Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T13:10:13.734Z Has data issue: false hasContentIssue false

11 - The Development of Multisensory Attention Skills

Individual Differences, Developmental Outcomes, and Applications

from Part II - Perceptual Development

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access

Summary

The world presents an array of constantly changing sights and sounds, tactile and vestibular experiences, far too much to be attended and processed at any one time. Perceivers must make sense of this dynamically changing flux of stimulation by selecting events and properties of events that provide information that is meaningful and relevant to their needs, goals, and actions as they change across time. Adults are highly skilled at selectively attending to this multisensory stimulation in a way that optimizes perception and learning and supports their actions and goals. However, this selective attention presents a remarkable challenge for young infants – how to learn to attend to the dimensions of stimulation that optimize meaningful perception and action and to filter out stimulation that is less relevant.

Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 303 - 338
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bahrick, L. E. (1987). Infants’ intermodal perception of two levels of temporal structure in natural events. Infant Behavior and Development, 10, 387416. doi:10.1016/0163-6383(87)90039-7Google Scholar
Bahrick, L. E. (1988). Intermodal learning in infancy: Learning on the basis of two kinds of invariant relations in audible and visible events. Child Development, 59, 197209. doi:10.2307/1130402Google Scholar
Bahrick, L. E. (1992). Infants’ perceptual differentiation of amodal and modality-specific audio-visual relations. Journal of Experimental Child Psychology, 53, 180199. doi:10.1016/0022-0965(92)90048-BCrossRefGoogle ScholarPubMed
Bahrick, L. E. (2001). Increasing specificity in perceptual development: Infants’ detection of nested levels of multimodal stimulation. Journal of Experimental Child Psychology, 79, 253270. doi:10.1006/jecp.2000.2588CrossRefGoogle ScholarPubMed
Bahrick, L. E. (2010). Intermodal perception and selective attention to intersensory redundancy: Implications for typical social development and autism. In Bremner, J. G. & Wachs, T. D. (Eds.), The Wiley-Blackwell handbook of infant development (Vol. 1, 2nd ed., pp. 120165). Malden, MA: Wiley-Blackwell. doi:10.1002/9781444327564.ch4Google Scholar
Bahrick, L. E., Flom, R., & Lickliter, R. (2002). Intersensory redundancy facilitates discrimination of tempo in 3-month-old infants. Developmental Psychobiology, 41, 352363. doi:10.1002/dev.10049Google Scholar
Bahrick, L. E., Gogate, L. J., & Ruiz, I. (2002). Attention and memory for faces and actions in infancy: The salience of actions over faces in dynamic events. Child Development, 73, 16291643. doi:10.1111/1467–8624.00495Google Scholar
Bahrick, L. E., & Lickliter, R. (2000). Intersensory redundancy guides attentional selectivity and perceptual learning in infancy. Developmental Psychology, 36, 190201. doi:10.1037//0012-1649.36.2.190Google Scholar
Bahrick, L. E., (2002). Intersensory redundancy guides early perceptual and cognitive development. In Kail, R. V (Ed.), Advances in child development and behavior (Vol. 30, pp. 153187). San Diego, CA: Academic Press.Google Scholar
Bahrick, L. E., (2012). The role of intersensory redundancy in early perceptual, cognitive, and social development. In Bremner, A. J., Lewkowicz, D. J., & Spence, C. (Eds.), Multisensory development (pp. 183206). New York, NY: Oxford University Press.CrossRefGoogle Scholar
Bahrick, L. E., (2014). Learning to attend selectively: The dual role of intersensory redundancy. Current Directions in Psychological Science, 23, 414420. doi:10.1177/0963721414549187Google Scholar
