Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T09:48:34.735Z Has data issue: false hasContentIssue false

8 - Infants’ Perception of Auditory Patterns

from Part II - Perceptual Development

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access

Summary

Unlike visual patterns, which are typically distributed in space, auditory patterns are necessarily distributed in time. As a result, listeners must allocate their attention over time, implicating memory processes as they track global as well as local features of patterns. Because of the cognitive and experiential limitations of infants, one might expect their perception of auditory patterns to differ drastically from that of adults. There are notable adult–infant differences, of course, but there are also parallels, which stem largely from infants’ holistic approach to auditory pattern processing and their biological predispositions.

Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 214 - 237
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdala, C., & Keefe, D. H. (2012) Morphological and functional ear development. In Werner, L., Fay, R., & Popper, A. (Eds.) Human auditory development (pp. 1960). New York, NY: Springer International.Google Scholar
Anderson, D. E., & Patel, A. D. (2018). Infants born preterm, stress, and neurodevelopment in the neonatal intensive care unit: Might music have an impact? Developmental Medicine & Child Neurology, 60, 256266.CrossRefGoogle ScholarPubMed
Arnaud, A., Gracco, V., & Ménard, L. (2018). Enhanced perception of pitch changes in speech and music in early blind adults. Neuropsychologia, 117, 261270.CrossRefGoogle ScholarPubMed
Arnon, S., Diamant, C., Bauer, S., Regev, R., Sirota, G., & Litmanovitz, I. (2014). Maternal singing during kangaroo care led to autonomic stability in preterm infants and reduced maternal anxiety. Acta Paediatrica, 103, 10391044.Google Scholar
Bargones, J. Y., & Werner, L. A. (1994). Adults listen selectively: Infants do not. Psychological Science, 5, 170174.Google Scholar
Baruch, C., & Drake, C. (1997). Tempo discrimination in infants. Infant Behavior and Development, 20, 573577.CrossRefGoogle Scholar
Bendixen, A., Háden, G. P., Németh, R., Farkas, D., Török, M., & Winkler, I. (2015). Newborn infants detect cues of concurrent sound segregation. Developmental Neuroscience, 37, 172181.CrossRefGoogle ScholarPubMed
Bergeson, T. R., & Trehub, S. E. (2002). Absolute pitch and tempo in mothers’ songs to infants. Psychological Science, 13, 7275.Google Scholar
Bergeson, T. R., (2006). Infants perception of rhythmic patterns. Music Perception, 23, 345360.Google Scholar
Bergeson, T. R., (2007). Signature tunes in mother’s speech to infants. Infant Behavior and Development, 30, 648654.Google Scholar
Bernier, D. E., & Soderstrom, M. (2018). Was that my name? Infants’ listening in conversational multi-talker backgrounds. Journal of Child Language, 45, 14391449.Google Scholar
Bigand, E., & Poulin-Charronnat, B. (2006). Are we ‘‘experienced listeners’’? A review of the musical capacities that do not depend on formal musical training. Cognition, 100, 100130.Google Scholar
Birnholz, J. C., & Benacerraf, B. R. (1983). The development of human fetal hearing. Science, 222, 516518.Google Scholar
Blacking, J. (1992). The biology of music making. In Myers, H. (Ed.), Ethnomusicology: An introduction (pp. 301314). New York, NY: Norton.Google Scholar
Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.Google Scholar
Broadbent, D. E. (1952). Listening to one of two synchronous messages. Journal of Experimental Psychology, 44, 5155.CrossRefGoogle ScholarPubMed
Broesch, T. L., & Bryant, G. A. (2015). Prosody in infant-directed speech is similar across Western and traditional cultures. Journal of Cognition and Development, 16, 3143.Google Scholar
Chang, E. F., & Merzenich, M. M. (2003). Environmental noise retards auditory cortical development. Science, 300, 498502.Google Scholar
