Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T13:14:58.189Z Has data issue: false hasContentIssue false

18 - The Evolution of Intelligence

Reconstructing the Pathway to the Human Mind

from Part IV - Biology of Intelligence

Published online by Cambridge University Press:  13 December 2019

Robert J. Sternberg
Affiliation:
Cornell University, New York
Get access

Summary

Where did our intelligence come from? That is, what evolutionary drivers caused such specialization in cognition among humans? Only by adopting a comparative approach, considering the brains and cognitive skills of other animal species, can we discover how, when, and even perhaps why human intellectual skills evolved. Here we apply a process of evolutionary reconstruction to ancestors we share with other species, from the earliest primates at 74 Ma (million years ago) to the relatively recent ancestor shared with chimpanzees. Doing so highlights the importance of both social and ecological (nutritional) pressures in evolving intellect. Complex sociality was supported by increased perception, learning, and memory skills, long before the development of any ability to understand other beings as causal agents with independent minds. The latter, we argue, was driven by a need to feed more efficiently in ancestors we share with all living great apes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashton, B. J., Ridley, A. R., Edwards, E. K., & Thornton, A. (2018). Cognitive performance is linked to group size and affects fitness in Australian magpies. Nature, 554(7692), 364367.CrossRefGoogle ScholarPubMed
Ban, S. D., Boesch, C., Guessan, A. N., Kouakou, E., Goran, N., Tako, A., et al. (2016). Taï chimpanzees change their travel direction for rare feeding trees providing fatty fruits. Animal Behaviour, 118, 135147.CrossRefGoogle Scholar
Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences, pnas1711842115.Google Scholar
Barton, R. A., & Venditti, C. (2014). Rapid evolution of the cerebellum in humans and other great apes. Current Biology, 24(20), 24402444.Google Scholar
Bates, L. A., Lee, P. C., Njiraini, N., Poole, J., Sayialel, K., Sayialel, S., et al. (2008). Do elephants show empathy? Journal of Consciousness Studies, 15(10–11), 204225.Google Scholar
Begus, K., Gliga, T., & Southgate, V. (2014). Infants learn what they want to learn: Responding to infant pointing leads to superior learning. PloS One, 9(10), e108817.Google Scholar
Begus, K., Gliga, T., & Southgate, V. (2016). Infants’ preferences for native speakers are associated with an expectation of information. Proceedings of the National Academy of Sciences, 113(44), 1239712402.Google Scholar
Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M., & Holekamp, K. E. (2016). Brain size predicts problem-solving ability in mammalian carnivores. Proceedings of the National Academy of Sciences, 113(9), 25322537.Google Scholar
Bergman, T. J., Beehner, J. C., Cheney, D. L., & Seyfarth, R. M. (2003). Hierarchical classification by rank and kinship in baboons. Science, 302, 12341236.Google Scholar
Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., & Barrett, L. F. (2011). Amygdala volume and social network size in humans. Nature Neuroscience, 14(2), 163164.Google Scholar
Bird, C. D., & Emery, N. J. (2009). Insightful problem solving and creative tool modification by captive nontool-using rooks. Proceedings of the National Academy of Sciences, 106(25), 1037010375.Google Scholar
Boesch, C., & Boesch, H. (1990). Tool use and tool making in wild chimpanzees. Folia Primatol, 54, 8699.Google Scholar
Breuer, T., Ndoundou-Hockemba, M., & Fishlock, V. (2005). First observation of tool use in wild gorillas. PLoS Biology, 3(11), 20412043.Google Scholar
Brothers, L. (1990). The social brain: A project for integrating primate behavior and neurophysiology in a new domain. Concepts in Neuroscience, 1, 2751.Google Scholar
