Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T04:40:32.704Z Has data issue: false hasContentIssue false

Part V - Language

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access
Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 577 - 684
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Anderson, J. L., Morgan, J. L., & White, K. S. (2003). A statistical basis for speech sound discrimination. Language and Speech, 46, 155182.Google Scholar
Archer, S. L., & Curtin, S. (2016). Nine-month-olds use frequency of onset clusters to segment novel words. Journal of Experimental Child Psychology, 148, 131141.CrossRefGoogle ScholarPubMed
Bergelson, E., & Swingley, D. (2012). At 6–9 months, human infants know the meanings of many common nouns. Proceedings of the National Academy of Sciences of the United States of America, 109(9), 32533258.CrossRefGoogle ScholarPubMed
Bialystok, E., & Viswanathan, M. (2009). Components of executive control with advantages for bilingual children in two cultures. Cognition, 112(3), 494500.CrossRefGoogle ScholarPubMed
Bortfeld, H., Morgan, J., Golinkoff, R., & Rathbun, K. (2005). Mommy and me: Familiar names help launch babies into speech stream segmentation. Psychological Science, 16, 298304.Google Scholar
Bosch, L., & Sebastián-Gallés, N. (2003). Simultaneous bilingualism and the perception of a language-specific vowel contrast in the first year of life. Language and Speech, 46, 217243.Google Scholar
Bruderer, A. G., Danielson, D. K., Kandhadai, P., & Werker, J. F. (2015). Sensorimotor influences on speech perception in infancy. Proceedings of the National Academy of Sciences, 112(44), 1353113536.Google Scholar
Byers-Heinlein, K., & Fennell, C. T. (2014). Perceptual narrowing in the context of increased variation: Insights from bilingual infants. Developmental Psychobiology, 56(2), 274291.CrossRefGoogle ScholarPubMed
Cheour, M., Ceponiene, R., Lehtokoski, A., Luuk, A., Allik, J., Alho, K., & Näätänen, R. (1998). Development of language-specific phoneme representations in the infant brain. Nature Neuroscience, 1, 351353.Google Scholar
Cheour-Luhtanen, M., Alho, K., Kujala, T., Sainio, K., Reinikainen, K., Renlund, M., … Näätänen, R. (1995). Mismatch negativity indicates vowel discrimination in newborns. Hearing Research, 82(1), 5358.Google Scholar
Cristia, A., Minagawa, Y., & Dupoux, E. (2014). Responses to vocalizations and auditory controls in the human newborn brain. PLOS ONE, 9(12), e115162.CrossRefGoogle ScholarPubMed
Curtin, S., Mintz, T. H., & Christiansen, M. H. (2005). Stress changes the representational landscape: Evidence from word segmentation. Cognition, 96, 233262.CrossRefGoogle ScholarPubMed
Danielson, D. K., Bruderer, A. G., Kandhadai, P., Vatikiotis-Bateson, E., & Werker, J. F. (2017) The organization and reorganization of audiovisual speech perception in the first year of life. Cognitive Development, 42, 3748.Google Scholar
DeCasper, A. J., & Fifer, W. P. (1980). Of human bonding: Newborns prefer their mothers’ voices. Science, 208(4448), 11741176.Google Scholar
DeCasper, A. J., & Spence, M. J. (1986). Prenatal maternal speech influences newborns’ perception of speech sounds. Infant Behavior & Development, 9(2), 133150.CrossRefGoogle Scholar
Dehaene-Lambertz, G., & Baillet, S. (1998). A phonological representation in the infant brain. NeuroReport, 9(8), 18851888.Google Scholar
Dehaene-Lambertz, G., Dehaene, S., & Hertz-Pannier, L. (2002). Functional neuroimaging of speech perception in infants. Science, 298(5600), 20132015.Google Scholar
Dehaene-Lambertz, G., Hertz-Pannier, L., Dubois, J., Mériaux, S., Roche, A., Sigman, M., & Dehaene, S. (2006). Functional organization of perisylvian activation during presentation of sentences in preverbal infants. Proceedings of the National Academy of Sciences of the United States of America, 103(38), 1424014245.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., & Peña, M. (2001). Electrophysiological evidence for automatic phonetic processing in neonates. NeuroReport, 12(14), 31553158.Google Scholar
DePaolis, R. A., Vihman, M. M., & Keren-Portnoy, T. (2011). Do production patterns influence the processing of speech in prelinguistic infants? Infant Behavior & Development, 34(4), 590601.Google Scholar
Dietrich, C., Swingley, D., & Werker, J. F. (2007). Native language governs interpretation of salient speech sound differences at 18 months. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 1602716031.Google Scholar
Dubois, J., Poupon, C., Thirion, B., Simonnet, H., Kulikova, S., Leroy, F., … Dehaene-Lambertz, G. (2016). Exploring the early organization and maturation of linguistic pathways in the human infant brain. Cerebral Cortex, 26(5), 22832298.CrossRefGoogle ScholarPubMed
Emerson, R. W., Gao, W., & Lin, W. (2016). Longitudinal study of the emerging functional connectivity asymmetry of primary language regions during infancy. Journal of Neuroscience, 36(42), 1088310892.CrossRefGoogle ScholarPubMed
Feldman, N. H., Griffiths, T. L., Goldwater, S., & Morgan, J. L. (2013). A role for the developing lexicon in phonetic category acquisition. Psychological Review, 120(4), 751778.Google Scholar
Fennell, C. T., Byers-Heinlein, K., & Werker, J. F. (2007). Using speech sounds to guide word learning: The case of bilingual infants. Child Development, 78(5), 15101525.Google Scholar
Fennell, C. T., & Waxman, S. R. (2010). What paradox? Referential cues allow for infant use of phonetic detail in word learning. Child Development, 81(5), 13761383.CrossRefGoogle ScholarPubMed
Gonzalez-Gomez, N., & Nazzi, T. (2012). Phonotactic acquisition in healthy preterm infants. Developmental Science, 15(6), 885894.Google Scholar
Graf Estes, K., Evans, J. L., Alibali, M. W., & Saffran, J. R. (2007). Can infants map meaning to newly segmented words? Statistical segmentation and word learning. Psychological Science, 18(3), 254260.CrossRefGoogle ScholarPubMed
Hay, J. F., Graf Estes, K., Wang, T., & Saffran, J. R. (2015). From flexibility to constraint: The contrastive use of lexical tone in early word learning. Child Development, 86(1), 1022.Google Scholar
Hay, J. F., Pelucchi, B., Graf Estes, K., & Saffran, J. R. (2011). Linking sounds to meanings: Infant statistical learning in a natural language. Cognitive Psychology, 63(2), 93106.Google Scholar
Hoff, E. (2006). How social contexts support and shape language development. Developmental Review, 26(1), 5588.Google Scholar
Hoff, E. (2015). Language development in bilingual children. In Bavin, E. & Naigles, L. (Eds.), The Cambridge handbook of child language (2nd ed., pp. 483503). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Höhle, B., Bijeljac-Babic, R., Herold, B., Weissenborn, J., & Nazzi, T. (2009). Language specific prosodic preferences during the first half year of life: Evidence from German and French infants. Infant Behavior & Development, 32(3), 262274.Google Scholar
Honig, L. S., Herrmann, K., & Shatz, C. J. (1996). Developmental changes revealed by immunohistochemical markers in human cerebral cortex. Cerebral Cortex, 6(6), 794806.CrossRefGoogle ScholarPubMed
Hu, H., Gan, J, & Jonas, P. (2014). Fast-spiking, parvalbumin⁺ GABAergic interneurons: From cellular design to microcircuit function. Science, 345(6196), 1255263.CrossRefGoogle ScholarPubMed
Innis, S. M., Gilley, J., & Werker, J. F. (2001). Are human milk long-chain polyunsaturated fatty acids related to visual and neural development in breast-fed term infants? Journal of Pediatrics, 139, 532538.Google Scholar
Johnson, E. K., & Jusczyk, P. W. (2001). Word segmentation by 8-month-olds: When speech cues count more than statistics. Journal of Memory and Language, 44(4), 548567.CrossRefGoogle Scholar
Jusczyk, P. W., & Aslin, R. N. (1995). Infants’ detection of the sound patterns of words in fluent speech. Cognitive Psychology, 29(1), 123.CrossRefGoogle ScholarPubMed
Jusczyk, P. W., Cutler, A., & Redanz, N. J. (1993). Infants’ preference for the predominant stress patterns of English words. Child Development, 64, 675687.Google Scholar
Jusczyk, P. W., Friederici, A. D., Wessels, J. M., Svenkerud, V. Y., & Jusczyk, A. M. (1993). Infants’ sensitivity to the sound patterns of native language words. Journal of Memory and Language, 32(3), 402420.Google Scholar
Jusczyk, P. W., Luce, P. A., & Charles-Luce, J. (1994). Infants′ sensitivity to phonotactic patterns in the native language. Journal of Memory and Language, 33(5), 630645.Google Scholar
Kuhl, P. K., & Meltzoff, A. N. (1982). The bimodal perception of speech in infancy. Science, 218(4577), 11381141.Google Scholar
Kuhl, P. K., & Miller, J. D. (1975). Speech perception by the chinchilla: Voiced-voiceless distinction in alveolar plosive consonants. Science, 190(4209), 6972.CrossRefGoogle ScholarPubMed
Kuhl, P. K., Stevens, E., Hayashi, A., Deguchi, T., Kiritani, S., & Iverson, P. (2006). Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Developmental Science, 9(2), F13F21.Google Scholar
Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N., & Lindblom, B. (1992). Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 255(5044), 606608.Google Scholar
Kujala, A., Huotilainen, M., Hotakainen, M., Lennes, M., Parkkonen, L., Fellman, V., & Näätänen, R. (2004). Speech-sound discrimination in neonates as measured with MEG. NeuroReport, 15(13), 20892092.CrossRefGoogle ScholarPubMed
Liu, L., & Kager, R. (2017). Statistical learning of speech sounds is most robust during the period of perceptual attunement. Journal of Experimental Child Psychology, 164, 192208Google Scholar
Mahmoudzadeh, M., Dehaene-Lambertz, G., Fournier, M., Kongolo, G., Goudjil, S., Dubois, J., … Wallois, F. (2013). Syllabic discrimination in premature human infants. Proceedings of the National Academy of Sciences of the United States of America, 110(12), 48464851.CrossRefGoogle ScholarPubMed
Mattock, K., & Burnham, D. (2006). Chinese and English infants’ tone perception: Evidence for perceptual reorganization. Infancy, 10, 241265.Google Scholar
Mattock, K., Polka, L., Rvachew, S., & Krehm, M. (2010). The first steps in word learning are easier when the shoes fit: Comparing monolingual and bilingual infants. Developmental Science, 13(1), 229243.CrossRefGoogle ScholarPubMed
Mattys, S. L., & Bortfeld, H. (2016). Speech segmentation. In Gaskell, G., & Mirkovic, J. (Eds.), Speech perception and spoken word recognition (pp. 5575). London: Psychology Press.Google Scholar
Mattys, S. L., & Jusczyk, P. W. (2001). Phonotactic cues for segmentation of fluent speech by infants. Cognition, 78(2), 91121.Google Scholar
May, L., Gervain, J., Carreiras, M., & Werker, J. F. (2017). The specificity of the neural response to speech at birth. Developmental Science, 21(3), e12564.Google Scholar
Maye, J., Weiss, D. J., & Aslin, R. N. (2008). Statistical phonetic learning in infants: Facilitation and feature generalization. Developmental Science, 11(1), 122134.Google Scholar
Maye, J., Werker, J. F., & Gerken, L. A. (2002). Infant sensitivity to distributional information can affect phonetic discrimination. Cognition, 82(3), B101B111.Google Scholar
McMurray, B., Aslin, R. N., & Toscano, J. C. (2009). Statistical learning of phonetic categories: Insights from a computational approach. Developmental Science, 12(3), 369378.Google Scholar
Mehler, J., Jusczyk, P., Lambertz, G., Halsted, N., Bertoncini, J., & Amiel-Tison, C. (1988). A precursor of language acquisition in young infants. Cognition, 29(2), 143178.CrossRefGoogle ScholarPubMed
Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 343(6174), 10061010.CrossRefGoogle ScholarPubMed
Mills, D. L., Prat, C., Zangl, R., Stager, C. L., Neville, H. J., & Werker, J. F. (2004). Language experience and the organization of brain activity to phonetically similar words: ERP evidence from 14- and 20-month-olds. Journal of Cognitive Neuroscience, 16(8), 113.Google Scholar
Molnar, M., Gervain, J., & Carreiras, M. (2014). Within-rhythm class native language discrimination abilities of Basque-Spanish monolingual and bilingual infants at 3.5 months of age. Infancy, 19, 326337.Google Scholar
Morgan, J. L., & Saffran, J. R. (1995). Emerging integration of sequential and suprasegmental information in preverbal speech segmentation. Child Development, 66(4), 911936.Google Scholar
Nazzi, T., Jusczyk, P. W., & Johnson, E. K. (2000). Language discrimination by English-learning 5-month-olds: Effects of rhythm and familiarity. Journal of Memory and Language, 43(1), 119.Google Scholar
Nazzi, T., Mersad, K., Sundara, M., Iakimova, G., & Polka, L. (2013). Early word segmentation in infants acquiring Parisian French: Task-dependent and dialect-specific aspects. Journal of Child Language, 41(3), 600633.Google Scholar
Nazzi, T., & Ramus, F. (2003). Perception and acquisition of linguistic rhythm by infants. Speech Communication, 41(1), 233243.Google Scholar
Nespor, M., Shukla, M., van de Vijver, R., Avesani, C., Schraudolf, H., & Donati, C. (2008). Different phrasal prominence realizations in VO and OV languages. Lingue e Linguaggio, 2, 129.Google Scholar
Ortiz-Mantilla, S., Hämäläinen, J. A., Realpe-Bonilla, T., & Benasich, A. A. (2016). Oscillatory dynamics underlying perceptual narrowing of native phoneme mapping from 6 to 12 months of age. Journal of Neuroscience, 36(48), 1209512105.Google Scholar
Palmer, S. B., Fais, L., Golinkoff, R. M., & Werker, J. F. (2012). Perceptual narrowing of linguistic sign occurs in the first year of life. Child Development, 83(2), 543–53.Google Scholar