Bahrick, L. E., Lickliter, R., & Castellanos, I. (2013). The development of face perception in infancy: Intersensory interference and unimodal visual facilitation. Developmental Psychology, 49, 19191930. doi:10.1037/a0031238Google Scholar
Bahrick, L. E., Lickliter, R., (2020). Educating infant attention to the amodal property of tempo: The role of intersensory redundancy. Manuscript submitted for publication.Google Scholar
Bahrick, L. E., Lickliter, R., Castellanos, I., & Vaillant-Molina, M. (2010). Increasing task difficulty enhances effects of intersensory redundancy: Testing a new prediction of the Intersensory Redundancy Hypothesis. Developmental Science, 13, 731737. doi:10.1111/j.1467-7687.2009.00928.xGoogle Scholar
Bahrick, L. E., Lickliter, R., & Flom, R. (2006). Up versus down: The role of intersensory redundancy in the development of infants’ sensitivity to the orientation of moving objects. Infancy, 9, 7396. doi:10.1207/s15327078in0901_4Google Scholar
Bahrick, L. E., McNew, M. E., Pruden, S. M., & Castellanos, I. (2019). Intersensory redundancy promotes infant detection of prosody in infant-directed speech. Journal of Experimental Child Psychology, 183, 295309. doi:10.1016/j.jecp.2019.02.008Google Scholar
Bahrick, L. E., McNew, M. E., Todd, J. T., Martinez, J., Mira, S., Cheatham-Johnson, R., & Hart, K. C. (2017). Individual differences in intersensory processing predict pre-literacy skills in young children. Poster presented at the meeting of the Society for Research in Child Development, Austin, TX.Google Scholar
Bahrick, L. E., & Pickens, J. N. (1994). Amodal relations: The basis for intermodal perception and learning. In Lewkowicz, D. J. & Lickliter, R. (Eds.), The development of intersensory perception: Comparative perspectives (pp. 204233). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Bahrick, L. E., Soska, K. C., & Todd, J. T. (2018). Assessing individual differences in the speed and accuracy of intersensory processing in young children: The Intersensory Processing Efficiency Protocol. Developmental Psychology, 54, 22262239. doi:10.1037/dev0000575Google Scholar
Bahrick, L. E., & Todd, J. T. (2012). Multisensory processing in autism spectrum disorders: Intersensory processing disturbance as a basis for atypical development. In Stein, B. E. (Ed.), The new handbook of multisensory processes (pp. 14531508). Cambridge, MA: MIT Press.Google Scholar
Bahrick, L. E., Todd, J. T., Castellanos, I., & Sorondo, B. M. (2016). Enhanced attention to speaking faces versus other event types emerges gradually across infancy. Developmental Psychology, 52, 17051720. doi:10.1037/dev0000157Google Scholar
Bahrick, L. E., Todd, J. T., & Soska, K. C. (2018). The Multisensory Attention Assessment Protocol (MAAP): Characterizing individual differences in multisensory attention skills in infants and children and relations with language and cognition. Developmental Psychology, 54, 22072225. doi:10.1037/dev0000594CrossRefGoogle ScholarPubMed
Barutchu, A., Crewther, S. G., Fifer, J., Shivdasani, M. N., Innes-Brown, H., Toohey, S., … Paolini, A. G. (2010). The relationship between multisensory integration and IQ in children. Developmental Psychology, 47, 877885. doi:10.1037/a0021903Google Scholar
Bebko, J. M., Weiss, J. A., Demark, J. L., & Gomez, P. (2006). Discrimination of temporal synchrony in intermodal events by children with autism and children with developmental disabilities without autism. Journal of Child Psychology and Psychiatry, 47, 8898. doi:10.1111/j.1469-7610.2005.01443.xGoogle Scholar
Beebe, B., Messinger, D., Bahrick, L. E., Margolis, A., Buck, K. A., & Chen, H. (2016). A systems view of mother–infant face-to-face communication. Developmental Psychology, 52, 556571. doi:10.1037/a0040085Google Scholar
Birch, H. G., & Lefford, A. (1963). Intersensory development in children. Monographs of the Society for Research in Child Development, 28, 148. doi:10.2307/1165681Google Scholar