Bugnyar, T. (2002). Observational learning and the raiding of food caches in ravens, Corvus corax: Is it “tactical” deception? Animal Behaviour, 64, 185195.Google Scholar
Bugnyar, T., & Heinrich, B. (2005). Ravens, Corvus corax, differentiate between knowledgeable and ignorant competitors. Proceedings of the Royal Society B: Biological Sciences, 272, 16411646.Google Scholar
Byrne, R. W. (1995). The thinking ape: Evolutionary origins of intelligence. Oxford: Oxford University Press.CrossRefGoogle Scholar
Byrne, R. W. (1997). The technical intelligence hypothesis: An additional evolutionary stimulus to intelligence? In Whiten, A. & Byrne, R. W. (Eds.), Machiavellian intelligence II: extensions and evaluations (pp. 289311). Cambridge, UK: Cambridge University Press.Google Scholar
Byrne, R. W. (2001). Clever hands: The food processing skills of mountain gorillas. In Robbins, M., Sicotte, P., & Stewart, K. (Eds.), Mountain gorillas: Three decades of research at Karisoke (pp. 294313). Cambridge, UK: Cambridge University Press.Google Scholar
Byrne, R. W. (2003). Imitation as behaviour parsing. Philosophical Transactions of the Royal Society of London Series B, 358(1431), 529536.Google Scholar
Byrne, R. W. (2016). Evolving insight. Oxford: Oxford University Press.Google Scholar
Byrne, R. W., & Bates, L. A. (2007). Sociality, evolution and cognition. Current Biology, 17(16), R714R723.Google Scholar
Byrne, R. W., & Bates, L. A. (2010). Primate social cognition: uniquely primate, uniquely social, or just unique? Neuron, 65(6), 815830.Google Scholar
Byrne, R. W., Cartmill, E., Genty, E., Graham, K. E., Hobaiter, C., & Tanner, J. (2017). Great ape gestures: Intentional communication with a rich set of innate signals. Animal Cognition, 20(4), 755–769.Google Scholar
Byrne, R. W., & Corp, N. (2004). Neocortex size predicts deception rate in primates. Proceedings of the Royal Society B: Biological Sciences, 271(1549), 16931699.CrossRefGoogle ScholarPubMed
Byrne, R. W., Corp, N., & Byrne, J. M. (2001). Manual dexterity in the gorilla: Bimanual and digit role differentiation in a natural task. Animal Cognition, 4, 347361.Google Scholar
Byrne, R. W., Hobaiter, C., & Klailova, M. (2011). Local traditions in gorilla manual skill: Evidence for observational learning of behavioral organization. Animal Cognition, 14(5), 683693.CrossRefGoogle ScholarPubMed
Byrne, R. W., & Whiten, A. (Eds.) (1988). Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes and humans. Oxford: Clarendon Press.Google Scholar
Byrne, R. W., & Whiten, A. (1990). Tactical deception in primates: the 1990 database. Primate Report, 27, 1101.Google Scholar
Byrne, R. W., & Whiten, A. (1991). Computation and mindreading in primate tactical deception. In Whiten, A. (Ed.), Natural theories of mind (pp. 127141). Oxford: Basil Blackwell.Google Scholar
Byrne, R. W., & Whiten, A. (1992). Cognitive evolution in primates: Evidence from tactical deception. Man, 27, 609627.Google Scholar
Call, J., & Tomasello, M. (2008). Does the chimpanzee have a theory of mind? 30 years later. Trends in Cognitive Sciences, 12(5), 187192.Google Scholar
Cartmill, E. A., & Byrne, R. W. (2007). Orangutans modify their gestural signaling according to their audience’s comprehension. Current Biology, 17(15), 13451348.Google Scholar
Cheney, D. L., & Seyfarth, R. M. (1990). How monkeys see the world: Inside the mind of another species. Chicago: University of Chicago Press.Google Scholar
Cheney, D. L., Seyfarth, R. M., & Silk, J. B. (1995). The responses of female baboons (Papio cynocephalus ursinus) to anomalous social interactions: Evidence for causal reasoning? Journal of Comparative Psychology, 109(2), 134141.Google Scholar