Paredes, M. F., James, D., Gil-Perotin, S., Kim, H., Cotter, J. A., Ng, C., … Alvarez-Buylla, A. (2016). Extensive migration of young neurons into the infant human frontal lobe. Science, 354(6308), aaf7073.Google Scholar
Peña, M., Pittaluga, E., & Mehler, J. (2010). Language acquisition in premature and full-term infants. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 38233828.Google Scholar
Peña, M., Werker, J. F., & Dehaene-Lambertz, G. (2012). Earlier speech exposure does not accelerate speech acquisition. Journal of Neuroscience, 32(33), 1115911163.Google Scholar
Perani, D., Saccuman, M. C., Scifo, P., Anwander, A., Spada, D., Baldoli, C., … Friederici, A. D. (2011). Neural language networks at birth. Proceedings of the National Academy of Sciences of the United States of America, 108(38), 1605616061.Google Scholar
Perani, D., Saccuman, M. C., Scifo, P., Spada, D., Andreolli, G., Roveli, R., … Koelsch, S. (2010). Functional specializations for music processing in the human newborn brain. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 47584763.CrossRefGoogle ScholarPubMed
Petanjek, Z., Kostovic, I., & Esclapez, M. (2009). Primate-specific origins and migration of cortical GABAergic neurons. Frontiers in Neuroanatomy, 3, 26Google Scholar
Poeppel, D. (2003). The analysis of speech in different temporal integration windows: cerebral lateralization as “asymmetric sampling in time.” Speech Communication, 41, 2452555.Google Scholar
Pons, F., Lewkowicz, D. J., Soto-Faraco, S., & Sebastián-Gallés, N. (2009). Narrowing of intersensory speech perception in infancy. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 1059810602.Google Scholar
Rosenblum, L. D., Schmuckler, M. A., & Johnson, J. A. (1997). The McGurk effect in infants. Perception & Psychophysics, 59(3), 347357.Google Scholar
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 19261928.Google Scholar
Sato, H., Hirabayashi, Y., Tsubokura, H., Kanai, M., Ashida, T., Konishi, I., … Maki, A. (2012). Cerebral hemodynamics in newborn infants exposed to speech sounds: A whole-head optical topography study. Human Brain Mapping, 33, 20922103.Google Scholar
Schmale, R., Cristià, A., Seidl, A., & Johnson, E. K. (2010) Developmental changes in infants’ ability to cope with dialect variation in word recognition. Infancy, 15(6), 650662.Google Scholar
Sebastián-Gallés, N., Albareda-Castellot, B., Weikum, W. M., & Werker, J. F. (2012). A bilingual advantage in visual language discrimination in infancy. Psychological Science, 23(9), 994999.Google Scholar
Schatz, T., Feldman, N., Goldwater, S., Cao, X., & Dupoux, E. (2019). Early phonetic learning without phonetic categories: Insights from large-scale simulations on realistic input. https://doi.org/10.31234/osf.io/fc4whGoogle Scholar
Shultz, S., Vouloumanos, A., Bennett, R. H., & Pelphrey, K. (2014). Neural specialization for speech in the first months of life. Developmental Science, 17(5), 766774.Google Scholar
Sundara, M., Polka, L., & Genesee, F. (2006). Language-experience facilitates discrimination of /d-th/ in monolingual and bilingual acquisition of English. Cognition, 100(2), 369388.Google Scholar
Sundara, M., Polka, L., & Molnar, M. (2008). Development of coronal stop perception: bilingual infants keep pace with their monolingual peers. Cognition, 108(1), 232242.Google Scholar
Takesian, A. E., & Hensch, T. K. (2013). Balancing plasticity/stability across brain development. Progress in Brain Research, 207, 334.Google Scholar
Teinonen, T., Aslin, R. N., Alku, P., & Csibra, G. (2008). Visual speech contributes to phonetic learning in 6-month-old infants. Cognition, 108(3), 850855.Google Scholar
Telkemeyer, S., Rossi, S., Koch, S. P., Nierhaus, T., Steinbrink, J., Poeppel, D., … Wartenburger, I. (2009). Sensitivity of newborn auditory cortex to the temporal structure of sounds. Journal of Neuroscience, 29(47), 1472614733.Google Scholar
Thiessen, E. D. (2007). The effect of distributional information on children’s use of phonemic contrasts. Journal of Memory and Language, 56(1), 1634.Google Scholar
Tincoff, R., & Jusczyk, P. W. (1999). Some beginnings of word comprehension in 6-month-olds. Psychological Science, 10(2), 172175.Google Scholar
Trainor, L. J., & Adams, B. (2000). Infants’ and adults’ use of duration and intensity cues in the segmentation of tone patterns. Perception & Psychophysics, 62, 333340.CrossRefGoogle ScholarPubMed
Uhlhaas, P. J., Roux, F., Singer, W., Haenschel, C., Sireteanu, R., & Rodriguez, E. (2009). The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 98669871.Google Scholar
van Heugten, M., & Johnson, E. K. (2017) Input matters: Multi-accent language exposure affects word recognition from infancy. Journal of the Acoustical Society of America, 142(2), EL196–200.Google Scholar
van Noort-van der Spek, I. L., Franken, M. C., & Weisglas-Kuperus, N. (2012). Language functions in preterm-born children: A systematic review and meta-analysis. Pediatrics, 129, 745754.CrossRefGoogle ScholarPubMed
Vouloumanos, A., Hauser, M. D., Werker, J. F., & Martin, A. (2010). The tuning of human neonates’ preference for speech. Child Development, 81(2), 517527.Google Scholar
Vouloumanos, A., & Werker, J. F. (2007). Listening to language at birth: Evidence for a bias for speech in neonates. Developmental Science, 10(2), 159164.Google Scholar
Wanner, E., & Gleitman, L. R. (Eds.) (1982). Language acquisition: The state of the art. Cambridge, UK: Cambridge University Press.Google Scholar
Weatherhead, D., & White, K. S. (2018) And then I saw her race: Race-based expectations affect infants’ word processing. Cognition, 177, 8797.Google Scholar
Weikum, W. M., Oberlander, T. F., Hensch, T. K., & Werker, J. F. (2012). Prenatal exposure to antidepressants and depressed maternal mood alter trajectory of infant speech perception. Proceedings of the National Academy of Sciences of the United States of America, 109(2), 1722117227.Google Scholar
Weikum, W., Vouloumanos, A., Navarra, J., Soto-Faraco, S., Sebastián-Gallés, N., & Werker, J. F. (2007). Visual language discrimination in infancy. Science, 316(5828), 1159.Google Scholar
Werker, J. F. (2018). Perceptual beginnings to language acquisition. Applied Psycholinguistics, 39(4), 703728.Google Scholar
Werker, J. F., Fennell, C. T., Corcoran, K., & Stager, C. L. (2002). Infants’ ability to learn phonetically similar words: Effects of age and vocabulary size. Infancy, 3(1), 130.Google Scholar
Werker, J. F., & Hensch, T. K. (2015). Critical periods in speech perception: New directions. Annual Review of Psychology, 66, 173–96.Google Scholar
Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7(1), 4963.Google Scholar
Werker, J. F., Yeung, H. H., & Yoshida, K. A. (2012). How do infants become experts at native speech perception? Current Directions in Psychological Science, 21(4), 224226.Google Scholar
Yeung, H. H., & Nazzi, T. (2014). Object labeling influences infant phonetic learning and generalization. Cognition, 132(2), 151163.Google Scholar
Yeung, H. H., & Werker, J. F. (2009). Learning words’ sounds before learning how words sound: 9-month-olds use distinct objects as cues to categorize speech information. Cognition, 113, 234243.Google Scholar
Yeung, H. H., (2013). Lip movements affect infant audiovisual speech perception. Psychological Science, 24(5), 603612.CrossRefGoogle ScholarPubMed
Yoshida, K. A., Iversen, J. R., Patel, A. D., Mazuka, R., Nito, H., Gervain, J., & Werker, J. F. (2010). The development of perceptual grouping biases in infancy: A Japanese-English cross-linguistic study. Cognition, 115(2), 356361.Google Scholar

References

Akhtar, N., Jaswal, V. K., Dinishak, J., & Stephan, C. (2016). On social feedback loops and cascading effects in autism: A commentary on Warlaumont, Richards, Gilkerson, and Oller (2014). Psychological Science, 27, 15281530.Google Scholar
Baudonck, N. L. H., Buekers, R., Gillebert, S., & van Lierde, K. M. (2009). Speech intelligibility of Flemish children as judged by their parents. Folia Phoniatrica et Logopaedica, 61, 288295.Google Scholar
Bloom, K. (1988). Quality of adult vocalizations affects the quality of infant vocalizations. Journal of Child Language, 15, 469480.Google Scholar
Bouchard, K. E., Mesgarani, N., Johnson, K., & Chang, E. F. (2013). Functional organization of human sensorimotor cortex for speech articulation. Nature, 495, 327332.Google Scholar
Bryant, G. A., & Aktipis, C. A. (2014). The animal nature of spontaneous human laughter. Evolution and Human Behavior, 35, 327335.Google Scholar
Buder, E. H., Warlaumont, A. S., & Oller, D. K. (2013). An acoustic phonetic catalog of prespeech infant vocalizations from a developmental perspective. In Peter, B. & MacLeod, A. N. (Eds.), Comprehensive perspectives on child speech development and disorders: Pathways from linguistic theory to clinical practice. New York, NY: Nova Science Publishers.Google Scholar
Caskey, M., Stephens, B., Tucker, R., & Vohr, B. (2011). Importance of parent talk on the development of preterm infant vocalizations. Pediatrics, 128, 910916.CrossRefGoogle ScholarPubMed
Christakis, D. A., Gilkerson, J., Richards, J. A., Garrison, M. M., Xu, D., Gray, S., & Yapanel, U. (2009). Audible television and decreased adult words, infant vocalizations, and conversational turns: A population-based study. Archives of Pediatrics & Adolescent Medicine, 163, 554558.Google Scholar
Clarke, E. V. (2003). First language acquisition. Cambridge, UK: Cambridge University Press.Google Scholar
Council on Communications and Media (2013). Children, adolescents, and the media. Pediatrics, 132, 958961.CrossRefGoogle Scholar
Cristia, A., Dupoux, E., Gurven, M., & Stieglitz, J. (2017). Child-directed speech is infrequent in a forager-farmer population: A time allocation study. Child Development, 90(3), 759773. doi: 10.1111/cdev.12974Google Scholar
de Boysson Bardies, B., & Vihman, M. (1991). Adaptation to language: Evidence from babbling and first words in four languages. Language, 67, 297319.Google Scholar
Eilers, R. E., Oller, D. K., Levine, S., Basinger, D., Lynch, M. P., & Urbano, R. (1993). The role of prematurity and socioeconomic status in the onset of canonical babbling in infants. Infant Behavior and Development, 16, 297315.Google Scholar
Ertmer, D. J., & Nathani Iyer, S. (2010). Prelinguistic vocalizations in infants and toddlers with hearing loss: Identifying and stimulating auditory-guided speech development. In Marschark, M. & Spencer, P. E. (Eds.), The Oxford handbook of deaf studies, language, and education (pp. 360375). Oxford: Oxford University Press.Google Scholar
Fernald, A. (1985). Four-month-old infants prefer to listen to motherese. Infant Behavior and Development, 8, 181195.Google Scholar
Fernald, A., & Kuhl, P. (1987). Acoustic determinants of infant preference for motherese speech. Infant Behavior and Development, 10, 279293.Google Scholar
Fernald, A., Taeschner, T., Dunn, J., Papousek, M., de Boysson-Bardies, B., & Fukui, I. (1989). A cross-language study of prosodic modifications in mothers’ and fathers’ speech to preverbal infants. Journal of Child Language, 16, 477501.Google Scholar
Forestier, S., & Oudeyer, P.-Y. (2017). A unified model of speech and tool use early development. In Gunzelmann, G., Howes, A., Tenbrink, T., & Davelaar, E. (Eds.), Proceedings of the 39th Annual Meeting of the Cognitive Science Society (pp. 14591460). Austin, TX: Cognitive Science Society.Google Scholar
Ghazanfar, A. A., & Zhang, Y. S. (2016). The autonomic nervous system is the engine for vocal development through social feedback. Current Opinion in Neurobiology, 40, 155160.Google Scholar
Gilmore, R. O., & Adolph, K. E. (2017). Video can make behavioural science more reproducible. Nature Human Behaviour, 1, 0128.Google Scholar
Goldstein, M. H., King, A. P., & West, M. J. (2003). Social interaction shapes babbling: Testing parallels between birdsong and speech. Proceedings of the National Academy of Sciences of the United States of America, 100, 80308035.Google Scholar
Goldstein, M. H., & Schwade, J. A. (2008). Social feedback to infants’ babbling facilitates rapid phonological learning. Psychological Science, 19, 515523.Google Scholar
Golinkoff, R. M., Can, D. D., Soderstrom, M., & Hirsh-Pasek, K. (2015). (Baby) talk to me: The social context of infant-directed speech and its effects on early language acquisition. Current Directions in Psychological Science, 24, 339344.CrossRefGoogle Scholar
Golinkoff, R. M., Hoff, E., Rowe, M. L., Tamis-LeMonda, C. S., & Hirsh-Pasek, K. (2018). Language matters: Denying the existence of the 30-million-word gap has serious consequences. Child Development, 90(3), 985992. doi: 10.1111/cdev.13128Google Scholar
Gratier, M., & Devouche, E. (2011). Imitation and repetition of prosodic contour in vocal interaction at 3 months. Developmental Psychology, 47, 6776.Google Scholar
Gratier, M., Devouche, E., Guellai, B., Infanti, R., Yilmaz, E., & Parlato-Oliveira, E. (2015). Early development of turn-taking in vocal interaction between mothers and infants. Frontiers in Psychology, 6, 1167.Google Scholar
Gros-Louis, J., & Miller, J. L. (2018). From “ah” to “bah”: Social feedback loops for speech sounds at key points of developmental transition. Journal of Child Language, 45, 807825.Google Scholar