Blair, C., & Raver, C. C. (2012). Child development in the context of adversity: Experiential canalization of brain and behavior. American Psychologist, 67(4), 309318. doi:10.1037/a0027493Google Scholar
Blair, C., (2015). School readiness and self-regulation: A developmental psychobiological approach. Annual Review of Psychology, 66, 711731. doi:10.1146/annurev-psych-010814-015221Google Scholar
Bower, T. G. R. (1974). Development in infancy. Oxford: W. H. Freeman.Google Scholar
Bremner, A. J., Lewkowicz, D. J., & Spence, C. (2012). Multisensory development. Oxford: Oxford University Press.Google Scholar
Calvert, G. A., Spence, C., & Stein, B. E. (2004). The handbook of multisensory processes. Cambridge, MA: MIT Press.Google Scholar
Carter, A. S., & Briggs-Gowan, M. (2000). Infant toddler social and emotional assessment. New Haven, CT: Yale University, Connecticut Early Development Project.Google Scholar
Colombo, J. (2001). The development of visual attention in infancy. Annual Review of Psychology, 51, 337367. doi:10.1146/annurev.psych.52.1.337Google Scholar
Colombo, J., Shaddy, D. J., Richman, W. A., Maikranz, J. M., & Blaga, O. M. (2004). The developmental course of habituation in infancy and preschool outcome. Infancy, 5, 138. doi:10.1207/s15327078in0501_1Google Scholar
Constantino, J. N., & Gruber, , Charles, P. (2005). The social responsiveness scale. Los Angeles. CA: Western Psychological Services.Google Scholar
Curtindale, L. M., Bahrick, L. E., Lickliter, R., & Colombo, J. (2019). Effects of multimodal synchrony on infant attention and heart rate during events with social and nonsocial stimuli. Journal of Experimental Child Psychology, 178, 283294. doi:10.1016/j.jecp.2018.10.006Google Scholar
Dawson, G., Meltzoff, A. N., Osterling, J., Rinaldi, J., & Brown, E. (1998). Children with autism fail to orient to naturally occurring social stimuli. Journal of Autism and Developmental Disorders, 28, 479485. doi:10.1023/A:1026043926488CrossRefGoogle ScholarPubMed
DeCasper, A. J., & Spence, M. J. (1991). Auditorily mediated behavior during the perinatal period: A cognitive view. In Salomon Weiss, M. J. & Zelazo, P. R. (Eds.), Newborn attention: Biological constraints and the influence of experience (pp. 142176). Westport, CT: Ablex.Google Scholar
Eyberg, S. M., Nelson, M. M., Duke, M., & Boggs, S. R. (2004). Manual for the dyadic parent–child interaction coding system (3rd ed.). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.627.4254&rep=rep1&type=pdfGoogle Scholar
Fagan, J. F., Holland, C. R., & Wheeler, K. (2007). The prediction, from infancy, of adult IQ and achievement. Intelligence, 35, 225231. doi:10.1016/j.intell.2006.07.007CrossRefGoogle Scholar
Falck-Ytter, T., Nyström, P., Gredebäck, G., Gliga, T., & Bölte, S. (2018). Reduced orienting to audiovisual synchrony in infancy predicts autism diagnosis at 3 years of age. Journal of Child Psychology and Psychiatry, 59, 872880. doi:10.1111/jcpp.12863Google Scholar
Feldman, R. (2007). Parent–infant synchrony: Biological foundations and developmental outcomes. Current Directions in Psychological Science, 16, 340345. doi:10.1111/j.1467-8721.2007.00532.xGoogle Scholar
Feng, W., Stormer, V. S., Martinez, A., McDonald, J. J., & Hillyard, S. A. (2014). Sounds activate visual cortex and improve visual discrimination. Journal of Neuroscience, 34, 98179824. doi:10.1523/JNEUROSCI.4869-13.2014Google Scholar
Fernald, A., & Marchman, V. A. (2012). Individual differences in lexical processing at 18 months predict vocabulary growth in typically developing and late-talking toddlers. Child Development, 83, 203222. doi:10.1111/j.1467-8624.2011.01692.xCrossRefGoogle ScholarPubMed
Fernald, A., Perfors, A., & Marchman, V. A. (2006). Picking up speed in understanding: Speech processing efficiency and vocabulary growth across the 2nd year. Developmental Psychology, 42, 98116. doi:10.1037/0012-1649.42.1.98Google Scholar