Chang, H. W., & Trehub, S. E. (1977a). Auditory processing of relational information by young infants. Journal of Experimental Child Psychology, 24, 324331.Google Scholar
Chang, H. W., (1977b). Infants’ perception of temporal grouping in auditory patterns. Child Development, 48, 16661670.CrossRefGoogle ScholarPubMed
Cirelli, L. K. (2018). How interpersonal synchrony facilitates early prosocial behavior. Current Opinion in Psychology, 20, 3539.Google Scholar
Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17, 10031011.Google Scholar
Cirelli, L. K., Jurewicz, Z. B., & Trehub, S. E. (in press). Effects of maternal singing style on mother–infant arousal and behavior. Journal of Cognitive Neuroscience.Google Scholar
Cirelli, L. K., Spinelli, C., Nozaradan, S., & Trainor, L. J. (2016). Measuring neural entrainment to beat and meter in infants: Effects of music background. Frontiers in Neuroscience, 10, 229.Google Scholar
Cirelli, L. K., & Trehub, S. E. (2018). Infants help singers of familiar songs. Music & Science, 1, doi:2059204318761622.Google Scholar
Cirelli, L. K., & Trehub, S. E. (2020). Familiar songs reduce infant distress. Developmental Psychology, 56(5), 861–868. doi: 10.1037/dev0000917Google Scholar
Cirelli, L. K., Trehub, S. E., & Trainor, L. J. (2018). Rhythm and melody as social signals for infants. Annals of the New York Academy of Sciences, 1423, 6672.Google Scholar
Cooke, M. P., & Brown, G. J. (1993). Computational auditory scene analysis: Exploiting principles of perceived continuity. Speech Communication, 13, 391399.Google Scholar
Corbeil, M., Trehub, S. E., & Peretz, I. (2016). Singing delays the onset of infant distress. Infancy, 21, 373391.Google Scholar
Corrigall, K. A., & Trainor, L. J. (2010). Musical enculturation in preschool children: Acquisition of key and harmonic knowledge. Music Perception, 28, 195200.Google Scholar
Costa-Giomi, E. (2014). Mode of presentation affects infants’ preferential attention to singing and speech. Music Perception, 32, 160169.Google Scholar
Cross, I. (2011). The meanings of musical meanings: Comment on “Towards a Neural Basis of Processing Musical Semantics” by Stefan Koelsch. Physics of Life Reviews, 8, 116119.Google Scholar
Darwin, C. J., & Hukin, R. W. (1999). Auditory objects of attention: The role of interaural time-differences. Journal of Experimental Psychology: Human Perception and Performance, 25, 617629.Google Scholar
Dowling, W. J., & Harwood, D. L. (1986). Music cognition. New York, NY: Academic Press.Google Scholar
Draganova, R., Eswaran, H., Lowery, C. L., Murphy, P., Huotilainen, M., & Preissl, H. (2005). Sound frequency change detection in fetuses and newborns: A magnetoencephalographic study. NeuroImage, 28, 354361.Google Scholar
Erickson, L. C., & Newman, R. S. (2017). Influences of background noise on infants and children. Current Directions in Psychological Science, 26, 451457.CrossRefGoogle ScholarPubMed
Fancourt, D., & Perkins, R. (2018). Effect of singing interventions on symptoms of postnatal depression: Three-arm randomised controlled trial. British Journal of Psychiatry, 212, 119121.Google Scholar
Fernald, A. (1985). Four-month-old infants prefer to listen to motherese. Infant Behavior and Development, 8, 181195.Google Scholar
Fernald, A. (1992). Meaningful melodies in mothers’ speech to infants. In Papousek, H., Jurgens, U., & Papousek, M. (Eds.), Nonverbal vocal behaviour (pp. 262282). Cambridge, UK: Cambridge University Press.Google Scholar
Fernandez-Prieto, I., Navarra, J., & Pons, F. (2015). How big is this sound? Crossmodal association between pitch and size in infants. Infant Behavior and Development, 38, 7781.Google Scholar
Field, T. (2010). Postpartum depression effects on early interactions, parenting, and safety practices: A review. Infant Behavior and Development, 33, 16.CrossRefGoogle ScholarPubMed