Gros-Louis, J., West, M. J., Goldstein, M. H., & King, A. P. (2006). Mothers provide differential feedback to infants’ prelinguistic sounds. International Journal of Behavioral Development, 30, 509516.Google Scholar
Gultekin, Y. B., & Hage, S. R. (2018). Limiting parental interaction during vocal development affects acoustic call structure in marmoset monkeys. Science Advances, 4(4), eear4012. doi: 10.1126/sciadv.aar4012.Google Scholar
Gustafson, G. E., Sanborn, S. M., Lin, H. -C., & Green, J. A. (2017). Newborns’ cries are unique to individuals (but not to language environment). Infancy, 22(6), 736747. doi: 10.1111/infa.12192Google Scholar
Harder, S., Lange, T., Foget Hansen, G., Væver, M., & Køppe, S. (2015). A longitudinal study of coordination in mother–infant vocal interaction from age 4 to 10 months. Developmental Psychology, 51, 17781790.Google Scholar
Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of young American children. Baltimore, MD: Paul H. Brookes.Google Scholar
Heintz, I., Beckman, M., Fosler-Lussier, E., & Ménard, L. (2009). Evaluating parameters for mapping adult vowels to imitative babbling. In Proceedings of the 10th Annual Conference of the International Speech Communication Association (INTERSPEECH) (pp. 688691). Baixas, France: International Speech Communication Association.Google Scholar
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). Most people are not WEIRD. Nature, 466, 29.Google Scholar
Hilbrink, E. E., Gattis, M., & Levinson, S. C. (2015). Early developmental changes in the timing of turn-taking: A longitudinal study of mother–infant interaction. Frontiers in Psychology, 6, 1492.Google Scholar
Hirsh-Pasek, K., Adamson, L. B., Bakeman, R., Owen, M. T., Golinkoff, R. M., Pace, A., … Suma, K. (2015). The contribution of early communication quality to low-income children’s language success. Psychological Science, 26, 10711083.CrossRefGoogle ScholarPubMed
Hoff, E. (2003). The specificity of environmental influence: Socioeconomic status affects early vocabulary development via maternal speech. Child Development, 74, 13681378.Google Scholar
Howard, I. S., & Messum, P. (2014). Learning to pronounce first words in three languages: An investigation of caregiver and infant behavior using a computational model of an infant. PLoS ONE, 9, e110334.CrossRefGoogle ScholarPubMed
Huttenlocher, J., Waterfall, H., Vasilyeva, M., Vevea, J., & Hedges, L. V. (2010). Sources of variability in children’s language growth. Cognitive Psychology, 61, 343365.Google Scholar
Jaffe, J., Beebe, B., Feldstein, S., Crown, C. L., & Jasnow, M. D. (2001). Rhythms of dialogue in infancy: Coordinated timing in development. Monographs of the Society for Research in Child Development, 66, 132.Google Scholar
Jones, S. J., & Moss, H. A. (1971). Age, state, and maternal behavior associated with infant vocalizations. Child Development, 42, 10391051.Google Scholar
Jones, S. S. (2007). Imitation in infancy: The development of mimicry. Psychological Science, 18, 593599.Google Scholar
Jones, S. S. (2009). The development of imitation in infancy. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1528), 23252335. doi: 10.1098/rstb.2009.0045CrossRefGoogle ScholarPubMed
Jürgens, U. (1974). On the elicitability of vocalization from the cortical larynx area. Brain Research, 81, 564566.Google Scholar
Jürgens, U. (2002). Neural pathways underlying vocal control. Neuroscience and Biobehavioral Reviews, 26, 235258.Google Scholar
Kapp, S. K., Gillespie-Lynch, K., Sherman, L. E., & Hutman, T. (2013). Deficit, difference, or both? Autism and neurodiversity. Developmental Psychology, 49, 5971.Google Scholar
Kröger, B. J., Kannampuzha, J., & Neuschaefer-Rube, C. (2009). Towards a neurocomputational model of speech production and perception. Speech Communication, 51, 793809.Google Scholar
Kuchirko, Y., Tafuro, L., & Tamis-LeMonda, C. S. (2018). Becoming a communicative partner: Infant contingent responsiveness to maternal language and gestures. Infancy, 23(4), 558576. doi: 10.1111/infa.12222Google Scholar
Kuhl, P. K., Ramírez, R. R., Bosseler, A., Lin, J. -F. L., & Imada, T. (2014). Infants’ brain responses to speech suggest analysis by synthesis. Proceedings of the National Academy of Sciences, 2014, 111, 1123811245.Google Scholar
Kuhl, P. K., Tsao, F.-M., & Liu, H. -M. (2003). Foreign-language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences of the United States of America, 100, 90969101.Google Scholar
Leezenbaum, N. B., Campbell, S. B., Butler, D., & Iverson, J. M. (2013). Maternal verbal responses to communication of infants at low and heightened risk of autism. Autism, 18, 694703.Google Scholar
Li, P., Zhao, X., & MacWhinney, B. (2007). Dynamic self-organization and early lexical development in children. Cognitive Science, 31, 581612.Google Scholar
Lieven, E. V. M., Pine, J. M., & Barnes, H. D. (1992). Individual differences in early vocabulary development: Redefining the referential-expressive distinction. Journal of Child Language, 19, 287310.Google Scholar
Locke, J. L. (1989). Babbling and early speech: Continuity and individual differences. First Language, 9, 191206.CrossRefGoogle Scholar
MacNeilage, P. F. (1998). The frame/content theory of evolution of speech production. Behavioral and Brain Sciences, 21, 499511.Google Scholar
MacWhinney, B. (2000). The CHILDES Project: Tools for analyzing talk (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Mampe, B., Friederici, A., Christophe, A., & Wermke, K. (2009). Newborns’ cry melody is shaped by their native language. Current Biology, 19941997.Google Scholar
McCune, L., & Vihman, M. M. (2001). Early phonetic and lexical development: A productivity approach. Journal of Speech, Language, and Hearing Research, 44, 670684.Google Scholar
Melvin, S. A., Brito, N. H., Mack, L. J., Engelhardt, L. E., Fifer, W. P., Elliott, A. J., & Noble, K. G. (2017). Home environment, but not socioeconomic status, is linked to differences in early phonetic perception ability. Infancy, 22, 4255.Google Scholar
Miller, J. L., Lossia, A., Suarez-Rivera, C., & Gros-Louis, J. (2017). Toys that squeak: Toy type impacts quality and quantity of parent-child interactions. First Language, 37, 630647.CrossRefGoogle Scholar
Miura, K., Yoshikawa, Y., & Asada, M. (2007). Unconscious anchoring in maternal imitation that helps find the correspondence of a caregiver’s vowel categories. Advanced Robotics, 21, 15831600.Google Scholar
Moeller, M. P., Carr, G., Seaver, L., Stredler-Brown, A., & Holzinger, D. (2013). Best practices in family-centered early intervention for children who are deaf or hard of hearing: An international consensus statement. Journal of Deaf Studies and Deaf Education, 18, 429445.Google Scholar
Morrill, R. J., Paukner, A., Ferrari, P., & Ghazanfar, A. A. (2012). Monkey lipsmacking develops like the human speech rhythm. Developmental Science, 15, 557568.Google Scholar
Moulin-Frier, C., Nguyen, S. M., & Oudeyer, P.-Y. (2014). Self-organization of early vocal development in infants and machines: The role of intrinsic motivation. Frontiers in Psychology, 4, 1006.Google Scholar
Nathani, S., & Stark, R. E. (1996). Can conditioning procedures yield representative infant vocalizations in the laboratory? First Language, 16, 365387.Google Scholar
Nittrouer, S. (2009). Early development of children with hearing loss. San Diego, CA: Plural Publishing.Google Scholar
Oller, D. K. (1986). Metaphonology and infant vocalizations. In Lindblom, B. & Zetterström, R. (Eds.), Precursors of early speech (pp. 2136). New York, NY: Stockton Press.Google Scholar
Oller, D. K. (2000). The emergence of the speech capacity. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Oller, D. K., Buder, E. H., Ramsdell, H. L., Warlaumont, A. S., Chorna, L., & Bakeman, R. (2013). Functional flexibility of infant vocalization and the emergence of language. Proceedings of the National Academy of Sciences of the United States of America, 110, 63186323.Google Scholar
Oller, D. K., & Eilers, R. E. (1988). The role of audition in infant babbling. Child Development, 59, 441449.Google Scholar
Oller, D. K., Eilers, R., & Basinger, D. (2001). Intuitive identification of infant vocal sounds by parents. Developmental Science, 4, 4960.Google Scholar
Oller, D. K., Wieman, L. A., Doyle, W. J., & Ross, C. (1976). Infant babbling and speech. Journal of Child Language, 3, 111.Google Scholar
Patten, E., Belardi, K., Baranek, G. T., Watson, L. R., Labban, J. D., & Oller, D. K. (2014). Vocal patterns in infants with autism spectrum disorder: Canonical babbling status and vocalization frequency. Journal of Autism and Developmental Disorders, 44, 24132428.Google Scholar
Paul, R., Fuerst, Y., Ramsay, G., Chawarska, K., & Klin, A. (2011). Out of the mouths of babes: Vocal production in infant siblings of children with ASD. Journal of Child Psychology and Psychiatry, 52, 588598.Google Scholar
Penfield, W., & Welch, K. (1951). The supplementary motor area of the cerebral cortex: A clinical and experimental study. A.M.A. Archives of Neurology and Psychiatry, 66, 289317.Google Scholar
Perlman, M., & Clark, N. (2015). Learned vocal and breathing behavior in an enculturated gorilla. Animal Cognition, 2015, 115.Google Scholar
Petitto, L. A., & Marentette, P. F. (1991). Babbling in the manual mode: Evidence for the ontogeny of language. Science, 251, 14931496.Google Scholar
Prochnow, S., Hesse, V., & Wermke, K. (2017). Does a “musical” mother tongue influence cry melodies? A comparative study of Swedish and German newborns. Musicae Scientiae, 23(2), 143156. doi: 10.1177/1029864917733035CrossRefGoogle Scholar
Radesky, J., Miller, A. L., Rosenblum, K. L., Appugliese, D., Kaciroti, N., & Lumeng, J. C. (2015). Maternal mobile device use during a structured parent–child interaction task. Academic Pediatrics, 15, 238244.Google Scholar
Ramírez-Esparza, N., García-Sierra, A., & Kuhl, P. K. (2014). Look who’s talking: Speech style and social context in language input to infants are linked to concurrent and future speech development. Developmental Science, 17, 880891.Google Scholar
Reed, J., Hirsh-Pasek, K., & Golinkoff, R. M. (2017). Learning on hold: Cell phones sidetrack parent–child interactions. Developmental Psychology, 53, 14281436.Google Scholar
Richman, A. L., Miller, P. M., & LeVine, R. A. (1992). Cultural and educational variations in maternal responsiveness. Developmental Psychology, 28, 614621.Google Scholar
Robb, M. P., Bauer, H. R., & Tyler, A. A. (1994). A quantitative analysis of the single-word stage. First Language, 14, 3748.Google Scholar
Rowe, M. L., Raudenbush, S. W., & Goldin-Meadow, S. (2012). The pace of vocabulary growth helps predict later vocabulary skill. Child Development, 83, 508525.Google Scholar
Russell, J. L., McIntyre, J. M., Hopkins, W. D., & Taglialatela, J. P. (2013). Vocal learning of a communicative signal in captive chimpanzees, Pan troglodytes. Brain and Language, 127, 520525.Google Scholar
Schneider, R. M., Yurovsky, D., & Frank, M. C. (2015). Large-scale investigations of variability in children’s first words. In Noelle, D. C., Dale, R., Warlaumont, A. S., Yoshimi, J., Matlock, T., Jennings, C. D., & Maglio, P. P. (Eds.), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (pp. 21102115). Austin, TX: Cognitive Science Society.Google Scholar
Smith, B., Brown-Sweeney, S., & Stoel-Gammon, C. (1989). A quantitative analysis of reduplicated and variegated babbling. First Language, 9, 175189.Google Scholar
Soderstrom, M. (2007). Beyond babytalk: Re-evaluating the nature and content of speech input to preverbal infants. Developmental Review, 27, 501532.Google Scholar
Stark, R. E. (1980). Stages of speech development in the first year of life. Child Phonology, Vol. 1: Production. New York, NY: Academic Press.Google Scholar
Stoel-Gammon, C., & Otomo, K. (1986). Babbling development of hearing-impaired and normally hearing subjects. Journal of Speech and Hearing Disorders, 51, 3341.Google Scholar
Suskind, D. L., Leffel, K. R., Graf, E., Hernandez, M. W., Gunderson, E. A., Sapolich, S. G., … Levine, S. C. (2016). A parent-directed language intervention for children of low socioeconomic status: A randomized controlled pilot study. Journal of Child Language, 43, 366406.Google Scholar
Swanson, M. R., Shen, M. D., Wolff, J. J., Boyd, B., Clements, M., Rehg, J., … the IBIS Network. (2018). Naturalistic language recordings reveal “hypervocal” infants at high familial risk for autism. Child Development, 89, e60e73.Google Scholar
Tamis-LeMonda, C. S., Bornstein, M. H., & Baumwell, L. (2001). Maternal responsiveness and children’s achievement of language milestones. Child Development, 72, 748767.Google Scholar
Tamis-LeMonda, C. S., Kuchirko, Y., & Suh, D. D. (2018). Taking center stage: Infants’ active role in language learning. In Saylor, M. & Ganea, P. (Eds.), Active learning from infancy to childhood. New York, NY: Springer.Google Scholar
Tamis-LeMonda, C. S., & Song, L. (2012). Parent–infant communicative interactions in cultural context. In Lerner, R. M., Easterbrooks, E., & Mistry, J. (Eds.), Handbook of psychology (2nd ed., Vol. 6, pp. 143170). Hoboken, NJ: John Wiley & Sons.Google Scholar
Tarabulsy, G. M., Tessier, R., & Kappas, A. (1996). Contingency detection and the contingent organization of behavior in interactions: Implications for socioemotional development in infancy. Psychological Bulletin, 120, 2541.Google Scholar