Clay, Z., Furuichi, T., & de Waal, F. B. M. M. (2016). Obstacles and catalysts to peaceful coexistence in chimpanzees and bonobos. Behaviour, 153(9–11), 138.CrossRefGoogle Scholar
Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272278.Google Scholar
Clutton-Brock, T. H., & Harvey, P. H. (1980). Primates, brains and ecology. Journal of Zoology, 190(3), 309323.Google Scholar
Corp, N., & Byrne, R. W. (2002). Leaf processing by wild chimpanzees: Physically defended leaves reveal complex manual skills. Ethology, 108, 673696.Google Scholar
Correia, S., Dickinson, A., & Clayton, N. (2007). Western scrub-jays anticipate future needs independently of their current motivational state. Current Biology, 17, 856861.Google Scholar
Crockford, C., Wittig, R. M., Mundry, R., & Zuberbühler, K. (2012). Wild chimpanzees inform ignorant group members of danger. Current Biology, 22(2), 142146.Google Scholar
Crockford, C., Wittig, R. M., Seyfarth, R. M., & Cheney, D. L. (2007). Baboons eavesdrop to deduce mating opportunities. Animal Behaviour, 73, 885890.Google Scholar
Crockford, C., Wittig, R. M., & Zuberbühler, K. (2017). Vocalizing in chimpanzees is influenced by social-cognitive processes. Science Advances, 3(11), e1701742.Google Scholar
Dally, J. M., Emery, N. J., & Clayton, N. S. (2004). Cache protection strategies by western scrub-jays (Aphelocoma californica): Hiding food in the shade. Proceedings of the Royal Society B: Biological Sciences, 271, S387S390.Google Scholar
Dally, J. M., Emery, N. J., & Clayton, N. S. (2006). Food-caching western scrub-jays keep track of who was watching when. Science, 312, 16621665.Google Scholar
Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.Google Scholar
Dawkins, R., & Wong, Y. (2016). The ancestor’s tale: A pilgrimage to the dawn of life. London: Weidenfeld & Nicholson.Google Scholar
de Waal, F. B. M. (1982). Chimpanzee politics. London: Jonathan Cape.Google Scholar
Deaner, R. O., van Schaik, C. P., & Johnson, V. (2006). Do some taxa have better domain-general cognition than others? A meta-analysis of nonhuman primate studies. Evolutionary Psychology, 4, 149196.Google Scholar
DeCasien, A. R., Williams, S. A., & Higham, J. P. (2017). Primate brain size is predicted by diet but not sociality. Nature Ecology and Evolution, 1(5), 17.Google Scholar
Dunbar, R. I. M. (1991). Functional significance of social grooming in primates. Folia Primatologica, 57, 121131.Google Scholar
Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 20, 469493.Google Scholar
Dunbar, R. I. M. (1995). Neocortex size and group size in primates: A test of the hypothesis. Journal of Human Evolution, 28, 287296.Google Scholar
Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6, 178190.Google Scholar
Dunbar, R. I. M. (2012). Bridging the bonding gap: The transition from primates to humans. Philosophical Transactions of the Royal Society B – Biological Sciences, 367(1597), 18371846.Google Scholar
Dunbar, R. I. M., & Shultz, S. (2007). Understanding primate brain evolution. Philosophical Transactions of the Royal Society Series B – Biological Sciences, 362, 649658.Google Scholar
Dunbar, R. I. M., & Shultz, S. (2017). Why are there so many explanations for primate brain evolution? Philosophical Transactions of the Royal Society Series B – Biological Sciences, 372, 20160244.Google Scholar
Emery, N. J., & Clayton, N. S. (2001). Effects of experience and social context on prospective caching strategies by scrub jays. Nature, 414, 443446.Google Scholar
Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science, 306(5703), 19031907.Google Scholar
Emery, N. J., Seed, A. M., von Bayern, A. M. P., & Clayton, N. S. (2007). Cognitive adaptations of social bonding in birds. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1480), 489505.Google Scholar
Forss, S. I. F., Willems, E., Call, J., & van Schaik, C. P. (2016). Cognitive differences between orang-utan species: A test of the cultural intelligence hypothesis. Scientific Reports, 6, 112.Google Scholar