Folland, N. A., Butler, B. E., Payne, J. E., & Trainor, L. J. (2015). Cortical representations sensitive to the number of perceived auditory objects emerge between 2 and 4 months of age: Electrophysiological evidence. Journal of Cognitive Neuroscience, 27, 10601067.Google Scholar
Fujioka, T., Trainor, L. J., & Ross, B. (2008). Simultaneous pitches are encoded separately in auditory cortex: An MMNm study. NeuroReport, 19, 361366.Google Scholar
Ghazban, N. (2013). Emotion regulation in infants using maternal singing and speech (Unpublished doctoral dissertation). Ryerson University, Toronto, Canada.Google Scholar
Granier-Deferre, C., Bassereau, S., Ribeiro, A., Jacquet, A. Y., & Decasper, A. J. (2011). A melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth. PLoS ONE, 6, e17304.Google Scholar
Gudmundsdottir, H., & Trehub, S. (2018). Adults recognize toddlers’ song renditions. Psychology of Music, 46, 281291.Google Scholar
Háden, G. P., Honing, H., Török, M., & Winkler, I. (2015). Detecting the temporal structure of sound sequences in newborn infants. International Journal of Psychophysiology, 96, 2328.CrossRefGoogle ScholarPubMed
Hannon, E. E., Schachner, A., & Nave-Blodgett, J. E. (2017). Babies know bad dancing when they see it: Older but not younger infants discriminate between synchronous and asynchronous audiovisual musical displays. Journal of Experimental Child Psychology, 159, 159174.CrossRefGoogle Scholar
Hannon, E. E., & Trehub, S. E. (2005a). Metrical categories in infancy and adulthood. Psychological Science, 16, 4855.Google Scholar
Hannon, E. E., (2005b). Tuning in to musical rhythms: Infants learn more readily than adults. Proceedings of the National Academy of Sciences, 102, 1263912643.CrossRefGoogle ScholarPubMed
Haryu, E., & Kajikawa, S. (2012). Are higher-frequency sounds brighter in color and smaller in size? Auditory-visual correspondences in 10-month-old-infants. Infant Behavior and Development, 35, 727732.CrossRefGoogle Scholar
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167178.Google Scholar
Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83, 323355.Google Scholar
Kisilevsky, B. S., Hains, S. M., Brown, C. A., Lee, C. T., Cowperthwaite, B., Stutzman, S. S., … Wang, Z. (2009). Fetal sensitivity to properties of maternal speech and language. Infant Behavior and Development, 32, 5971.Google Scholar
Krumhansl, C. L., & Jusczyk, P. W. (1990). Infants’ perception of phrase structure in music. Psychological Science, 1, 7073.Google Scholar
Lasky, R. E., & Williams, A. L. (2005). The development of the auditory system from conception to term. NeoReviews, 6, 141152.Google Scholar
Leerkes, E. M., Blankson, A. N., & O’Brien, M. (2009). Differential effects of maternal sensitivity to infant distress and nondistress on social-emotional functioning. Child Development, 80, 762775.Google Scholar
Lin, J. Y., & Hartmann, W. M. (1998). The pitch of a mistuned harmonic: Evidence for a template model. Journal of the Acoustical Society of America, 103, 26082617.Google Scholar
Litovsky, R. Y. (1997). Developmental changes in the precedence effect: Estimates of minimum audible angle. Journal of the Acoustical Society of America, 102, 17391745.Google Scholar
Marie, C., & Trainor, L. J. (2013). Development of simultaneous pitch encoding: Infants show a high voice superiority effect. Cerebral Cortex, 23, 660669.CrossRefGoogle ScholarPubMed
Marie, C., (2014). Early development of polyphonic sound encoding and the high voice superiority effect. Neuropsychologia, 57, 5058.Google Scholar
McAdams, S., & Bertoncini, J. (1997). Organization and discrimination of repeating sound sequences by newborn infants. Journal of the Acoustical Society of America, 102, 29452953.Google Scholar
McAuley, J. D., Jones, M. R., Holub, S., Johnston, H. M., & Miller, N. S. (2006). The time of our lives: Life span development of timing and event tracking. Journal of Experimental Psychology: General, 135, 348367.Google Scholar
McElwain, N. L., & Booth-Laforce, C. (2006). Maternal sensitivity to infant distress and nondistress as predictors of infant–mother attachment security. Journal of Family Psychology, 20, 247255.Google Scholar