Tardif, T., Gelman, S., & Xu, F. (1999). Putting the noun bias in context: A comparison of English and Mandarin. Child Development, 70, 620635.Google Scholar
Thevenin, D. M., Eilers, R. E., Oller, D. K., & Lavoie, L. (1985). Where’s the drift in babbling drift? A cross-linguistic study. Applied Psycholinguistics, 6, 315.Google Scholar
VanDam, M., Warlaumont, A. S., Bergelson, E., Cristia, A., Soderstrom, M., de Palma, P., & MacWhinney, B. (2016). HomeBank: An online repository of daylong child-centered audio recordings. Seminars in Speech and Language, 37, 128142.Google Scholar
Vihman, M. M., Ferguson, C. A., & Elbert, M. (1986). Phonological development from babbling to speech: Common tendencies and individual differences. Applied Psycholinguistics, 7, 340.Google Scholar
Vihman, M. M., Macken, M. A., Miller, R., Simmons, H., & Miller, J. (1985). From babbling to speech: A re-assessment of the continuity issue. Language, 61, 397445.CrossRefGoogle Scholar
Vouloumanos, A, & Werker, J. F. (2004). Tuned to the signal: The privileged status of speech for young infants. Developmental Science, 7, 270276.Google Scholar
Warlaumont, A. S., & Finnegan, M. K. (2016). Learning to produce syllabic speech sounds via reward-modulated neural plasticity. PLOS ONE, 11, e0145096.Google Scholar
Warlaumont, A. S., Richards, J. A., Gilkerson, J., Messinger, D. S., & Oller, D. K. (2016). The social feedback hypothesis and communicative development in autism spectrum disorder: A response to Akhtar, Jaswal, Dinishak, and Stephan (2016). Psychological Science, 27, 15311533.Google Scholar
Warlaumont, A. S., Richards, J. A., Gilkerson, J., & Oller, D. K. (2014). A social feedback loop for speech development and its reduction in autism. Psychological Science, 25, 13141324.Google Scholar
Warlaumont, A. S., Westermann, G., Buder, E. H., & Oller, D. K. (2013). Prespeech motor learning in a neural network using reinforcement. Neural Networks, 38, 6475.Google Scholar
Weber, A., Fernald, A., & Diop, Y. (2017). When cultural norms discourage talking to babies: Effectiveness of a parenting program in rural Senegal. Child Development, 88, 15131526.Google Scholar
Weist, R. M., & Kruppe, B. (1977). Parent and sibling comprehension of children’s speech. Journal of Psycholinguistic Research, 6, 4958.Google Scholar
Wermke, K., Ruan, Y., Feng, Y., Dobnig, D., Stephan, S., Wermke, P., … Shu, H. (2017). Fundamental frequency variation in crying of Mandarin and German neonates. Journal of Voice, 31, 255.e25–255.e30.Google Scholar
Westermann, G., & Miranda, E. R. (2004). A new model of sensorimotor coupling in the development of speech. Brain and Language, 89, 393400.Google Scholar
Yazejian, N., Bryant, D. M., Hans, S., Horm, D., St. Clair, L., File, N., & Burchinal, M. (2017). Child and parenting outcomes after 1 year of educare. Child Development, 88, 16511688.Google Scholar
Yoshikawa, Y., Asada, M., Hosoda, K., & Koga, J. (2003). A constructivist approach to infants’ vowel acquisition through mother–infant interaction. Connection Science, 15, 245258.Google Scholar
Zimmerman, F. J., Gilkerson, J., Richards, J. A., Christakis, D. A., Xu, D., Gray, S., & Yapanel, U. (2009). Teaching by listening: The importance of adult–child conversations to language development. Pediatrics, 124, 342349.Google Scholar

References

Adamson, L. B., Bakeman, R., & Deckner, D. F. (2004). The development of symbol-infused joint engagement. Child Development, 75(4), 11711187.Google Scholar
Adamson, L. B., Bakeman, R., Deckner, D. F., & Nelson, P. B. (2014). From interactions to conversations: The development of joint engagement during early childhood. Child Development, 85(3), 941955.Google Scholar
Akhtar, N. (1999). Acquiring basic word order: Evidence for data-driven learning of syntactic structure. Journal of Child Language, 26(2), 339356.Google Scholar
Akhtar, N., & Gernsbacher, M. A. (2007). Joint attention and vocabulary development: A critical look. Language and Linguistics Compass, 1(3), 195207.Google Scholar
Aravind, A., de Villiers, J., Pace, A., Valentine, H., Golinkoff, R., Hirsh-Pasek, K., … Wilson, M. S. (2018). Fast mapping word meanings across trials: Young children forget all but their first guess. Cognition, 177, 177188.Google Scholar
Aslin, R. N. (2017). Statistical learning: A powerful mechanism that operates by mere exposure. Wiley Interdisciplinary Reviews: Cognitive Science, 8, 17.Google Scholar
Baldwin, D. A. (1995). Understanding the link between joint attention and language. In Moore C, C. & Dunham, P. J. (Eds.), Joint attention: Its origins and role in development (pp. 131158). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Bates, E., & Goodman, J. C. (1997). On the inseparability of grammar and the lexicon: Evidence from acquisition, aphasia and real-time processing. Language and Cognitive Processes, 12, 507584.Google Scholar
Bates, E., & MacWhinney, B. (1982). Functionalist approaches to grammar. In Wanner, E. & Gleitman, L. (Eds.), Language acquisition: The state of the art (pp. 173218). New York, NY: Cambridge University Press.Google Scholar
Beckner, C., Blythe, R., Bybee, J., Christiansen, M. H., Croft, W., Ellis, N. C., … Schoenemann, T. (2009). Language is a complex adaptive system: Position paper. Language Learning, 59, 126.Google Scholar
Bergelson, E., & Swingley, D. (2012). At 6–9 months, human infants know the meanings of many common nouns. Proceedings of the National Academy of Sciences, 109(9), 32533258.Google Scholar
Bloom, L. (2000). The intentionality model of word learning: How to learn a word, any word. In Golinkoff, R. M. & Hirsh-Pasek, K. (Eds.), Becoming a word learner: A debate on lexical acquisition (pp. 1950). Oxford.: Oxford University Press.Google Scholar
Bloom, P. (2002). Mindreading, communication and the learning of names for things. Mind & Language, 17(1–2), 3754.Google Scholar
Booth, A. E., & Waxman, S. R. (2008). Taking stock as theories of word learning take shape. Developmental Science, 11(2), 185194.Google Scholar
Bornstein, M. H., Tal, J., Rahn, C., Galperin, C. Z., Pecheux, M. G., Lamour, M., … Tamis-LeMonda, C. S. (1992). Functional analysis of the contents of maternal speech to infants of 5 and 13 months in four cultures: Argentina, France, Japan, and the United States. Developmental Psychology, 28(4), 593603.Google Scholar
Borovsky, A., Ellis, E. M., Evans, J. L., & Elman, J. L. (2016). Lexical leverage: Category knowledge boosts real-time novel word recognition in 2-year-olds. Developmental Science, 19(6), 918932.Google Scholar
Bruner, J. (1983). Child’s talk: Learning to use language. New York, NY: W. W. Norton.Google Scholar
Burns, T. C., Yoshida, K. A., Hill, K., & Werker, J. F. (2007). The development of phonetic representation in bilingual and monolingual infants. Applied Psycholinguistics, 28(3), 455474.Google Scholar
Byers-Heinlein, K., & Werker, J. F. (2009). Monolingual, bilingual, trilingual: Infants’ language experience influences the development of a word-learning heuristic. Developmental Science, 12(5), 815823.Google Scholar
Cameron-Faulkner, T., Lieven, E., & Tomasello, M. (2003). A construction-based analysis of child directed speech. Cognitive Science, 27(6), 843873.Google Scholar
Carpenter, M., Nagell, K., Tomasello, M., Butterworth, G., & Moore, C. (1998). Social cognition, joint attention, and communicative competence from 9 to 15 months of age. Monographs of the Society for Research in Child Development, i174.Google Scholar
Cartmill, E. A., Armstrong, B. F., Gleitman, L. R., Goldin-Meadow, S., Medina, T. N., & Trueswell, J. C. (2013). Quality of early parent input predicts child vocabulary 3 years later. Proceedings of the National Academy of Sciences, 110, 1127811283.Google Scholar
Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.Google Scholar
de Diego-Balaguer, R., Martinez-Alvarez, A., & Pons, F. (2016). Temporal attention as a scaffold for language development. Frontiers in Psychology, 7, 44.Google Scholar
D’souza, D., D’souza, H., & Karmiloff-Smith, A. (2017). Precursors to language development in typically and atypically developing infants and toddlers: The importance of embracing complexity. Journal of Child Language, 44(3), 591627.Google Scholar
Elman, J. (2003). Development: It’s about time. Developmental Science, 6(4), 430433.Google Scholar
Falk, S., & Kello, C. T. (2017). Hierarchical organization in the temporal structure of infant-direct speech and song. Cognition, 163, 8086.Google Scholar
Ferguson, B., Graf, E., & Waxman, S. R. (2018). When veps cry: Two-year-olds efficiently learn novel words from linguistic contexts alone. Language Learning and Development, 14(1), 112.Google Scholar
Ferguson, B., & Lew-Williams, C. (2016). Communicative signals support abstract rule learning by 7-month-old infants. Scientific Reports, 6, 25434.Google Scholar
Ferguson, B., & Waxman, S. R. (2016). What the [beep]? Six-month-olds link novel communicative signals to meaning. Cognition, 146, 185189.Google Scholar
Ferjan Ramírez, N., Ramírez, R. R., Clarke, M., Taulu, S., & Kuhl, P. K. (2017). Speech discrimination in 11-month-old bilingual and monolingual infants: A magnetoencephalography study. Developmental Science, 20, e12427.Google Scholar
Fernald, A., Marchman, V. A., & Weisleder, A. (2013). SES differences in language processing skill and vocabulary are evident at 18 months. Developmental Science, 16(2), 234248.Google Scholar
Fernald, A., & Morikawa, H. (1993). Common themes and cultural variations in Japanese and American mothers’ speech to infants. Child Development, 64(3), 637656.Google Scholar
Fernald, A., Taeschner, T., Dunn, J., Papousek, M., de Boysson-Bardies, B., & Fukui, I. (1989). A cross-language study of prosodic modifications in mothers’ and fathers’ speech to preverbal infants. Journal of Child Language, 16(3), 477501.Google Scholar
Ferry, A. L., Hespos, S. J., & Waxman, S. R. (2013). Nonhuman primate vocalizations support categorization in very young human infants. Proceedings of the National Academy of Sciences, 110(38), 1523115235.Google Scholar
Garcia-Sierra, A., Rivera-Gaxiola, M., Percaccio, C. R., Conboy, B. T., Romo, H., Klarman, L., … Kuhl, P. K. (2011). Bilingual language learning: An ERP study relating early brain responses to speech, language input, and later word production. Journal of Phonetics, 39(4), 546557.Google Scholar
Gentner, D., & Boroditsky, L. (2001). Individuation, relativity, and early word learning. Language Acquisition and Conceptual Development, 3, 215256.Google Scholar
Gerken, L. (2006). Decisions, decisions: Infant language learning when multiple generalizations are possible. Cognition, 98(3), B67B74.Google Scholar
Gerken, L. (2010). Infants use rational decision criteria for choosing among models of their input. Cognition, 115(2), 362366.Google Scholar
Gerken, L., Jusczyk, P. W., & Mandel, D. R. (1994). When prosody fails to cue syntactic structure: 9-month-olds’ sensitivity to phonological versus syntactic phrases. Cognition, 51(3), 237265.Google Scholar
Gerken, L., Landau, B., & Remez, R. E. (1990). Function morphemes in young children’s speech perception and production. Developmental Psychology, 26(2), 204216.Google Scholar
Gervain, J., Berent, I., & Werker, J. F. (2012). Binding at birth: The newborn brain detects identity relations and sequential position in speech. Journal of Cognitive Neuroscience, 24(3), 564574.Google Scholar
Gervain, J., Macagno, F., Cogoi, S., Peña, M., & Mehler, J. (2008). The neonate brain detects speech structure. Proceedings of the National Academy of Sciences, 105(37), 1422214227.Google Scholar
Gervain, J., & Werker, J. F. (2013). Learning non-adjacent regularities at age 0;7. Journal of Child Language, 40(4), 860872.Google Scholar
Gleitman, L. R. (1990). The structural sources of verb meanings. Language Acquisition, 1, 355.Google Scholar
Gleitman, L. R., Cassidy, K., Nappa, R., Papafragou, A., & Trueswell, J. C. (2005). Hard words. Language Learning and Development, 1(1), 2364.Google Scholar
Gleitman, L. R., & Wanner, E. (1982). Language acquisition: The state of the art. In Wanner, E. & Gleitman, L. R. (Eds.), Language acquisition: The state of the art (pp. 3–48). Cambridge, UK: Cambridge University Press.Google Scholar
Goldin-Meadow, S. (2003). The resilience of language: What gesture creation in deaf children can tell us about how all children learn language. New York, NY: Psychology Press.Google Scholar
Golinkoff, R. M., Can, D. D., Soderstrom, M., & Hirsh-Pasek, K. (2015). (Baby) talk to me: The social context of infant-directed speech and its effects on early language acquisition. Current Directions in Psychological Science, 24(5), 339344.Google Scholar
Golinkoff, R. M., Hirsh-Pasek, K., Bailey, L. M., & Wenger, N. R. (1992). Young children and adults use lexical principles to learn new nouns. Developmental Psychology, 28(1), 99108.Google Scholar
Golinkoff, R. M. & Hirsh-Pasek, K. Gordon, L. & Cauley, K. (1987). The eyes have it: Lexical and word order comprehension in a new context. Journal of Child Language, 14, 2345.Google Scholar
Golinkoff, R. M., Hoff, E., Rowe, M., Tamis-LeMonda, C., & Hirsh-Pasek, K. (2019). Language matters: Denying the existence of the 30-million-word gap has serious consequences. Child Development, 90(3), 985992.Google Scholar
Golinkoff, R. M., Mervis, C. B., & Hirsh-Pasek, K. (1994). Early object labels: The case for a developmental lexical principles framework. Journal of Child Language, 21(1), 125155.Google Scholar
