Wacker, J., Künzle, B., Brüesch, M., & Grote, G. (2009). The influence of standardisation and task load on team coordination patterns during anaesthesia inductions. Quality and Safety in Health Care, 18(2), 127130. doi:10.1136/qshc.2007.025973CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×