McMillan, B. T., & Saffran, J. R. (2016). Learning in complex environments: The effects of background speech on early word learning. Child Development, 87, 18411855.Google Scholar
McNeill, W. H. (1995). Keeping together in time: Dance and drill in human history. Cambridge, MA: Harvard University Press.Google Scholar
Mehr, S. A., Singh, M., York, H., Glowacki, L., & Krasnow, M. M. (2018). Form and function in human song. Current Biology, 28, 356368.Google Scholar
Mehr, S. A., Song, L. A., & Spelke, E. S. (2016). For 5-month-old infants, melodies are social. Psychological Science, 27, 486501.Google Scholar
Moore, J. K., & Guan, Y. L. (2001). Cytoarchitectural and axonal maturation in human auditory cortex. Journal of the Association for Research in Otolaryngology, 2, 297311.Google Scholar
Morton, D. (1980). Thailand. In Sadie, S. (Ed.), The new Grove dictionary of music and musicians (Vol. 18, pp. 712722). London: Macmillan.Google Scholar
Nakata, T., & Trehub, S. E. (2004). Infants’ responsiveness to maternal speech and singing. Infant Behavior and Development, 27, 455464.CrossRefGoogle Scholar
Nakata, T., (2011). Expressive timing and dynamics in infant-directed and non-infant-directed singing. Psychomusicology: Music, Mind and Brain, 21, 130138.Google Scholar
Newman, R. S. (2005). The cocktail party effect in infants revisited: Listening to one’s name in noise. Developmental Psychology, 41, 352362.Google Scholar
Olsho, L. W., Koch, E. G., Carter, E. A., Halpin, C. F., & Spetner, N. B. (1988). Pure-tone sensitivity of human infants. Journal of the Acoustical Society of America, 84, 13161324.Google Scholar
Olsho, L. W., Koch, E. G., & Halpin, C. F. (1987). Level and age effects in infant frequency discrimination. Journal of the Acoustical Society of America, 82, 454464.CrossRefGoogle ScholarPubMed
Ozturk, O., Krehm, M., & Vouloumanos, A. (2013). Sound symbolism in infancy: Evidence for sound-shape cross-modal correspondences in 4-month-olds. Journal of Experimental Child Psychology, 114, 173186.Google Scholar
Papacharalampous, G. X., Nikolopoulos, T. P., Davilis, D. I., Xenellis, I. E., & Korres, S. G. (2011). Universal newborn hearing screening, a revolutionary diagnosis of deafness: Real benefits and limitations. European Archives of Otorhinolaryngology, 268, 13991406.Google Scholar
Parga, J. J., Daland, R., Kesavan, K., Macey, P. M. Zeltzer, L., & Harper, R. M. (2018). A description of externally recorded womb sounds in human subjects during gestation. PLoS ONE, 13, e0197045.Google Scholar
Pujol, J., Soriano-Mas, C., Ortiz, H., Sebastián-Gallés, N., Losilla, J. M., & Deus, J. (2006). Myelination of language-related areas in the developing brain. Neurology, 66, 339343.CrossRefGoogle ScholarPubMed
Pundir, A. S., Hameed, L. S., Dikshit, P. C., Kumar, P., Mohan, S., Radotra, B., … Iyengar, S. (2012). Expression of medium and heavy chain neurofilaments in the developing human auditory cortex. Brain Structure and Function, 217, 303321.Google Scholar
Pundir, A. S., Singh, U. A., Ahuja, N., Makhija, S., Dikshit, P. C., Radotra, B., … Iyengar, S. (2016). Growth and refinement of excitatory synapses in the human auditory cortex. Brain Structure and Function, 221, 36413674.Google Scholar
Phillips-Silver, J., & Trainor, L. J. (2005). Feeling the beat: Movement influences infant rhythm perception. Science, 308, 14301430.Google Scholar
Phillips-Silver, J., (2007). Hearing what the body feels: Auditory encoding of rhythmic movement. Cognition, 105, 533546.CrossRefGoogle ScholarPubMed
Piazza, E. A., Iordan, M. C., & Lew-Williams, C. (2017). Mothers consistently alter their unique vocal fingerprints when communicating with infants. Current Biology, 27, 31623167.Google Scholar
Plantinga, J., & Trainor, L. J. (2005). Memory for melody: Infants use a relative pitch code. Cognition, 98, 111.Google Scholar