Graf Estes, K., & Bowen, S. (2013). Learning about sounds contributes to learning about words: Effects of prosody and phonotactics on infant word learning. Journal of Experimental Child Psychology, 114(3), 405417.Google Scholar
Graf Estes, K., & Hurley, K. (2013). Infant-directed prosody helps infants map sounds to meanings. Infancy, 18(5), 797824.Google Scholar
Halberda, J. (2003). The development of a word-learning strategy. Cognition, 87(1), B23B34.Google Scholar
Harris, J., Golinkoff, R. M., & Hirsh-Pasek, K. (2011). Lessons from the crib for the classroom: How children really learn vocabulary. Handbook of Early Literacy Research, 3, 4965.Google Scholar
Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of young American children. Baltimore, MD: Paul H. Brookes.Google Scholar
Hartman, K. M., Ratner, N. B., & Newman, R. S. (2017). Infant-directed speech (IDS) vowel clarity and child language outcomes. Journal of Child Language, 44(5), 11401162.Google Scholar
Hassinger-Das, B., Bustamante, A. S., Hirsh-Pasek, K., & Golinkoff, R. M. (2018). Learning landscapes: Playing the way to learning and engagement in public spaces. Education Sciences, 8(2), 74.Google Scholar
Hawthorne, K., & Gerken, L. (2014). From pauses to clauses: Prosody facilitates learning of syntactic constituency. Cognition, 133(2), 420428.Google Scholar
Hirsh-Pasek, K. (2000). Beyond Shipley, Smith, and Gleitman: Young children’s comprehension of bound morphemes. In Landau, B., Sabini, J. Jonides, J. & Newport, E. L. (Eds.), Perception, cognition and language: Essays in honor of Henry and Lila Gleitman (pp. 191201). Cambridge, MA: MIT Press.Google Scholar
Hirsh-Pasek, K., Adamson, L. B., Bakeman, R., Owen, M. T., Golinkoff, R. M., Pace, A., … Suma, K. (2015). The contribution of early communication quality to low-income children’s language success. Psychological Science, 26(7), 10711083.Google Scholar
Hirsh-Pasek, K., & Golinkoff, R. M. (1996). The origins of grammar: Evidence from comprehension. Cambridge, MA: MIT Press.Google Scholar
Hirsh-Pasek, K., Kemler Nelson, D. G., Jusczyk, P. W., Cassidy, K. W., Druss, B., & Kennedy, L. (1987). Clauses are perceptual units for young infants. Cognition, 26(3), 269286.Google Scholar
Hoff, E., & Ribot, K. M. (2017). Language growth in English monolingual and Spanish-English bilingual children from 2.5 to 5 years. Journal of Pediatrics, 190, 241245.Google Scholar
Hollich, G. J., Hirsh-Pasek, K., Golinkoff, R. M., Brand, R. J., Brown, E., Chung, H. L., … Bloom, L. (2000). Breaking the language barrier: An emergentist coalition model for the origins of word learning. Monographs of the Society for Research in Child Development, i135.Google Scholar
Imai, M., Li, L., Haryu, E., Okada, H., Hirsh-Pasek, K., Golinkoff, R. M., & Shigematsu, J. (2008). Novel noun and verb learning in Chinese-, English-, and Japanese-speaking children. Child Development, 79(4), 9791000.Google Scholar
Johnson, V. E., de Villiers, J. G., & Seymour, H. N. (2005). Agreement without understanding? The case of third person singular/s. First Language, 25(3), 317330.Google Scholar
Jusczyk, P. W., Houston, D. M., & Newsome, M. (1999). The beginnings of word segmentation in English-learning infants. Cognitive Psychology, 39(34), 159207.Google Scholar
Jusczyk, P. W., Luce, P. A., & Charles-Luce, J. (1994). Infants’ sensitivity to phonotactic patterns in the native language. Journal of Memory and Language, 33(5), 630645.Google Scholar
Kalashnikova, M., Goswami, U., & Burnham, D. (2018). Mothers speak differently to infants at-risk for dyslexia. Developmental Science, 21(1), e12487.Google Scholar
Kemler Nelson, D., Hirsh-Pasek, K., Jusczyk, P., & Cassidy, K. W. (1989). How the prosodic cues in motherese might assist language learning. Journal of Child Language, 16, 5568.Google Scholar
Kuhl, P. K. (2007). Is speech learning “gated” by the social brain? Developmental Science, 10(1), 110120.Google Scholar
Kuhl, P. K., Andruski, J. E., Chistovich, I. A., Chistovich, L. A., Kozhevnikova, E. V., Ryskina, V. L., … Lacerda, F. (1997). Cross-language analysis of phonetic units in language addressed to infants. Science, 277(5326), 684686.Google Scholar
Kuhl, P. K., Conboy, B. T., Coffey-Corina, S., Padden, D., Rivera-Gaxiola, M., & Nelson, T. (2008). Phonetic learning as a pathway to language: new data and native language magnet theory expanded (NLM-e). Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1493), 9791000.Google Scholar
Kuhl, P. K., Tsao, F. M., & Liu, H. M. (2003). Foreign-language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences, 100(15), 90969101.Google Scholar
Landau, B., Smith, L. B., & Jones, S. S. (1988). The importance of shape in early lexical learning. Cognitive Development, 3(3), 299321.Google Scholar
Little, E. E., Carver, L. J., & Legare, C. H. (2016). Cultural variation in triadic infant–caregiver object exploration. Child Development, 87(4), 11301145.Google Scholar
Liu, J., Golinkoff, R. M., & Sak, K. (2001). One cow does not an animal make: Young children can extend novel words at the superordinate level. Child Development, 72(6), 16741694.Google Scholar
Luo, R., & Tamis-LeMonda, C. S. (2016). Mothers’ verbal and nonverbal strategies in relation to infants’ object-directed actions in real time and across the first three years in ethnically diverse families. Infancy, 21(1), 6589.Google Scholar
Lytle, S. R., Garcia-Sierra, A., & Kuhl, P. K. (2018). Two are better than one: Infant language learning from video improves in the presence of peers. Proceedings of the National Academy of Sciences, 115(40), 98599866.Google Scholar
Ma, W., Golinkoff, R. M., Houston, D. M., & Hirsh-Pasek, K. (2011). Word learning in infant-and adult-directed speech. Language Learning and Development, 7(3), 185201.Google Scholar
MacKenzie, H., Curtin, S., & Graham, S. A. (2012). Class matters: 12-month-olds’ word–object associations privilege content over function words. Developmental Science, 15(6), 753761.Google Scholar
Maguire, M. J., Hirsh-Pasek, K., & Golinkoff, R. M. (2006). A unified theory of word learning: Putting verb acquisition in context. In Hirsh-Pasek, K. & Golinkoff, R. M. (Eds.), Action meets word: How children learn verbs. New York, NY: Oxford University Press.Google Scholar
Mandel, D. R., Jusczyk, P. W., & Kemler Nelson, D. G. (1994). Does sentential prosody help infants organize and remember speech information? Cognition, 53(2), 155180.Google Scholar
Mandel, D. R., Kemler Nelson, D. G., & Jusczyk, P. W. (1996). Infants remember the order of words in a spoken sentence. Cognitive Development, 11(2), 181196.Google Scholar
Marcus, G. F., Fernandes, K. J., & Johnson, S. P. (2007). Infant rule learning facilitated by speech. Psychological Science, 18(5), 387391.Google Scholar
Marcus, G. F., Vijayan, S., Rao, S. B., & Vishton, P. M. (1999). Rule learning by seven-month-old infants. Science, 283, 7780.Google Scholar
Marchman, V. A., & Bates, E. (1994). Continuity in lexical and morphological development: A test of the critical mass hypothesis. Journal of Child Language, 21(2), 339366.Google Scholar
Marchman, V. A., & Fernald, A. (2008). Speed of word recognition and vocabulary knowledge in infancy predict cognitive and language outcomes in later childhood. Developmental Science, 11(3), F9F16.Google Scholar
Markman, E. M., & Wachtel, G. F. (1988). Children’s use of mutual exclusivity to constrain the meanings of words. Cognitive Psychology, 20(2), 121157.Google Scholar
Martin, A., Igarashi, Y., Jincho, N., & Mazuka, R. (2016). Utterances in infant-directed speech are shorter, not slower. Cognition, 156, 5259.Google Scholar
Mastin, J. D., & Vogt, P. (2016). Infant engagement and early vocabulary development: a naturalistic observation study of Mozambican infants from 1; 1 to 2; 1. Journal of Child Language, 43(2), 235264.Google Scholar
Matthews, D., Lieven, E., Theakston, A., & Tomasello, M. (2005). The role of frequency in the acquisition of English word order. Cognitive Development, 20(1), 121136.Google Scholar
Mattock, K., Polka, L., Rvachew, S., & Krehm, M. (2010). The first steps in word learning are easier when the shoes fit: Comparing monolingual and bilingual infants. Developmental Science, 13(1), 229243.Google Scholar
McCabe, A., Tamis-LeMonda, C. S., Bornstein, M. H., Cates, C. B., Golinkoff, R., Guerra, A. W., … Mendelsohn, A. (2013). Multilingual children. Social Policy Report, 27(4), 20142451.Google Scholar
McGillion, M., Pine, J. M., Herbert, J. S., & Matthews, D. (2017). A randomised controlled trial to test the effect of promoting caregiver contingent talk on language development in infants from diverse socioeconomic status backgrounds. Journal of Child Psychology and Psychiatry, 58(10), 11221131.Google Scholar
Medina, T. N., Snedeker, J., Trueswell, J. C., & Gleitman, L. R. (2011). How words can and cannot be learned by observation. Proceedings of the National Academy of Sciences, 108(22), 90149019.Google Scholar
Merriman, W. E., Bowman, L. L., & MacWhinney, B. (1989). The mutual exclusivity bias in children’s word learning. Monographs of the Society for Research in Child Development, i129.Google Scholar
Miller, G. A. (1990). The place of language in a scientific psychology. Psychological Science, 1(1), 714.Google Scholar
Mintz, T. H. (2003). Frequent frames as a cue for grammatical categories in child directed speech. Cognition, 90(1), 91117.Google Scholar
Mintz, T. H. (2013). The segmentation of sub-lexical morphemes in English-learning 15-month-olds. Frontiers in Psychology, 4, 24.Google Scholar
Molfese, D. L., & Molfese, V. J. (1979). Hemisphere and stimulus differences as reflected in the cortical responses of newborn infants to speech stimuli. Developmental Psychology, 15(5), 505511.Google Scholar
Morales, M., Mundy, P., Delgado, C. E., Yale, M., Messinger, D., Neal, R., & Schwartz, H. K. (2000). Responding to joint attention across the 6- through 24-month age period and early language acquisition. Journal of Applied Developmental Psychology, 21(3), 283298.Google Scholar
Morales, M., Mundy, P., & Rojas, J. (1998). Following the direction of gaze and language development in 6-month-olds. Infant Behavior and Development, 21(2), 373377.Google Scholar
Mundy, P., Block, J., Delgado, C., Pomares, Y., van Hecke, A. V., & Parlade, M. V. (2007). Individual differences and the development of joint attention in infancy. Child Development, 78(3), 938954.Google Scholar
Naigles, L. (1990). Children use syntax to learn verb meanings. Journal of Child Language, 17(2), 357374.Google Scholar
Newman, R., Ratner, N. B., Jusczyk, A. M., Jusczyk, P. W., & Dow, K. A. (2006). Infants’ early ability to segment the conversational speech signal predicts later language development: A retrospective analysis. Developmental Psychology, 42(4), 643655.Google Scholar
Newport, E. L., Landau, B., Seydell-Greenwald, A., Turkeltaub, P. E., Chambers, C. E., Dromerick, A. W., … Gaillard, W. D. (2017). Revisiting Lenneberg’s hypotheses about early developmental plasticity: Language organization after left-hemisphere perinatal stroke. Biolinguistics, 11, 407421.Google Scholar
Pace, A., Alper, R., Burchinal, M. R., Golinkoff, R. M., & Hirsh-Pasek, K. (2019). Measuring success: Within and cross-domain predictors of academic and social trajectories in elementary school. Early Childhood Research Quarterly, 46, 112125.Google Scholar
Pace, A., Luo, R., Hirsh-Pasek, K., & Golinkoff, R. M. (2017). Identifying pathways between socioeconomic status and language development. Annual Review of Linguistics, 3, 285308.Google Scholar
Pae, S., Yoon, H., Seol, A., Gilkerson, J., Richards, J. A., Ma, L., & Topping, K. (2016). Effects of feedback on parent–child language with infants and toddlers in Korea. First Language, 36(6), 549569.Google Scholar
Paradis, J. (2011). Individual differences in child English second language acquisition: Comparing child-internal and child-external factors. Linguistic Approaches to Bilingualism, 1(3), 213237.Google Scholar
Parise, E., & Csibra, G. (2012). Electrophysiological evidence for the understanding of maternal speech by 9-month-old infants. Psychological Science, 23(7), 728733.Google Scholar
Peña, M., Maki, A., Kovac̆ić, D., Dehaene-Lambertz, G., Koizumi, H., Bouquet, F., & Mehler, J. (2003). Sounds and silence: An optical topography study of language recognition at birth. Proceedings of the National Academy of Sciences, 100(20), 1170211705.Google Scholar
Perani, D., Saccuman, M. C., Scifo, P., Awander, A., Spada, D., Baldoli, C., … Friederici, A. D. (2011). Neural language networks at birth. Proceedings of the National Academy of Sciences, 108, 1605616061.Google Scholar
Pereira, A. F., Smith, L. B., & Yu, C. (2014). A bottom-up view of toddler word learning. Psychonomic Bulletin & Review, 21(1), 178185.Google Scholar
Perry, L. K., & Samuelson, L. K. (2011). The shape of the vocabulary predicts the shape of the bias. Frontiers in Psychology, 2, 345.Google Scholar
Pinker, S. (1987). The bootstrapping problem in language acquisition. In MacWhinney, B. (Ed.), Mechanisms of language acquisition (pp. 399441). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Place, S., & Hoff, E. (2016). Effects and noneffects of input in bilingual environments on dual language skills in 2 ½-year-olds. Bilingualism: Language and Cognition, 19(5), 10231041.Google Scholar