Fernald, A., Pinto, J. P., Swingley, D., Weinberg, A., & McRoberts, G. W. (1998). Rapid gains in speed of verbal processing by infants in the 2nd year. Psychological Science, 9, 228231. doi:10.1111/1467–9280.00044Google Scholar
Flom, R., & Bahrick, L. E. (2007). The development of infant discrimination of affect in multimodal and unimodal stimulation: The role of intersensory redundancy. Developmental Psychology, 43, 238252. doi:10.1037/0012-1649.43.1.238Google Scholar
Foxe, J. J., Molholm, S., Del Bene, V. A., Frey, H. -P. P., Russo, N. N., Blanco, D., … Ross, L. A. (2013). Severe multisensory speech integration deficits in high-functioning school-aged children with autism spectrum disorder (ASD) and their resolution during early adolescence. Cerebral Cortex, 25, 298312. doi:10.1093/cercor/bht213Google Scholar
Frank, M. C., Vul, E., & Johnson, S. P. (2009). Development of infants’ attention to faces during the first year. Cognition, 110, 160170.Google Scholar
Fredrickson, B. L. (2000). Cultivating positive emotions to optimize health and well-being. Prevention & Treatment, 3, Article 0001a. doi:10.1037/1522-3736.3.1.31aGoogle Scholar
Fuchs, L. S., Fuchs, D., & Hosp, M. K. (2001). Oral reading fluency as an indicator of reading competence: A theoretical, empirical, and historical analysis. Scientific Studies of Reading, 5, 257288. doi:10.1207/S1532799XSSR0503Google Scholar
Ghazanfar, A. A., & Schroeder, C. E. (2006). Is neocortex essentially multisensory? Trends in Cognitive Sciences, 10, 278285.CrossRefGoogle ScholarPubMed
Gibson, E. J. (1969). Principles of perceptual learning and development. East Norwalk, CT: Appleton-Century-Crofts.Google Scholar
Gibson, E. J. (1988). Exploratory behavior in the development of perceiving, acting, and the acquiring of knowledge. Annual Review of Psychology, 39, 141. doi:10.1146/annurev.psych.39.1.1Google Scholar
Gibson, J. J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton Mifflin.Google Scholar
Gogate, L. J. (2010). Learning of syllable–object relations by preverbal infants: The role of temporal synchrony and syllable distinctiveness. Journal of Experimental Child Psychology, 105, 178197. doi:10.1016/j.jecp.2009.10.007Google Scholar
Gogate, L. J., & Bahrick, L. E. (1998). Intersensory redundancy facilitates learning of arbitrary relations between vowel sounds and objects in seven-month-old infants. Journal of Experimental Child Psychology, 69, 133149. doi:10.1006/jecp.1998.2438Google Scholar
Gogate, L. J., & Bahrick, L. E. (2001). Intersensory redundancy and 7-month-old infants’ memory for arbitrary syllable-object relations. Infancy, 2, 219231. doi:10.1207/S15327078IN0202_7Google Scholar
Gogate, L. J., & Hollich, G. (2010). Invariance detection within an interactive system: A perceptual gateway to language development. Psychological Review, 117, 496516. doi:10.1037/a0019049Google Scholar
Gogate, L. J., & Maganti, M. (2016). The dynamics of infant attention: Implications for crossmodal perception and word-mapping research. Child Development, 87, 345364. doi:10.1111/cdev.12509CrossRefGoogle ScholarPubMed
Gogate, L. J., Walker-Andrews, A. S., & Bahrick, L. E. (2001). The intersensory origins of word comprehension: An ecological–dynamic systems view. Developmental Science, 4, 137. doi:10.1111/1467–7687.00143Google Scholar
Goldstein, M. H., & Schwade, J. A. (2008). Social feedback to infants’ babbling facilitates rapid phonological learning. Psychological Science, 19, 515523. doi:10.1111/j.1467-9280.2008.02117.xGoogle Scholar
Hairston, W. D., Burdette, J. H., Flowers, D. L., Wood, F. B., & Wallace, M. T. (2005). Altered temporal profile of visual-auditory multisensory interactions in dyslexia. Experimental Brain Research, 166, 474480. doi:10.1007/s00221-005-2387-6Google Scholar
Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of young American children. Baltimore, MD: Brookes.Google Scholar
Hill, E. L., Crane, L., & Bremner, A. J. (2012). Developmental disorders and multisensory perception. In Bremner, A. J., Lewkowicz, D. J., & Spence, C. (Eds.), Multisensory development (pp. 273300). Oxford: Oxford University Press.Google Scholar