Plantinga, J., & Trehub, S. E. (2014). Revisiting the innate preference for consonance. Journal of Experimental Psychology Human Perception & Performance, 40, 4049.Google Scholar
Plomp, R., & Levelt, W. J. (1965). Tonal consonance and critical bandwidth. Journal of the Acoustical Society of America, 38, 548–60.Google Scholar
Remez, R. E., Fellowes, J. M., & Nagel, D. S. (2007). On the perception of similarity among talkers. Journal of the Acoustical Society of America, 122, 36883696.Google Scholar
Rich, M. (2014, June 24). Pediatrics group to recommend reading aloud to children from birth. New York Times. Retrieved from www.nytimes.com/2014/06/24/us/pediatrics-group-to-recommend-reading-aloud-to-children-from-birth.html.Google Scholar
Richards, D. S., Frentzen, B., Gerhardt, K. J., McCann, M. E., & Abrams, R. M. (1992). Sound levels in the human uterus. Obstetrics & Gynecology, 80, 186190.Google Scholar
Rocha, S., & Mareschal, D. (2017). Getting into the groove: The development of tempo-flexibility between 10 and 18 months of age. Infancy, 22, 540551.Google Scholar
Rose, M. M., & Moore, B. C. (2000). Effects of frequency and level on auditory stream segregation. Journal of the Acoustical Society of America, 108, 12091214.Google Scholar
Rubin, D. C. (1995). Memory in oral traditions: The cognitive psychology of epic, ballads, and counting-out rhymes. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Sachs, C. (1943). The road to major. Musical Quarterly, 29, 381404.Google Scholar
Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19, 8691.Google Scholar
Savage, P. E., Brown, S., Sakai, E., & Currie, T. E. (2015). Statistical universals reveal the structures and functions of human music. Proceedings of the National Academy of Sciences, 112, 89878992.Google Scholar
Schellenberg, E. G., & Trainor, L. J. (1996). Sensory consonance and the perceptual similarity of complex-tone harmonic intervals: Tests of adult and infant listeners. Journal of the Acoustical Society of America, 100, 33213328.Google Scholar
Schellenberg, E. G., & Trehub, S. E. (1994). Frequency ratios and the perception of tone patterns. Psychonomic Bulletin & Review, 1, 191201.Google Scholar
Schellenberg, E. G., (1996). Natural musical intervals: Evidence from infant listeners. Psychological Science, 7, 272277.Google Scholar
Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech recognition with primarily temporal cues. Science, 270, 303304.Google Scholar
Sharma, A., Dorman, M. F., & Kral, A. (2005). The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hearing Research, 203, 134143.CrossRefGoogle ScholarPubMed
Shaw, R., Isaia, A., Schwartz, A., & Atkins, M. (2019). Encouraging parenting behaviors that promote early childhood development among caregivers from low-income urban communities: A randomized static group comparison trial of a primary care-based parenting program. Maternal and Child Health Journal, 23, 39–46.Google Scholar
Smith, N. A., Folland, N. A., Martinez, D. M., & Trianor, L. J. (2017). Multisensory object perception in infancy: 4-month-olds perceive a mistuned harmonic as a separate auditory and visual object. Cognition, 164, 17.Google Scholar
Smith, N. A., & Trainor, L. J. (2011). Auditory stream segregation improves infants’ selective attention to target tones amid distracters. Infancy, 16, 655668.CrossRefGoogle Scholar
Smith, S. L., Gerhadt, K. J., Griffiths, S. K., Huang, X., & Abrams, R. M. (2003). Intelligibility of sentences recorded from the uterus of a pregnant ewe and from the fetal inner ear. Audiology and Neurotology, 8, 347353.Google Scholar
Sohmer, H., Perez, R., Sichel, J. Y., Priner, R., & Freeman, S. (2001). The pathway enabling external sounds to reach and excite the fetal inner ear. Audiology and Neurotology, 6, 109116.CrossRefGoogle ScholarPubMed
Sole, M. (2017). Crib song: Insights into functions of toddlers’ private spontaneous singing. Psychology of Music, 45, 172192.Google Scholar