Quine, W. V. (1960). Word and object. Cambridge, MA: MIT Press.Google Scholar
Reed, J., Hirsh-Pasek, K., & Golinkoff, R. M. (2016). Meeting children where they are: Adaptive contingency builds early communication skills. In Witt, P. L. (Ed.) Communication and learning (Handbooks of Communication Science, pp. 601628). Berlin: deGruyter Mouton.Google Scholar
Reed, J., Hirsh-Pasek, K. & Golinkoff, R.M. (2017). Learning on hold: Cell phones sidetrack parent–child interactions. Developmental Psychology, 53(8), 14281436.Google Scholar
Richman, A. L., Miller, P. M., & LeVine, R. A. (1992). Cultural and educational variations in maternal responsiveness. Developmental Psychology, 28(4), 614621.Google Scholar
Ridge, K. E., Weisberg, D. S., Ilgaz, H., Hirsh-Pasek, K. A., & Golinkoff, R. M. (2015). Supermarket speak: Increasing talk among low-socioeconomic status families. Mind, Brain, and Education, 9(3), 127135.Google Scholar
Rohlfing, K. J., Wrede, B., Vollmer, A. L., & Oudeyer, P. Y. (2016). An alternative to mapping a word onto a concept in language acquisition: Pragmatic frames. Frontiers in Psychology, 7, 470.Google Scholar
Romeo, R. R., Leonard, J. A., Robinson, S. T., West, M. R., Mackey, A. P., Rowe, M. L., & Gabrieli, J. D. (2018). Beyond the 30-million-word gap: Children’s conversational exposure is associated with language-related brain function. Psychological Science, 29(5), 700710.Google Scholar
Roseberry, S., Hirsh-Pasek, K., & Golinkoff, R.M. (2014). Skype me! Socially contingent interactions help toddlers learn language. Child Development, 85(3), 956970.Google Scholar
Roseberry, S., Richie, R., Hirsh-Pasek, K., Golinkoff, R. M., & Shipley, T. F. (2011). Babies catch a break: 7- to 9-month-olds track statistical probabilities in continuous dynamic events. Psychological Science, 22(11), 14221424.Google Scholar
Rowe, M. L. (2012). A longitudinal investigation of the role of quantity and quality of child-directed speech in vocabulary development. Child Development, 83(5), 17621774.Google Scholar
Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical learning. Annual Review of Psychology, 69, 181208.Google Scholar
Saffran, J. R., & Thiessen, E. D. (2007). Domain-general learning capacities. In Hoff, E. & Shatz, M. (Eds.), Handbook of language development (pp. 6886). Cambridge, UK: Blackwell.Google Scholar
Saffran, J. R., & Wilson, D. P. (2003). From syllables to syntax: Multilevel statistical learning by 12-month-old infants. Infancy, 4(2), 273284.Google Scholar
Santelmann, L. M., & Jusczyk, P. W. (1998). Sensitivity to discontinuous dependencies in language learners: Evidence for limitations in processing space. Cognition, 69(2), 105134.Google Scholar
Scaff, C., Stieglitz, J., Casillas, M., & Cristia, A. (2019, March). Language input in a small-scale society: Estimations from daylong recordings in a Tsimané village. Poster presented at the Interdisciplinary Study of Language Evolution Inaugural Workshop, Zurich, Switzerland.Google Scholar
Scarborough, H. S. (2001). Connecting early language and literacy to later reading (dis)abilities: Evidence, theory, and practice. In Neuman, S. B. & Dickinson, D. K. (Eds.), Handbook of early literacy research (pp. 97110). New York, NY: Guilford Press.Google Scholar
Schieffelin, B. & Ochs, E. (1983). A cultural perspective on the transition from prelinguistic to linguistic communication. In Golinkoff, R. M. (Ed.), The transition from prelinguistic to linguistic communication (pp. 115131). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Scott, R. M., & Fisher, C. (2012). 2.5-year-olds use cross-situational consistency to learn verbs under referential uncertainty. Cognition, 122(2), 163180.Google Scholar
Seidenberg, M. S., & Elman, J. L. (1999). Do infants learn grammar with algebra or statistics?. Science, 284(5413), 433433.Google Scholar
Seidl, A. (2007). Infants’ use and weighting of prosodic cues in clause segmentation. Journal of Memory and Language, 57(1), 2448.Google Scholar
Senghas, A., Kita, S., & Özyürek, A. (2004). Children creating core properties of language: Evidence from an emerging sign language in Nicaragua. Science, 305(5691), 17791782.Google Scholar
Shatz, M., & Gelman, R. (1973). The development of communication skills: Modifications in the speech of young children as a function of listener. Monographs of the Society for Research in Child Development, 138.Google Scholar
Shi, R., & Werker, J. F. (2001). Six-month-old infants’ preference for lexical words. Psychological Science, 12(1), 7075.Google Scholar
Shipley, E. F., Smith, C. S., & Gleitman, L. R. (1969). A study in the acquisition of language: Free responses to commands. Language, 45, 322342.Google Scholar
Shneidman, L. A., & Goldin-Meadow, S. (2012). Language input and acquisition in a Mayan village: How important is directed speech?. Developmental Science, 15(5), 659673.Google Scholar
Singh, L., Fu, C. S., Tay, Z. W., & Golinkoff, R. M. (2018). Novel word learning in bilingual and monolingual infants: Evidence for a bilingual advantage. Child Development, 89(3), e183e198.Google Scholar
Singh, L., Morgan, J. L., & Best, C. T. (2002). Infants’ listening preferences: Baby talk or happy talk?. Infancy, 3(3), 365394.Google Scholar
Smith, N. A., & Trainor, L. J. (2008). Infant-directed speech is modulated by infant feedback. Infancy, 13(4), 410420.Google Scholar
Smith, L., & Yu, C. (2008). Infants rapidly learn word-referent mappings via cross-situational statistics. Cognition, 106(3), 15581568.Google Scholar
Soderstrom, M. (2008). Early perception–late comprehension of grammar? The case of verbal-s: a response to de Villiers & Johnson (2007). Journal of Child Language, 35(3), 671676.Google Scholar
Soderstrom, M., Seidl, A., Kemler Nelson, D. G., & Jusczyk, P. W. (2003). The prosodic bootstrapping of phrases: Evidence from prelinguistic infants. Journal of Memory and Language, 49(2), 249267.Google Scholar
Sperry, D. E., Sperry, L. L., & Miller, P. J. (2018). Reexamining the verbal environments of children from different socioeconomic backgrounds. Child Development, 90(4), 13031318.Google Scholar
Stahl, A. E., Romberg, A. R., Roseberry, S., Golinkoff, R. M., & Hirsh-Pasek, K. (2014). Infants segment continuous events using transitional probabilities. Child Development, 85(5), 18211826.Google Scholar
Stevens, J. S., Gleitman, L. R., Trueswell, J. C., & Yang, C. (2017). The pursuit of word meanings. Cognitive Science, 41(4), 638676.Google Scholar
Suskind, D. L., Leffel, K. R., Graf, E., Hernandez, M. W., Gunderson, E. A., Sapolich, S. G., … & Levine, S. C. (2016). A parent-directed language intervention for children of low socioeconomic status: A randomized controlled pilot study. Journal of Child Language, 43(2), 366406.Google Scholar
Tamis-LeMonda, C. S., Custode, S., Kuchirko, Y., Escobar, K., & Lo, T. (2019). Routine language: Speech directed to infants during home activities. Child Development, 90(6), 21352152.Google Scholar
Tamis-LeMonda, C. S., Kuchirko, Y., & Song, L. (2014). Why is infant language learning facilitated by parental responsiveness?. Current Directions in Psychological Science, 23(2), 121126.Google Scholar
Tamis-LeMonda, C. S., Kuchirko, Y., & Tafuro, L. (2013). From action to interaction: Infant object exploration and mothers’ contingent responsiveness. IEEE Transactions on Autonomous Mental Development, 5(3), 202209.Google Scholar
Tamis-LeMonda, C. S., Song, L., Leavell, A. S., Kahana-Kalman, R., & Yoshikawa, H. (2012). Ethnic differences in mother–infant language and gestural communications are associated with specific skills in infants. Developmental Science, 15(3), 384397.Google Scholar
Tardif, T., Shatz, M., & Naigles, L. (1997). Caregiver speech and children’s use of nouns versus verbs: A comparison of English, Italian, and Mandarin. Journal of Child Language, 24(3), 535565.Google Scholar
Teinonen, T., Fellman, V., Näätänen, R., Alku, P., & Huotilainen, M. (2009). Statistical language learning in neonates revealed by event-related brain potentials. BMC Neuroscience, 10(1), 21.Google Scholar
Thiessen, E. D., Hill, E. A., & Saffran, J. R. (2005). Infant-directed speech facilitates word segmentation. Infancy, 7(1), 5371.Google Scholar
Tincoff, R., & Jusczyk, P. W. (2012). Six-month-olds comprehend words that refer to parts of the body. Infancy, 17(4), 432444.Google Scholar
Tomasello, M. (1992). The social bases of language acquisition. Social Development, 1(1), 6787.Google Scholar
Trueswell, J. C., Lin, Y., Armstrong, B., III, Cartmill, E. A., Goldin-Meadow, S., & Gleitman, L. R. (2016). Perceiving referential intent: Dynamics of reference in natural parent–child interactions. Cognition, 148, 117135.Google Scholar
Tsao, F. M., Liu, H. M., & Kuhl, P. K. (2004). Speech perception in infancy predicts language development in the second year of life: A longitudinal study. Child Development, 75(4), 10671084.Google Scholar
Tucker, M., & Hirsh-Pasek, K. (1993). Systems and language: Implications for acquisition. In Smith, L. & Thelen, E. (Eds.) Dynamical systems approach to development (pp. 359384). Cambridge, MA: MIT Press.Google Scholar
van Heugten, M., & Johnson, E. K. (2010). Linking infants’ distributional learning abilities to natural language acquisition. Journal of Memory and Language, 63(2), 197209.Google Scholar
Vasilyeva, M., Waterfall, H., & Huttenlocher, J. (2008). Emergence of syntax: Commonalities and differences across children. Developmental Science, 11(1), 8497.Google Scholar
Vouloumanos, A., Martin, A., & Onishi, K. H. (2014). Do 6-month-olds understand that speech can communicate?. Developmental Science, 17(6), 872879.Google Scholar
Wake, M., Tobin, S., Girolametto, L., Ukoumunne, O. C., Gold, L., Levickis, P., … Reilly, S. (2011). Outcomes of population based language promotion for slow to talk toddlers at ages 2 and 3 years: Let’s Learn Language cluster randomised controlled trial. British Medical Journal, 343, d4741.Google Scholar
Waxman, S., Fu, X., Arunachalam, S., Leddon, E., Geraghty, K., & Song, H. J. (2013). Are nouns learned before verbs? Infants provide insight into a long-standing debate. Child Development Perspectives, 7(3), 155159.Google Scholar
Weber, A., Fernald, A., & Diop, Y. (2017). When cultural norms discourage talking to babies: effectiveness of a parenting program in rural Senegal. Child Development, 88(5), 15131526.Google Scholar
Weisleder, A., & Fernald, A. (2013). Talking to children matters: Early language experience strengthens processing and builds vocabulary. Psychological Science, 24(11), 21432152.Google Scholar
Werker, J. F., Cohen, L. B., Lloyd, V. L., Casasola, M., & Stager, C. L. (1998). Acquisition of word-object associations by 14-month-old infants. Developmental Psychology, 34(6), 12891309.Google Scholar
Werker, J. F., & Yeung, H. H. (2005). Infant speech perception bootstraps word learning. Trends in Cognitive Sciences, 9(11), 519527.Google Scholar
Wu, Z., & Gros-Louis, J. (2014). Infants’ prelinguistic communicative acts and maternal responses: Relations to linguistic development. First Language, 34(1), 7290.Google Scholar
Xu, F., & Tenenbaum, J. B. (2007). Word learning as Bayesian inference. Psychological Review, 114(2), 245272.Google Scholar
Yu, C., & Smith, L. B. (2012a). Embodied attention and word learning by toddlers. Cognition, 125(2), 244262.Google Scholar
Yu, C., (2012b). Modeling cross-situational word-referent learning: Prior questions. Psychological Review, 119(1), 2139.Google Scholar
Yu, C., (2016). The social origins of sustained attention in one-year-old human infants. Current Biology, 26(9), 12351240.Google Scholar
Yu, C., Suanda, S. H., & Smith, L. B. (2019) Infant sustained attention but not joint attention to objects at 9 months predicts vocabulary at 12 and 15 months. Developmental Science, 22(1), e12735.Google Scholar
Yuan, S., Fisher, C., & Snedeker, J. (2012). Counting the nouns: Simple structural cues to verb meaning. Child Development, 83(4), 13821399.Google Scholar
Yurovsky, D., & Frank, M. C. (2017). Beyond naïve cue combination: Salience and social cues in early word learning. Developmental Science, 20(2), e12349.Google Scholar

References

Amabile, T. A., & Rovee-Collier, C. (1991). Contextual variation and memory retrieval at six months. Child Development, 62(5), 11551166Google Scholar
American Psychiatric Association (2016). Diagnostic and statistical manual of mental disorders (DSM-V) (5th ed.) Washington, DC: American Psychiatric Association.Google Scholar
Antovich, D. M., & Graf Estes, K. (2018). Learning across languages: Bilingual experience supports dual language statistical word segmentation. Developmental Science, 21(2), e12548.Google Scholar
Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of conditional probability statistics by 8-month-old infants. Psychological Science, 9(4), 321324.Google Scholar
Aslin, R. N., Woodward, J. Z., LaMendola, N. P., & Bever, T. G. (1996). Models of word segmentation in fluent maternal speech to infants. In Morgan, J. L. & Demuth, K. (Eds.), Signal to syntax: Bootstrapping from speech to grammar in early acquisition (pp. 117134). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Barr, R., & Brito, N. (2013). From specificity to flexibility: Developmental changes during infancy. In Bauer, P. (Ed.), The Blackwell handbook on the development of children’s memory (pp. 453479). Hoboken, NJ: Wiley-Blackwell.Google Scholar