Fox, E., Sitompul, A., & van Schaik, C. P. (1999). Intelligent tool use in wild Sumatran orangutans. In Parker, S. T., Miles, H. L., & Mitchell, R. W. (Eds.), The mentality of gorillas and orangutans (pp. 99116). Cambridge, UK: Cambridge University Press.Google Scholar
Fox, K. C. R., Muthukrishna, M., & Shultz, S. (2017). The social and cultural roots of whale and dolphin brains. Nature Ecology and Evolution. https://COMP: Linkdoi.org/10.1038/s41559-017-0335-yGoogle Scholar
Fragaszy, D., Izar, P., Visalberghi, E., Ottoni, E. B., & De Oliveira, M. G. (2004). Wild capuchin monkeys (Cebus libidinosus) use anvils and stone pounding tools. American Journal of Primatology, 64, 359366.Google Scholar
Furuichi, T., Sanz, C., Koops, K., Sakamaki, T., Ryua, H., Tokuyamaa, N., & Morgan, D. (2015). Why do wild bonobos not use tools like chimpanzees do? Behaviour, 52 (3–4), 425460.Google Scholar
Genty, E., Breuer, T., Hobaiter, C., & Byrne, R. W. (2009). Gestural communication of the gorilla (Gorilla gorilla): Repertoire, intentionality and possible origins. Animal Cognition, 12(3), 527546.Google Scholar
Goodall, J. (1986). The chimpanzees of Gombe. Cambridge, MA: Belknap Press.Google Scholar
Gruber, T., & Clay, Z. (2016). A comparison between bonobos and chimpanzees: A review and update. Evolutionary Anthropology, 25(5), 239252.Google Scholar
Gruber, T., Singleton, I., & van Schaik, C. (2012). Sumatran orangutans differ in their cultural knowledge but not in their cognitive abilities. Current Biology, 22(23), 22312235.Google Scholar
Gumert, M. D., Kluck, M., & Malaivijitnond, S. (2009). The physical characteristics and usage patterns of stone axe and pounding hammers used by long‐tailed macaques in the Andaman Sea region of Thailand. American Journal of Primatology, 71(7), 594608.Google Scholar
Hare, B., Call, J., & Tomasello, M. (2001). Do chimpanzees know what conspecifics know? Animal Behaviour, 61(1), 139151.Google Scholar
Healy, S. D., & Rowe, C. (2007). A critique of comparative studies of brain size. Proceedings of the Royal Society B: Biological Sciences, 274, 453464.Google Scholar
Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B., Tomasello, M., Hernandez-Lloreda, M. V., et al. (2007). Humans have evolved specialised skills of social cognition: The cultural intelligence hypothesis. Science, 317(5843), 13601366.Google Scholar
Heyes, C. (2018). Cognitive gadgets: The cultural evolution of thinking. Cambridge, MA: Harvard University Press.Google Scholar
Hobaiter, C., & Byrne, R. W. (2011). Serial gesturing by wild chimpanzees: Its nature and function for communication. Animal Cognition, 14(6), 827838.Google Scholar
Hobaiter, C., Byrne, R. W., & Zuberbühler, K. (2017). Wild chimpanzees’ use of single and combined vocal and gestural signals. Behavioral Ecology and Sociobiology, 71(96). https://doi.org/10.1007/s00265-017-2325-1Google Scholar
Hobaiter, C., Poisot, T., Zuberbühler, K., Hoppitt, W., & Gruber, T. (2014). Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees. PLoS Biology, 12(9), e1001960.Google Scholar
Humphrey, N. K. (1976). The social function of intellect. In Bateson, P. P. G. & Hinde, R. A. (Eds.), Growing points in ethology (pp. 303317). Cambridge, UK: Cambridge University Press.Google Scholar
Hunt, G., & Gray, R. (2003). Diversification and cumulative evolution in New Caledonian crow tool manufacture. Proceedings of the Royal Society B: Biological Sciences, 270(1571), 867874.Google Scholar
Janmaat, K. R. L., Ban, S. D., & Boesch, C. (2013). Chimpanzees use long-term spatial memory to monitor large fruit trees and remember feeding experiences across seasons. Animal Behaviour, 86(6), 11831205.Google Scholar