Hirsh-Pasek, K., Adamson, L. B., Bakeman, R., Owen, M. T., Golinkoff, R. M., Pace, A., … Suma, K. (2015). The contribution of early communication quality to low-income children’s language success. Psychological Science, 26, 10711083. doi:10.1177/0956797615581493Google Scholar
Hollich, G., Newman, R. S., & Jusczyk, P. W. (2005). Infants’ use of synchronized visual information to separate streams of speech. Child Development, 76, 598613. doi:10.1111/j.1467-8624.2005.00866.xGoogle Scholar
Jesse, A., & Johnson, E. K. (2016). Audiovisual alignment of co-speech gestures to speech supports word learning in 2-year-olds. Journal of Experimental Child Psychology, 145, 110. doi:10.1016/j.jecp.2015.12.002Google Scholar
Jordan, K. E., Suanda, S. H., & Brannon, E. M. (2008). Intersensory redundancy accelerates preverbal numerical competence. Cognition, 108, 210221. doi:10.1016/j.cognition.2007.12.001Google Scholar
Karmiloff-Smith, A. (1998). Development itself is the key to understanding developmental disorders. Trends in Cognitive Sciences, 2, 389398. doi:10.1016/S1364-6613(98)01230-3Google Scholar
Kuhl, P. K., & Meltzoff, A. N. (1982). The bimodal perception of speech in infancy. Science, 218, 11381141. doi:10.1126/science.7146899Google Scholar
Leffel, K., & Suskind, D. (2013). Parent-directed approaches to enrich the early language environments of children living in poverty. Seminars in Speech and Language, 34, 267277. doi:10.1055/s-0033-1353443Google Scholar
Lerner, R. M., Agans, J. P., DeSouza, L. M., & Hershberg, R. M. (2014). Developmental science in 2025: A predictive review. Research in Human Development, 11, 255272. doi:10.1080/15427609.2014.967046Google Scholar
Lewis, R., & Noppeney, U. (2010). Audiovisual synchrony improves motion discrimination via enhanced connectivity between early visual and auditory areas. Journal of Neuroscience, 30, 1232912339. doi:10.1523/JNEUROSCI.5745-09.2010Google Scholar
Lewkowicz, D. J. (1992). Infants’ response to temporally based intersensory equivalence: The effect of synchronous sounds on visual preferences for moving stimuli. Infant Behavior & Development, 15, 297324.Google Scholar
Lewkowicz, D. J. (1994). Development of intersensory perception in human infants. In Lewkowicz, D. J. & Lickliter, R. (Eds.), The development of intersensory perception: Comparative perspectives (pp. 165204). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Lewkowicz, D. J. (2000). The development of intersensory temporal perception: An epigenetic systems/limitations view. Psychological Bulletin, 126, 281308. doi:10.1037//0033-2909.126.2.281Google Scholar
Lewkowicz, D. J. (2004). Perception of serial order in infants. Developmental Science, 7, 175184. doi:10.1111/j.1467-7687.2004.00336.xGoogle Scholar
Lewkowicz, D. J. (2014). Early experience and multisensory perceptual narrowing. Developmental Psychobiology, 56, 292315. doi:10.1002/dev.21197Google Scholar
Lewkowicz, D. J., Leo, I., & Simion, F. (2010). Intersensory perception at birth: Newborns match nonhuman primate faces and voices. Infancy, 15, 4660. doi:10.1111/j.1532-7078.2009.00005.xGoogle Scholar
Lewkowicz, D. J., & Lickliter, R. (1994). The development of intersensory perception: Comparative perspectives. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Lewkowicz, D. J., & Turkewitz, G. (1980). Cross-modal equivalence in early infancy: Auditory-visual intensity matching. Developmental Psychology, 16, 597607. doi:10.1037/0012-1649.16.6.597Google Scholar
Lickliter, R. (1993). Timing and the development of perinatal perceptual organization. In Turkewitz, G. & Devenny, D. A. (Eds.), Developmental time and timing (pp. 105124). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Lickliter, R. (2000). Atypical perinatal sensory stimulation and early perceptual development: Insights from developmental psychobiology. Journal of Perinatology, 20, S45S54. doi:10.1016/B978-1-4557-7566-8.00096-XGoogle Scholar