Bauer, P. J. (1997). Development of memory in early childhood. London: Psychology Press.Google Scholar
Ben-Zeev, S. (1977). The influence of bilingualism on cognitive strategy and cognitive development. Child Development, 48(3), 10091018.Google Scholar
Bialystok, E. (1999). Cognitive complexity and attentional control in the bilingual mind. Child Development, 70(3), 636644.Google Scholar
Bialystok, E. (2007). Acquisition of literacy in bilingual children: A framework for research. Language Learning, 57, 4577.Google Scholar
Bialystok, E. (2017). The bilingual adaptation: How minds accommodate experience. Psychological Bulletin, 143(3), 233.Google Scholar
Bialystok, E., & Martin, M. M. (2004). Attention and inhibition in bilingual children: Evidence from the dimensional change card sort task. Developmental Science, 7(3), 325339.Google Scholar
Bornstein, M. H., Tamis-LeMonda, C. S., Hahn, C. S., & Haynes, O. M. (2008). Maternal responsiveness to young children at three ages: Longitudinal analysis of a multi-dimensional, modular, and specific parenting construct. Developmental Psychology, 44(3), 867.Google Scholar
Bosch, L., & Sebastián-Gallés, N. (2001). Evidence of early language discrimination abilities in infants from bilingual environments. Infancy, 2(1), 2949.Google Scholar
Bosch, L., (2003). Simultaneous bilingualism and the perception of a language-specific vowel contrast in the first year of life. Language and Speech, 46(2–3), 217243.Google Scholar
Brito, N., & Barr, R. (2012). Influence of bilingualism on memory generalization during infancy. Developmental Science, 15(6), 812816.Google Scholar
Brito, N., (2014). Flexible memory retrieval in bilingual 6-month-old infants. Developmental Psychobiology, 56(5), 11561163.Google Scholar
Brito, N. H., Grenell, A., & Barr, R. (2014). Specificity of the bilingual advantage for memory: Examining cued recall, generalization, and working memory in monolingual, bilingual, and trilingual toddlers. Frontiers in Psychology, 5, 1369.Google Scholar
Brito, N. H., Leon-Santos, A., Fifer, W. P., Noble, K. G. (2017). Early linguistic environment and neurocognitive adaptations: Examining the bilingual experience. Talk presented at Society for Research in Child Development (SRCD) Biennial Meeting, Austin, TX.Google Scholar
Brito, N. H., Sebastián-Gallés, N., & Barr, R. (2015). Differences in language exposure and its effects on memory flexibility in monolingual, bilingual, and trilingual infants. Bilingualism: Language and Cognition, 18(4), 670682.Google Scholar
Burchinal, M. R., Pace, A., Alper, R., Hirsh-Pasek, K., & Golinkoff, R. M. (2016). Early language outshines other predictors of academic and social trajectories in elementary school. Paper presented at the Administration for Children and Families Conference (ACF), Washington, DC, July.Google Scholar
Burns, T. C., Yoshida, K. A., Hill, K., & Werker, J. F. (2007). The development of phonetic representation in bilingual and monolingual infants. Applied Psycholinguistics, 28(3), 455474.Google Scholar
Byers-Heinlein, K., Burns, T. C., & Werker, J. F. (2010). The roots of bilingualism in newborns. Psychological Science, 21(3), 343348.Google Scholar
Byers-Heinlein, K., Morin-Lessard, E., & Lew-Williams, C. (2017). Bilingual infants control their languages as they listen. PNAS, 114(34), 90329037.Google Scholar
Cabrera, N. J., Beeghly, M., & Eisenberg, N. (2012). Positive development of minority children: Introduction to the special issue. Child Development Perspectives, 6(3), 207209.Google Scholar
Campos, J. J., Anderson, D. I., Barbu-Roth, M. A., Hubbard, E. M., Hertenstein, M. J., & Witherington, D. (2000). Travel broadens the mind. Infancy, 1(2), 149219.Google Scholar
Carlson, S. M., & Meltzoff, A. N. (2008). Bilingual experience and executive functioning in young children. Developmental Science, 11(2), 282298.Google Scholar
Castro-Vázquez, G. (2009). Immigrant children from Latin America at Japanese schools: Homogeneity, ethnicity, gender and language in education. Journal of Research in International Education, 8(1), 5780.Google Scholar
Cenoz, J., & Genesee, F. (Eds.). (1998). Beyond bilingualism: Multilingualism and multilingual education (Vol. 110). Bristol, UK: Multilingual Matters.Google Scholar
Comeau, L., Genesee, F., & Mendelson, M. (2007). Bilingual children’s repairs of breakdowns in communication. Journal of Child Language, 34(1), 159174.Google Scholar
Conboy, B. T., & Mills, D. L. (2006). Two languages, one developing brain: Event-related potentials to words in bilingual toddlers. Developmental Science, 9(1), F1F12.Google Scholar
Costa, A., & Sebastián-Gallés, N. (2014). How does the bilingual experience sculpt the brain? Nature Reviews Neuroscience, 15(5), 336.Google Scholar
Crosnoe, R. (2005). Double disadvantage or signs of resilience? The elementary school contexts of children from Mexican immigrant families. American Educational Research Journal, 42(2), 269303.Google Scholar
Crosnoe, R. (2007). Early child care and the school readiness of children from Mexican immigrant families. International Migration Review, 41(1), 152181.Google Scholar
Cummins, J. (1978). Bilingualism and the development of metalinguistic awareness. Journal of Cross-Cultural Psychology, 9(2), 131149.Google Scholar
Cummins, J. (1989). A theoretical framework for bilingual special education. Exceptional Children, 56(2), 111119.Google Scholar
de Angelis, G. (2007). Third or additional language acquisition (Vol. 24). Bristol, UK: Multilingual Matters.Google Scholar
de Bruin, A., Treccani, B., & Della Sala, S. (2015). Cognitive advantage in bilingualism: An example of publication bias? Psychological Science, 26(1), 99107.Google Scholar
de Houwer, A. (2009). Bilingual first language acquisition. Bristol, UK: Multilingual Matters.Google Scholar
de Houwer, A., Bornstein, M. H., & Putnick, D. L. (2014). A bilingual–monolingual comparison of young children’s vocabulary size: Evidence from comprehension and production. Applied Psycholinguistics, 35(6), 11891211.Google Scholar
DeCasper, A. J., & Fifer, W. P. (1980). Of human bonding: Newborns prefer their mothers’ voices. Science, 208(4448), 11741176.Google Scholar
Diamond, A. (1990). The development and neural bases of memory functions as indexed by the AB and delayed response tasks in human infants and infant monkeys. Annals of the New York Academy of Sciences, 608(1), 267317.Google Scholar
Eichenbaum, H. (2000). A cortical–hippocampal system for declarative memory. Nature Reviews Neuroscience, 1(1), 41.Google Scholar
Eimas, P. D., Siqueland, E. R., Jusczyk, P., & Vigorito, J. (1971). Speech perception in infants. Science, 171(3968), 303306.Google Scholar
Escobar, K., & Tamis-LeMonda, C. S. (2017). Conceptualizing variability in US Latino children’s dual-language development. In Cabrera, N. J. & Leyendecker, B. (Eds.), Handbook on positive development of minority children and youth (pp. 89106). Cham, Switzerland: Springer.Google Scholar
Espinosa, L. M. (2006). Social, cultural, and linguistic features of school readiness in young Latino children. In Bowman, B. & Moore, E. K. (Eds.), School readiness and social-emotional development: Perspectives on cultural diversity. Silver Spring, MD: National Black Child Development Institute.Google Scholar
Fagen, J. W., Morrongiello, B. A., Rovee-Collier, C., & Gekoski, M. J. (1984). Expectancies and memory retrieval in three-month-old infants. Child Development, 55(3), 936943.Google Scholar
Fennell, C. T., & Byers-Heinlein, K. (2011). Sentential context improves bilingual infants’ use of phonetic detail in novel words. Conference on Language Development, 178, 189.Google Scholar
Fennell, C. T., Byers-Heinlein, K., & Werker, J. F. (2007). Using speech sounds to guide word learning: The case of bilingual infants. Child Development, 78(5), 15101525.Google Scholar
Ferjan Ramírez, N., Ramírez, R. R., Clarke, M., Taulu, S., & Kuhl, P. K. (2017). Speech discrimination in 11-month-old bilingual and monolingual infants: A magnetoencephalography study. Developmental Science, 20(1), e12427.Google Scholar
Fernald, A., Marchman, V. A., & Weisleder, A. (2013). SES differences in language processing skill and vocabulary are evident at 18 months. Developmental Science, 16(2), 234248.Google Scholar
Fuligni, A. J. (1998). The adjustment of children from immigrant families. Current Directions in Psychological Science, 7(4), 99103.Google Scholar
Garcia-Sierra, A., Ramírez-Esparza, N., & Kuhl, P. K. (2016). Relationships between quantity of language input and brain responses in bilingual and monolingual infants. International Journal of Psychophysiology, 110, 117.Google Scholar
Garcia-Sierra, A., Rivera-Gaxiola, M., Percaccio, C. R., Conboy, B. T., Romo, H., Klarman, L., … Kuhl, P. K. (2011). Bilingual language learning: An ERP study relating early brain responses to speech, language input, and later word production. Journal of Phonetics, 39(4), 546557.Google Scholar
Gilkerson, J., Richards, J. A., Warren, S. F., Montgomery, J. K., Greenwood, C. R., Oller, D. K., … Paul, T. D. (2017). Mapping the early language environment using all-day recordings and automated analysis. American Journal of Speech-Language Pathology, 26(2), 248265.Google Scholar
Ginsborg, J. (2006). The effects of socio-economic status on children’s language acquisition and use. In Clegg, J. & Ginsborg, J. (Eds.), Language and social disadvantage: Theory into practice (pp. 927). Chichester, UK: John Wiley & Sons.Google Scholar
Greco, C., Hayne, H., & Rovee-Collier, C. (1990). Roles of function, reminding, and variability in categorization by 3-month-old infants. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 617.Google Scholar
Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1(2), 6781.Google Scholar
Grin, F. (2004). Robert Phillipson. English-only Europe? Challenging language policy. Language Policy, 3(1), 6771.Google Scholar
Halle, T., Forry, N., Hair, E., Perper, K., Wandner, L., Wessel, J., & Vick, J. (2009). Disparities in early learning and development: Lessons from the Early Childhood Longitudinal Study–Birth Cohort (ECLS-B). Washington, DC: Child Trends.Google Scholar
Hambly, C., & Fombonne, E. (2012). The impact of bilingual environments on language development in children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 42(7), 13421352.Google Scholar
Hartanto, A., Toh, W. X., & Yang, H. (2018). Bilingualism narrows socioeconomic disparities in executive functions and self-regulatory behaviors during early childhood: Evidence From the Early Childhood Longitudinal Study. Child Development, 90(4), 12151235.Google Scholar
Hayne, H. (2006). Age-related changes in infant memory retrieval: Implications for knowledge acquisition. Processes of brain and cognitive development. Attention and performance, 21, 209231.Google Scholar
Hayne, H., Boniface, J., & Barr, R. (2000). The development of declarative memory in human infants: Age-related changes in deferred imitation. Behavioral Neuroscience, 114(1), 77.Google Scholar
Hayne, H., MacDonald, S., & Barr, R. (1997). Developmental changes in the specificity of memory over the second year of life. Infant Behavior and Development, 20(2), 233245.Google Scholar
Herbert, J., Gross, J., & Hayne, H. (2007). Crawling is associated with more flexible memory retrieval by 9-month-old infants. Developmental Science, 10(2), 183189.Google Scholar
Hoff, E. (2003). The specificity of environmental influence: Socioeconomic status affects early vocabulary development via maternal speech. Child Development, 74(5), 13681378.Google Scholar
Hoff, E. (2006). How social contexts support and shape language development. Developmental Review, 26(1), 5588.Google Scholar
Hoff, E. (2013). Language development. Belmont, CA: Cengage Learning.Google Scholar
Hoff, E., Core, C., Place, S., Rumiche, R., Señor, M., & Parra, M. (2012). Dual language exposure and early bilingual development. Journal of Child Language, 39(1), 127.Google Scholar
Hoff-Ginsberg, E. (1998). The relation of birth order and SES to children’s language experience and language development. Applied Psycholinguistics, 19(4), 603629.Google Scholar
Howe, M. L. (2011). The nature of early memory: An adaptive theory of the genesis and development of memory. Oxford: Oxford University Press.Google Scholar
Huttenlocher, J., Waterfall, H., Vasilyeva, M., Vevea, J., & Hedges, L. V. (2010). Sources of variability in children’s language growth. Cognitive Psychology, 61(4), 343365.Google Scholar
Jones, E. J., & Herbert, J. S. (2006), Exploring memory in infancy: deferred imitation and the development of declarative memory. Infant and Child Development, 15, 195205. doi:10.1002/icd.436Google Scholar
Jusczyk, P. W., & Aslin, R. N. (1995). Infants′ detection of the sound patterns of words in fluent speech. Cognitive Psychology, 29(1), 123.Google Scholar
Kavé, G., Eyal, N., Shorek, A., & Cohen-Mansfield, J. (2008). Multilingualism and cognitive state in the oldest old. Psychology and Aging, 23(1), 70.Google Scholar
Kay-Raining Bird, E., Lamond, E., & Holden, J. (2012). Survey of bilingualism in autism spectrum disorders. International Journal of Language & Communication Disorders, 47(1), 5264.Google Scholar
Kominski, R., Shin, H., & Marotz, K. (2008, April). Language needs of school-age children. Paper presented at the Annual Meeting of the Population Association of America, New Orleans, LA.Google Scholar