Janmaat, K. R. L., Byrne, R. W., & Zuberbühler, K. (2006). Primates take weather into account when searching for fruits. Current Biology, 16, 12321237.Google Scholar
Janmaat, K. R. L., Polansky, L., Ban, S. D., & Boesch, C. (2014). Wild chimpanzees plan their breakfast time, type, and location. Proceedings of the National Academy of Sciences, 111(46), 1634316348.Google Scholar
Kaminski, J., Call, J., & Tomasello, M. (2008). Chimpanzees know what others know, but not what they believe. Cognition, 109(2), 224234.Google Scholar
Koops, K., Furuichi, T., & Hashimoto, C. (2015). Chimpanzees and bonobos differ in intrinsic motivation for tool use. Scientific Reports, 16(5), 11356.Google Scholar
Koops, K., Visalberghi, E., & van Schaik, C. P. (2014). The ecology of primate material culture. Biology Letters, 10(11), 20140508.Google Scholar
Kotrschal, A., Rogell, B., Bundsen, A., Svensson, B., Zajitschek, S., Brännström, I., et al. (2013). Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Current Biology, 23(2), 168171.Google Scholar
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science, 354(6308), 110114.Google Scholar
Laland, K. N. (2017). Darwin’s unfinished symphony: How culture made the human mind. Princeton: Princeton University Press.Google Scholar
Lock, A. (1980). The guided reinvention of language. London: Academic Press.Google Scholar
Luncz, L. V., Falótico, T., Pascual-Garrido, A., Corat, C., Mosley, H., & Haslam, M. (2016). Wild capuchin monkeys adjust stone tools according to changing nut properties. Scientific Reports, 6, 19.Google Scholar
Mackintosh, N. J. (1983). Conditioning and associative learning. Oxford: Oxford University Press.Google Scholar
MacLean, E. L., Hare, B., Nunn, C. L., Addessi, E., Amici, F., Anderson, R. C., et al. (2014). The evolution of self-control. Proceedings of the National Academy of Sciences, 111(20), E2140E2148.Google Scholar
Mangalam, M., & Fragaszy, D. M. (2015). Wild bearded capuchin monkeys crack nuts dexterously. Current Biology, 25(10), 13341339.Google Scholar
Mason, W. A., & Hollis, J. H. (1962). Communication between young rhesus monkeys. Animal Behaviour, 10(3–4), 211221.Google Scholar
McGrew, W. C. (1989). Why is ape tool use so confusing? In Standen, V. & Foley, R. A. (Eds.), Comparative socioecology: The behavioural ecology of humans and other mammals (pp. 457472). Oxford: Blackwell Scientific.Google Scholar
McGrew, W. C. (1992). Chimpanzee material culture: Implications for human evolution. Cambridge, UK: Cambridge University Press.Google Scholar
Milton, K. (1988). Foraging behaviour and the evolution of primate intelligence. In Byrne, R. W. & Whiten, A. (Eds.), Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes and humans (pp. 285305). Oxford: Clarendon Press.Google Scholar
Morand-Ferron, J. (2017). Why learn? The adaptive value of associative learning in wild populations. Current Opinion in Behavioral Sciences, 16, 7379.Google Scholar
Moura, A. C. de A., & Lee, P. C. (2004).Capuchin stone tool use in Caatinga dry forest. Science, 306(5703), 1909.Google Scholar
Ostojić, L., Shaw, R., Cheke, L., & Clayton, N. (2013). Evidence suggesting that desire-state attribution may govern food sharing in Eurasian jays. Proceedings of the National Academy of Sciences, 110, 41234128.Google Scholar
Ottoni, E. B., & Izar, P. (2008). Capuchin monkey tool use: Overview and implications. Evolutionary Anthropology, 17, 171178.Google Scholar
Passingham, R. E. (1981). Primate specializations in brain and intelligence. Symposia of the Zoological Society of London, 46, 361388.Google Scholar
Platt, M. L., Seyfarth, R. M., & Cheney, D. L. (2016). Adaptations for social cognition in the primate brain. Philosophical Transactions of the Royal Society Series B, 371, 20150096.Google Scholar
Plotnik, J. M., & de Waal, F. B. M. (2014). Asian elephants (Elephas maximus) reassure others in distress. PeerJ, 2, e278.Google Scholar