Soley, G., & Hannon, E. E. (2010). Infants prefer the musical meter of their own culture: A cross-cultural comparison. Developmental Psychology, 46, 286292.Google Scholar
Sussman, E., & Steinschneider, M. (2009). Attention effects on auditory scene analysis in children. Neuropsychologia, 47, 771785.Google Scholar
Thorpe, L. A., & Trehub, S. E. (1989). Duration illusion and auditory grouping in infancy. Developmental Psychology, 25, 122127.Google Scholar
Trainor, L. J. (1996). Infant preferences for infant-directed versus noninfant-directed playsongs and lullabies. Infant Behavior and Development, 19, 8392.Google Scholar
Trainor, L. J., & Heinmiller, B. M. (1998). Infants prefer to listen to consonance over dissonance. Infant Behavior, 21, 7788.Google Scholar
Trainor, L. J., & Trehub, S. E. (1992). A comparison of infants’ and adults’ sensitivity to Western musical structure. Journal of Experimental Psychology: Human Perception and Performance, 18, 394402.Google Scholar
Trainor, L. J., (1993). What mediates infants’ and adults’ superior processing of the major over the augmented triad? Music Perception, 11, 185196.Google Scholar
Tramo, M. J., Cariani, P. A., Delgutte, B., & Braida, L. D. (2001). Neurobiological foundations for the theory of harmony in Western tonal music. Annals of the New York Academy of Sciences, 930, 92116.Google Scholar
Trehub, S. E. (2015). Cross-cultural convergence of musical features. Proceedings of the National Academy of Sciences, 112, 88098810.Google Scholar
Trehub, S. E., & Cirelli, L. K. (2018). Precursors to the performing arts in infancy and early childhood. Progress in Brain Research, 237, 225242.Google Scholar
Trehub, S. E., & Gudmundsdottir, H. R. (2019). Mothers as singing mentors for infants. In Welsh, G. F., Howard, D. M., & Nix, J. (Eds.), The Oxford handbook of singing (pp. 455469). Oxford: Oxford University Press.Google Scholar
Trehub, S. E., & Hannon, E. E. (2009). Conventional rhythms enhance infants’ and adults’ perception of musical patterns. Cortex, 45, 110118.Google Scholar
Trehub, S. E., Plantinga, J., & Russo, F. A. (2016). Maternal vocal interactions with infants: Reciprocal visual influences. Social Development, 25, 665683.Google Scholar
Trehub, S. E., & Russo, F. A. (in press). Infant-directed singing from a dynamic multimodal perspective: Evolutionary origins, cross-cultural variation, and relation to infant-directed speech. In Russo, F., Ilari, B., & Cohen, A. (Eds.), Routledge companion to interdisciplinary studies in singing: Vol 1. New York, NY: Routledge.Google Scholar
Trehub, S. E., Schellenberg, E. G., & Kamenetsky, S. B. (1999). Infants’ and adults’ perception of scale structure. Journal of Experimental Psychology: Human Perception and Performance, 25, 965975.Google Scholar
Trehub, S. E., Schneider, B. A., & Endman, M. (1980). Developmental changes in infants’ sensitivity to octave-band noises. Journal of Experimental Child Psychology, 29, 282293.Google Scholar
Trehub, S. E., Schneider, B. A., & Henderson, J. L. (1995). Gap detection in infants, children, and adults. Journal of the Acoustical Society of America, 98, 25322541.CrossRefGoogle ScholarPubMed
Trehub, S. E., Schneider, B. A., Morrongiello, B. A., & Thorpe, L. A. (1988). Auditory sensitivity in school-age children. Journal of Experimental Child Psychology, 46, 273285.Google Scholar
Trehub, S. E., & Thorpe, L. A. (1989). Infants’ perception of rhythm: Categorization of auditory sequences by temporal structure. Canadian Journal of Psychology, 43, 217229.Google Scholar
Trehub, S. E., Thorpe, L. A., & Morrongiello, B. A. (1985). Infants’ perception of melodies: Changes in a single tone. Infant Behavior and Development, 8, 213223.Google Scholar
Trehub, S. E., Thorpe, L. A., (1987). Organizational processes in infants’ perception of auditory patterns. Child Development, 58, 741749.Google Scholar
Trehub, S. E., & Trainor, L. (1998). Singing to infants: Lullabies and play songs. Advances in Infancy Research, 12, 4378.Google Scholar