Kovács, Á. M., & Mehler, J. (2009a). Cognitive gains in 7-month-old bilingual infants. Proceedings of the National Academy of Sciences, 106(16), 65566560.Google Scholar
Kovács, Á. M., (2009b). Flexible learning of multiple speech structures in bilingual infants. Science, 325(5940), 611612.Google Scholar
Kuhl, P. K. (1994). Learning and representation in speech and language. Current Opinion in Neurobiology, 4(6), 812822.Google Scholar
Kuhl, P. K. (2007). Is speech learning “gated” by the social brain? Developmental Science, 10(1), 110120.Google Scholar
Kuhl, P. K., Conboy, B. T., Padden, D., Nelson, T., & Pruitt, J. (2005). Early speech perception and later language development: Implications for the “critical period.” Language Learning and Development, 1(34), 237264.Google Scholar
Kuhl, P. K., Tsao, F. M., & Liu, H. M. (2003). Foreign-language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences, 100(15), 90969101.Google Scholar
Kuipers, J. R., & Thierry, G. (2013). ERP-pupil size correlations reveal how bilingualism enhances cognitive flexibility. Cortex, 49(10), 28532860.Google Scholar
Learmonth, A. E., Lamberth, R., & Rovee-Collier, C. (2004). Generalization of deferred imitation during the first year of life. JECP, 88(4), 297318.Google Scholar
Lewis, M. P., Simons, G. F., & Fennig, C. D. (2009). Ethnologue: Languages of the world (Vol. 16). Dallas, TX: SIL international.Google Scholar
Liberman, Z., Woodward, A. L., Keysar, B., & Kinzler, K. D. (2017). Exposure to multiple languages enhances communication skills in infancy. Developmental Science, 20(1), e12420.Google Scholar
Marchman, V. A., Fernald, A., & Hurtado, N. (2010). How vocabulary size in two languages relates to efficiency in spoken word recognition by young Spanish–English bilinguals. Journal of Child Language, 37(4), 817840.Google Scholar
Marchman, V. A., Martínez, L. Z., Hurtado, N., Grüter, T., & Fernald, A. (2017). Caregiver talk to young Spanish-English bilinguals: Comparing direct observation and parent-report measures of dual-language exposure. Developmental Science, 20(1), e12425.Google Scholar
Marcus, G. F., Vijayan, S., Rao, S. B., & Vishton, P. M. (1999). Rule learning by seven-month-old infants. Science, 283(5398), 7780.Google Scholar
Mattock, K., Polka, L., Rvachew, S., & Krehm, M. (2010). The first steps in word learning are easier when the shoes fit: Comparing monolingual and bilingual infants. Developmental Science, 13(1), 229243.Google Scholar
McGregor, K. K., Sheng, L., & Ball, T. (2007). Complexities of expressive word learning over time. Language, Speech, and Hearing Services in Schools, 38(4), 353364.Google Scholar
Mills, D., Conboy, B. T., & Paton, C. (2005). How learning new words shapes the organization of the infant brain. Symbol Use and Symbolic Representation, 123153.Google Scholar
Mills, D. L., Plunkett, K., Prat, C., & Schafer, G. (2005). Watching the infant brain learn words: Effects of vocabulary size and experience. Cognitive Development, 20(1), 1931.Google Scholar
Morton, J. B., & Harper, S. N. (2007). What did Simon say? Revisiting the bilingual advantage. Developmental Science, 10(6), 719726.Google Scholar
National Academies of Sciences, Engineering, and Medicine (2017). Promoting the educational success of children and youth learning English: Promising futures. Washington, DC: National Academies Press.Google Scholar
Nelson, C. A., & Webb, S. J. (2003). A cognitive neuroscience perspective on early memory development. In de Haan, M. & Johnson, M. H. (Eds.), The cognitive neuroscience of development (pp. 99125). London: Psychology Press.Google Scholar
Newman, R., Ratner, N. B., Jusczyk, A. M., Jusczyk, P. W., & Dow, K. A. (2006). Infants’ early ability to segment the conversational speech signal predicts later language development: a retrospective analysis. Developmental Psychology, 42(4), 643.Google Scholar
Newport, E. L. (1990). Maturational constraints on language learning. Cognitive Science, 14(1), 1128.Google Scholar
Newport, E. L., & Aslin, R. N. (2004). Learning at a distance I. Statistical learning of non-adjacent dependencies. Cognitive Psychology, 48(2), 127162.Google Scholar
Newport, E. L., Bavelier, D., & Neville, H. J. (2001). Critical thinking about critical periods: Perspectives on a critical period for language acquisition. In Dupoux, E. (Ed.), Language, brain and cognitive development: Essays in honor of Jacques Mehler (pp. 481502). Cambridge, MA: MIT Press.Google Scholar
Noble, K. G., Engelhardt, L. E., Brito, N. H., Mack, L. J., Nail, E. J., Angal, J., … PASS Network. (2015). Socioeconomic disparities in neurocognitive development in the first two years of life. Developmental Psychobiology, 57(5), 535551.Google Scholar
Office of Head Start (2008). Dual language learning: What does it take? Head Start dual language report. Retrieved from http://eclkc.ohs.acf.hhs.gov/hslc/tta-.Google Scholar
Ohashi, J. K., Mirenda, P., Marinova-Todd, S., Hambly, C., Fombonne, E., Szatmari, P., … Volden, J. (2012). Comparing early language development in monolingual-and bilingual-exposed young children with autism spectrum disorders. Research in Autism Spectrum Disorders, 6(2), 890897.Google Scholar
Oller, D. K., & Eilers, R. E. (Eds.). (2002). Language and literacy in bilingual children (Vol. 2). Bristol, UK: Multilingual Matters.Google Scholar
Olshtain, E., & Nissim-Amitai, F. (2004). Being trilingual or multilingual: Is there a price to pay. In Hoffman, C. & Ytsma, J. (Eds.), Trilingualism in family, school and community (pp. 3050). Bristol, UK: Multilingual Matters.Google Scholar
Oyama, S. (1976). A sensitive period for the acquisition of a nonnative phonological system. Journal of Psycholinguistic Research, 5(3), 261283.Google Scholar
Paap, K. R., & Greenberg, Z. I. (2013). There is no coherent evidence for a bilingual advantage in executive processing. Cognitive Psychology, 66(2), 232258.Google Scholar
Paradis, J. (2007). Second language acquisition in childhood. In Hoff, E. & Shatz, M. (Eds.), The Blackwell handbook of language development (pp. 387405). Malden, MA: Blackwell.Google Scholar
Pearson, B. Z., Fernandez, S. C., Lewedge, V & Oller, D. K. (1997). The relation of input factors to lexical learning by bilingual infants. Applied Psycholinguistics, 18, 4158Google Scholar
Pearson, B. Z., Fernández, S. C., & Oller, D. K. (1993). Lexical development in bilingual infants and toddlers: Comparison to monolingual norms. Language Learning, 43(1), 93120.Google Scholar
Petitto, L. A., Berens, M. S., Kovelman, I., Dubins, M. H., Jasinska, K., & Shalinsky, M. (2012). The “perceptual wedge hypothesis” as the basis for bilingual babies’ phonetic processing advantage: New insights from fNIRS brain imaging. Brain and Language, 121(2), 130143.Google Scholar
Place, S., & Hoff, E. (2011). Properties of dual language exposure that influence 2-year-olds’ bilingual proficiency. Child Development, 82(6), 18341849.Google Scholar
Place, S., (2016). Effects and noneffects of input in bilingual environments on dual language skills in 2 ½-year-olds. Bilingualism: Language and Cognition, 19(5), 10231041.Google Scholar
Poarch, G. J., & van Hell, J. G. (2012). Executive functions and inhibitory control in multilingual children: Evidence from second-language learners, bilinguals, and trilinguals. Journal of Experimental Child Psychology, 113(4), 535551.Google Scholar
Poulin-Dubois, D., Blaye, A., Coutya, J., & Bialystok, E. (2011). The effects of bilingualism on toddlers’ executive functioning. Journal of Experimental Child Psychology, 108(3), 567579.Google Scholar
Proctor, B. D., Semega, J. L., & Kollar, M. A. (2016). U.S. Census Bureau, current population reports, P60-256(RV): Income and poverty in the United States: 2015. Washington, DC: US Government Printing Office.Google Scholar
Ramírez-Esparza, N., García-Sierra, A., & Kuhl, P. K. (2017). The impact of early social interactions on later language development in Spanish–English bilingual infants. Child Development, 88(4), 12161234.Google Scholar
Richmond, J., & Nelson, C. A. (2007). Accounting for change in declarative memory: A cognitive neuroscience perspective. Developmental Review, 27(3), 349373.Google Scholar
Rivera-Gaxiola, M., Silva-Pereyra, J., & Kuhl, P. K. (2005). Brain potentials to native and non-native speech contrasts in 7-and 11-month-old American infants. Developmental Science, 8(2), 162172.Google Scholar
Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. Oxford: Oxford University Press.Google Scholar
Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2003). Infant visual recognition memory: independent contributions of speed and attention. Developmental Psychology, 39(3), 563.Google Scholar
Rovee-Collier, C., & Dufault, D. (1991). Multiple contexts and memory retrieval at three months. Developmental Psychobiology, 24(1), 3949.Google Scholar
Rowe, M. L. (2008). Child-directed speech: Relation to socioeconomic status, knowledge of child development and child vocabulary skill. Journal of Child Language, 35(1), 185205.Google Scholar
Rowe, M. L. (2012). A longitudinal investigation of the role of quantity and quality of child-directed speech in vocabulary development. Child Development, 83(5), 17621774.Google Scholar
Rowe, M. L., & Goldin-Meadow, S. (2009). Differences in early gesture explain SES disparities in child vocabulary size at school entry. Science, 323(5916), 951953.Google Scholar
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 19261928.Google Scholar
Singh, L., Fu, C. S., Rahman, A. A., Hameed, W. B., Sanmugam, S., Agarwal, P., … GUSTO Research Team (2015). Back to basics: A bilingual advantage in infant visual habituation. Child Development, 86(1), 294302.Google Scholar
Singh, L., Fu, C. S., Tay, Z. W., & Golinkoff, R. M. (2018). Novel word learning in bilingual and monolingual infants: evidence for a bilingual advantage. Child Development, 89(3), e183e198.Google Scholar
Singh, L., Poh, F. L., & Fu, C. S. (2016). Limits on monolingualism? A comparison of monolingual and bilingual infants’ abilities to integrate lexical tone in novel word learning. Frontiers in Psychology, 7, 667.Google Scholar
Spear, N. E. (1984). Ecologically Determined Dispositions Control the Ontogeny of Learning and. Comparative perspectives on the development of memory, 325.Google Scholar
Sundara, M., Polka, L., & Molnar, M. (2008). Development of coronal stop perception: Bilingual infants keep pace with their monolingual peers. Cognition, 108(1), 232242.Google Scholar
Sundara, M., & Scutellaro, A. (2011). Rhythmic distance between languages affects the development of speech perception in bilingual infants. Journal of Phonetics, 39(4), 505513.Google Scholar
Tamis-LeMonda, C. S., Custode, S., Kuchirko, Y., Escobar, K., & Lo, T. (2018). Routine language: Speech directed to infants during home activities. Child Development, 90(6), 21322152.Google Scholar
Tare, M., & Gelman, S. A. (2010). Can you say it another way? Cognitive factors in bilingual children’s pragmatic language skills. Journal of Cognition and Development, 11(2), 137158.Google Scholar
Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80(5), 352.Google Scholar
United Nations (2018). United Nations General Assembly Member States. Retrieved from www.un.org/en/member-states/index.html.Google Scholar
Vagh, S. B., Pan, B. A., & Mancilla-Martinez, J. (2009). Measuring growth in bilingual and monolingual children’s English productive vocabulary development: The utility of combining parent and teacher report. Child Development, 80(5), 15451563.Google Scholar
Vygotsky, L. (1978). Interaction between learning and development. Readings on the Development of Children, 23(3), 3441.Google Scholar
Weikum, W. M., Vouloumanos, A., Navarra, J., Soto-Faraco, S., Sebastián-Gallés, N., & Werker, J. F. (2007). Visual language discrimination in infancy. Science, 316(5828), 11591159.Google Scholar
Weiss, S. J., Goebel, P., Page, A., Wilson, P., & Warda, M. (1999). The impact of cultural and familial context on behavioral and emotional problems of preschool Latino children. Child Psychiatry and Human Development, 29(4), 287301.Google Scholar
Werker, J. (2012). Perceptual foundations of bilingual acquisition in infancy. Annals of the New York Academy of Sciences, 1251(1), 5061.Google Scholar
Werker, J. F., Cohen, L. B., Lloyd, V. L., Casasola, M., & Stager, C. L. (1998). Acquisition of word–object associations by 14-month-old infants. Developmental Psychology, 34(6), 1289.Google Scholar
Werker, J. F., & Fennell, C. T. (2004). Listening to sounds versus listening to words: Early steps in word learning. In Hall, G. & Waxman, S. R. (Eds.), Weaving a lexicon (pp. 79109). Cambridge, MA: MIT Press.Google Scholar
Werker, J. F., Fennell, C. T., Corcoran, K. M., & Stager, C. L. (2002). Infants’ ability to learn phonetically similar words: Effects of age and vocabulary size. Infancy, 3(1), 130.Google Scholar
Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7(1), 4963.Google Scholar
Yow, W. Q., & Markman, E. M. (2011). Bilingualism and children’s use of paralinguistic cues to interpret emotion in speech. Bilingualism: Language and Cognition, 14(4), 562569.Google Scholar
Yow, W. Q., (2015). A bilingual advantage in how children integrate multiple cues to understand a speaker’s referential intent. Bilingualism: Language and Cognition, 18(3), 391399.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×