Lickliter, R. (2011). The integrated development of sensory organization. Clinics in Perinatology, 38, 591603. doi:10.1016/j.clp.2011.08.007Google Scholar
Lickliter, R., & Bahrick, L. E. (2000). The development of infant intersensory perception: Advantages of a comparative convergent-operations approach. Psychological Bulletin, 126, 260280. doi:10.1037/0033-2909.126.2.260Google Scholar
Lickliter, R., Bahrick, L. E., & Honeycutt, H. (2002). Intersensory redundancy facilitates prenatal perceptual learning in bobwhite quail (Colinus virginianus) embryos. Developmental Psychology, 38, 1523. doi:10.1037/0012-1649.38.1.15Google Scholar
Lickliter, R., Bahrick, L. E., & Markham, R. G. (2006). Intersensory redundancy educates selective attention in bobwhite quail embryos. Developmental Science, 9, 604615. doi:10.1111/j.1467-7687.2006.00539.xGoogle Scholar
Lockman, J. J., & Kahrs, B. A. (2017). New insights into the development of human tool use. Current Directions in Psychological Science, 26, 330334. doi:10.1177/0963721417692035Google Scholar
Lord, C., Rutter, M., DiLavore, P., & Risi, S. (2002). Autism diagnostic observation schedule: Manual. Los Angeles, CA: Western Psychological Services.Google Scholar
Macaluso, E. (2006). Multisensory processing in sensory-specific cortical areas. Neuroscientist, 12, 327338. doi:10.1177/1073858406287908Google Scholar
Marchman, V. A., & Fernald, A. (2008). Speed of word recognition and vocabulary knowledge in infancy predict cognitive and language outcomes in later childhood. Developmental Science, 11, F9F16. doi:10.1111/j.1467-7687.2008.00671.xGoogle Scholar
McNew, M. E., Todd, J. T., Edgar, E. V, & Bahrick, L. E. (2018). Development of intersensory perception of social events: Longitudinal trajectories across 6–24 months of age. Poster presented at the meeting of the International Society for Developmental Psychobiology, San Diego, CA.Google Scholar
McNew, M. E., Todd, J. T., Zambrana, K., Hart, K. C., & Bahrick, L. E. (2019). Individual differences in intersensory processing predicts executive functioning and preliteracy skills. Poster presented at the meeting of the Society for Research in Child Development, Baltimore, MD.Google Scholar
Mellon, R. C., Kraemer, P. J., & Spear, N. E. (1991). Development of intersensory function: Age-related differences in stimulus selection of multimodal compounds in rats as revealed by Pavlovian conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 17, 448464. doi:10.1037/0097-7403.17.4.448Google Scholar
Mendelson, M. J., & Haith, M. M. (1976). The relation between audition and vision in the human newborn. Monographs of the Society for Research and Child Development, 41, 172. doi:10.2307/1165922Google Scholar
Muir, D., & Field, J. (1979). Newborn infants orient to sounds. Child Development, 50, 431436. doi:10.2307/1129419Google Scholar
Mullen, E. M. (1995). Mullen scales of early learning (AGS ed.). Circle Pines, MN: American Guidance Service.Google Scholar
Mundy, P., & Burnette, C. (2005). Joint attention and neurodevelopmental models of autism. In Volkmar, F. R., Paul, R., Klin, A., & Cohen, D. (Eds.), Handbook of autism and pervasive developmental disorders. Vol. 1: Diagnosis, development, neurobiology, and behavior (3rd ed., pp. 650681). Hoboken, NJ: John Wiley & Sons.Google Scholar
Mundy, P., Delgado, C., Block, J., Venezia, M., Hogan, A., & Seibert, J. (2003). A manual for the abridged Early Social Communication Scales (ESCS). Retrieved from www.ucdmc.ucdavis.edu/mindinstitute/ourteam/faculty_staff/ESCS.pdf.Google Scholar
National Early Literacy Panel (2008). Developing early literacy: Report of the National Early Literacy Panel. Washington, DC: National Institute for Early Literacy.Google Scholar
Nomikou, I., Koke, M., & Rohlfing, K. J. (2017). Verbs in mothers’ input to six-month-olds: Synchrony between presentation, meaning, and actions is related to later verb acquisition. Brain Sciences, 7, 119. doi:10.3390/brainsci7050052Google Scholar