Trehub, S. E., Unyk, A. M., Kamenetsky, S. B., Hill, D. S., Trainor, L. J., Henderson, J. L., & Saraza, M. (1997). Mothers’ and fathers’ singing to infants. Developmental Psychology, 33, 500507.CrossRefGoogle ScholarPubMed
Trehub, S. E., Unyk, A. M., & Trainor, L. J. (1993a). Adults identify infant-directed music across cultures. Infant Behavior and Development, 16, 193211.Google Scholar
Trehub, S. E., Unyk, A. M., (1993b). Maternal singing in cross-cultural perspective. Infant Behavior and Development, 16, 285295.Google Scholar
van Puyvelde, M., Rodrigues, H., Loots, G., de Coster, L., Du Ville, K., Matthijs, L., … Pattyn, N. (2014). Shall we dance? Music as a port of entrance to maternal-infant intersubjectivity in a context of postnatal depression. Infant Mental Health Journal, 35, 220232.Google Scholar
Virtala, P., Huotilainen, M., Partanen, E., Fellman, V., & Tervaniemi, M. (2013). Newborn infants’ auditory system is sensitive to Western music chord categories. Frontiers in Psychology, 4, 492.Google Scholar
Volkova, A., Trehub, S. E., & Schellenberg, E. G. (2006). Infants’ memory for musical performances. Developmental Science, 9, 583589.Google Scholar
Walker, P., Bremner, J. G., Mason, U., Spring, J., Mattock, K., Slater, A., & Johnson, S. P. (2010). Preverbal infants’ sensitivity to synaesthetic cross-modality correspondences. Psychological Science, 21, 2125.Google Scholar
Weiss, M. W., Trehub, S. E., & Schellenberg, E. G. (2012). Something in the way she sings: Enhanced memory for vocal melodies. Psychological Science, 23, 10741078.Google Scholar
Werner, L. A. (2017). Ontogeny of human auditory system function. In Cramer, K. S., Coffin, A., Fay, R. R., & Popper, A. N. (Eds.), Auditory development and plasticity (pp. 161192). New York, NY: Springer International.Google Scholar
Werner, L. A., Marean, G. C., Halpin, C. F., Spetner, N. B., & Gillenwater, J. M. (1992). Infant auditory temporal acuity: Gap detection. Child Development, 63, 260272.CrossRefGoogle ScholarPubMed
Wightman, F. L., & Kistler, D. J. (2005). Informational masking of speech in children: Effects of ipsilateral and contralateral distracters. Journal of the Acoustical Society of America, 118, 31643176.Google Scholar
Wild, C. J., Linke, A. C., Zubiaurre-Elorza, L., Herzmann, C., Duffy, H., Han, V. K., … Cusack, R. (2017). Adult-like processing of naturalistic sounds in auditory cortex by 3- and 9-month old infants. NeuroImage, 157, 623634.CrossRefGoogle ScholarPubMed
Winkler, I., Háden, G. P., Ladinig, O., Sziller, I., & Honing, H. (2009). Newborn infants detect the beat in music. Proceedings of the National Academy of Sciences, 106, 24682471.Google Scholar
World Health Organization (2010). Newborn and infant hearing screening: Current issues and guiding principles for action. Geneva: WHO Press.Google Scholar
Yoshinaga-Itano, C. (1999). Benefits of early intervention for children with hearing loss. Otolaryngology Clinics of North America, 32, 10891102.Google Scholar
Zatorre, R. J., & Baum, S. R. (2012). Musical melody and speech intonation: Singing a different tune. PLoS Biology, 10, e1001372.Google Scholar
Zatorre, R. J., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: music and speech. Trends in Cognitive Sciences, 6, 3746.Google Scholar
Zentner, M., & Eerola, T. (2010). Rhythmic engagement with music in infancy. Proceedings of the National Academy of Sciences, 107, 57685773.Google Scholar
Zentner, M. R., & Kagan, J. (1996). Perception of music by infants. Nature, 383, 29.Google Scholar
Zhang, L. I., Bao, S., & Merzenich, M. M. (2002). Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proceedings of the National Academy of Sciences, 99, 23092314.Google Scholar
Zhao, T. C., & Kuhl, P. K. (2016). Musical intervention enhances infants’ neural processing of temporal structure in music and speech. Proceedings of the National Academy of Sciences, 113, 52125217.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×