Otsuka, Y., Konishi, Y., Kanazawa, S., Yamaguchi, M. K., Abdi, H., & O’Toole, A. J. (2009). Recognition of moving and static faces by young infants. Child Development, 80, 12591271. doi:10.1111/j.1467-8624.2009.01330.xGoogle Scholar
Overton, W. F. (2014). Relational developmental systems and developmental science: A focus on methodology. In Molenaar, P. C. M., Lerner, R. M., & Newell, K. M. (Eds.), Handbook of developmental systems: Theory and methodology (7th ed, pp. 1965). New York, NY: Guilford Press.Google Scholar
Piaget, J. (1952). The origins of intelligence in children. New York, NY: International Universities Press.Google Scholar
Pizur-Barnekow, K., Kraemer, G. W., & Winters, J. M. (2008). Pilot study investigating infant vagal reactivity and visual behavior during object perception. American Journal of Occupational Therapy, 62(2), 198205. doi:10.5014/ajot.62.2.198Google Scholar
Ponitz, C. C., McClelland, M. M., Matthews, J. S., & Morrison, F. J. (2009). A structured observation of behavioral self-regulation and its contribution to kindergarten outcomes. Developmental Psychology, 45, 605619. doi:10.1037/a0015365Google Scholar
Pons, F., Bosch, L., & Lewkowicz, D. J. (2019). Twelve-month-old infants’ attention to the eyes of a talking face is associated with communication and social skills. Infant Behavior and Development, 54, 8084. doi:10.1016/j.infbeh.2018.12.003Google Scholar
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542. doi:10.1146/annurev.neuro.13.1.25Google Scholar
Reynolds, G. D., Bahrick, L. E., Lickliter, R., & Guy, M. W. (2014). Neural correlates of intersensory processing in five-month-old infants. Developmental Psychobiology, 56, 355372. doi:10.1002/dev.21104Google Scholar
Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2011). Modeling a cascade of effects: The role of speed and executive functioning in preterm/full-term differences in academic achievement. Developmental Science, 14, 11611175. doi:10.1111/j.1467-7687.2011.01068.xGoogle Scholar
Rose, S. A., & Ruff, H. A. (1987). Cross-modal abilities in human infants. In Osofsky, J. D. (Ed.), The Handbook of infant development (2nd ed., pp. 318362). Oxford: John Wiley & Sons.Google Scholar
Rowe, M. L. (2018). Understanding socioeconomic differences in parents’ speech to children. Child Development Perspectives, 12, 122127. doi:10.1111/cdep.12271Google Scholar
Ruff, H. A., & Rothbart, M. K. (1996). Attention in early development: Themes and variations. New York, NY: Oxford University Press.Google Scholar
Rutter, M., Bailey, A., & Lord, C. (2003). The social communication questionnaire. Los Angeles, CA: Western Psychological Services.Google Scholar
Schroeder, C. E., & Foxe, J. (2005). Multisensory contributions to low-level, “unisensory” processing. Current Opinion in Neurobiology, 15, 454458. doi:10.1016/j.conb.2005.06.008Google Scholar
Seligman, M. E. P., & Csikszentmihalyi, M. (2000). Positive psychology: An introduction. American Psychologist, 55, 514. doi:10.1007/978-94-017-9088-8_18Google Scholar
Slater, A., Quinn, P. C., Brown, E., & Hayes, R. (1999). Intermodal perception at birth: Intersensory redundancy guides newborn infants’ learning of arbitrary auditory-visual pairings. Developmental Science, 2, 333338. doi:10.1111/1467–7687.00079Google Scholar
Slavich, G. M., & Cole, S. W. (2012). The emerging field of human social genomics. Clinical Psychological Science, 1, 233245. doi:10.1016/j.dcn.2011.01.002.Google Scholar
Spear, N. E., & McKinzie, D. L. (1994). Intersensory integration in the infant rat. In Lewkowicz, D. J. & Lickliter, R. (Eds.), The development of intersensory perception: Comparative perspectives (pp. 133–161). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Stein, B. E. (2012). The new handbook of multisensory processing. Cambridge, MA: MIT Press.Google Scholar
Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge, MA: MIT Press.Google Scholar
Stevenson, R. A., Segers, M., Ncube, B. L., Black, K. R., Bebko, J. M., Ferber, S., & Barense, M. D. (2018). The cascading influence of multisensory processing on speech perception in autism. Autism, 22, 609624. doi:10.1177/1362361317704413Google Scholar
Stevenson, R. A., Siemann, J. K., Schneider, B. C., Eberly, H. E., Woynaroski, T. G., Camarata, S. M., & Wallace, M. T. (2014). Multisensory temporal integration in autism spectrum disorders. Journal of Neuroscience, 34, 691697. doi:10.1523/JNEUROSCI.3615-13.2014Google Scholar
Suanda, S. H., Smith, L. B., & Yu, C. (2016). The multisensory nature of verbal discourse in parent-toddler interactions. Developmental Neuropsychology, 41, 324341. doi:10.1080/87565641.2016.1256403Google Scholar
Suarez-Rivera, C., Smith, L. B., & Yu, C. (2018). Multimodal parent behaviors within joint attention support sustained attention in infants. Developmental Psychology, 55, 96109. doi:10.1037/dev0000628CrossRefGoogle ScholarPubMed
Tamis-LeMonda, C. S., Kuchirko, Y., & Song, L. (2014). Why is infant language learning facilitated by parental responsiveness? Current Directions in Psychological Science, 23, 121126. doi:10.1177/0963721414522813Google Scholar
Tamis-LeMonda, C. S., Kuchirko, Y., & Tafuro, L. (2013). From action to interaction: Infant object exploration and mothers’ contingent responsiveness. IEEE Transactions on Autonomous Mental Development, 5, 202209. doi:10.1109/TAMD.2013.2269905Google Scholar
Todd, J. T., & Bahrick, L. E. (in preparation). Individual differences in multisensory attention skills in children with autism spectrum disorder predict language functioning and symptom severity: Evidence from the Multisensory Attention Assessment Protocol. Manuscript in preparation.Google Scholar
Todd, J. T., McNew, M. E., Edgar, E. V., Miller, J., Barroso, N. E., Bahrick, L. E., & Bagner, D. M. (2018). Speed, accuracy, and duration of multisensory attention to social events at 6 months predicts social competence at 18 months. Poster presented at the meeting of the International Congress on Infant Studies, Philadelphia, PA.Google Scholar
Todd, J. T., McNew, M. E., Soska, K. C., & Bahrick, L. E. (2016). Assessing the cost of competing stimulation on attention to multimodal events: Longitudinal findings from 3 to 12 months. Poster presented at the meeting of the Society for Research in Child Development, Austin, TX.Google Scholar
Vaillant-Molina, M., & Bahrick, L. E. (2012). The role of intersensory redundancy in the emergence of social referencing in 5½-month-old infants. Developmental Psychology, 48, 19. doi:10.1037/a0025263Google Scholar
Walker-Andrews, A. S. (1997). Infants’ perception of expressive behaviors: Differentiation of multimodal information. Psychological Bulletin, 121, 437456. doi:10.1037//0033-2909.121.3.437Google Scholar
Wallace, M. T. (2009). Dyslexia: Bridging the gap between hearing and reading. Current Biology, 19, R260R262. doi:10.1016/j.cub.2009.01.025Google Scholar
Warlaumont, A. S., Richards, J. A., Gilkerson, J., & Oller, D. K. (2014). A social feedback loop for speech development and its reduction in autism. Psychological Science, 25, 13141324. doi:10.1177/0956797614531023Google Scholar
Weisleder, A., & Fernald, A. (2013). Talking to children matters: Early language experience strengthens processing and builds vocabulary. Psychological Science, 24, 21432152. doi:10.1177/0956797613488145Google Scholar
Werchan, D. M., Baumgartner, H. A., Lewkowicz, D. J., & Amso, D. (2018). The origins of cortical multisensory dynamics: Evidence from human infants. Developmental Cognitive Neuroscience, 34, 7581. doi:10.1016/j.dcn.2018.07.002Google Scholar
Whitehurst, G. J., & Lonigan, C. J. (1998). Child development and emergent literacy. Child Development, 69, 848872. doi:10.1111/j.1467–8624.1998.tb06247.xGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×