Povinelli, D. J., Nelson, K. E., & Boysen, S. T. (1992). Comprehension of role reversal in chimpanzees: Evidence of empathy? Animal Behaviour, 43(4), 633640.Google Scholar
Povinelli, D. J., Parks, K. A., & Novak, M. A. (1992). Role reversal by rhesus monkeys, but no evidence of empathy. Animal Behaviour, 44, 269281.Google Scholar
Powell, L. E., Isler, K., & Barton, R. A. (2017). Re-evaluating the link between brain size and behavioural ecology in primates. Proceedings of the Royal Society B: Biological Sciences, 284, 20171765.Google Scholar
Pozzi, L., Hodgson, J. A., Burrell, A. S., Sterner, K. N., Raaum, R. L., & Disotell, T. R. (2014). Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Molecular Phylogenetics and Evolution, 75(1), 165183.Google Scholar
Raghanti, M. A., Edler, M. K., Stephenson, A. R., Munger, E. L., Jacobs, B., Hof, P. R., et al. (2018). A neurochemical hypothesis for the origin of hominids. Proceedings of the National Academy of Sciences, 1719666115.Google Scholar
Reader, S. M., Hager, Y., & Laland, K. N. (2011). The evolution of primate general and cultural intelligence. Philosophical Transactions of the Royal Society Series B – Biological Sciences, 366(1567), 10171027.Google Scholar
Reader, S. M., & Laland, K. N. (2002). Social intelligence, innovation, and enhanced brain size in primates. Proceedings of the National Academy of Sciences, 99(7), 44364441.Google Scholar
Roffman, I., Savage-Rumbaugh, S., Rubert-Pugh, E., Ronen, A., & Nevo, E. (2012). Stone tool production and utilization by bonobo-chimpanzees (Pan paniscus). Proceedings of the National Academy of Sciences, 109(36), 1450014503.Google Scholar
Roffman, I., Savage-Rumbaugh, S., Rubert-Pugh, E., Stadler, A., Ronen, A., & Nevo, E. (2015). Preparation and use of varied natural tools for extractive foraging by bonobos (Pan paniscus). American Journal of Physical Anthropology, 158(1), 7891.Google Scholar
Roper, T. J. (1983). Learning as a biological phenomenon. In Halliday, T. R. & Slater, P. J. B. (Eds.), Animal behaviour, vol. 3, Genes, development and learning (pp. 178212). Oxford: Blackwell Scientific.Google Scholar
Rushworth, M. F. S., Mars, R. B., & Sallet, J. (2013). Are there specialized circuits for social cognition and are they unique to humans? Current Opinion in Neurobiology, 23(3), 436442.Google Scholar
Russon, A. E. (1998). The nature and evolution of intelligence in orangutans (Pongo pygmaeus). Primates, 39, 485503.Google Scholar
Sallet, J., Mars, R. B., Noonan, M. P., Andersson, J. L., O’Reilly, J. X., Jbabdi, S., et al. (2011). Social network size affects neural circuits in macaques. Science, 334, 697700.Google Scholar
Sanz, C. M., & Morgan, D. B. (2007). Chimpanzee tool technology in the Goualougo Triangle, Republic of Congo. Journal of Human Evolution, 52, 420433.Google Scholar
Sanz, C., & Morgan, D. (2013). Ecological and social correlates of chimpanzee tool use. Philosophical Transactions of the Royal Society Series B, 368, 20120416.Google Scholar
Savage-Rumbaugh, E. S., & Lewin, R. (1994). Kanzi. The ape at the brink of the human mind. New York: John Wiley.Google Scholar
Savage-Rumbaugh, E. S., Murphy, J., Sevcik, R. A., Brakke, K. E., Williams, S. L., & Rumbaugh, D. M. (1993). Language comprehension in ape and child. Monographs of the Society for Research in Child Development, 58, 1252.Google Scholar
Savage-Rumbaugh, E. S., Shanker, S. G., & Taylor, T. J. (1998). Apes, language and the human mind. New York: Oxford University Press.Google Scholar
Savage-Rumbaugh, E. S., Williams, S. L., Furuichi, T., & Kano, T. (1996). Language perceived: Paniscus branches out. In McGrew, W. C., Marchant, L. F., & Nishida, T. (Eds.), Great ape societies (pp. 173184). Cambridge, UK: Cambridge University Press.Google Scholar
Schel, A. M., Townsend, S. W., Machanda, Z., Zuberbühler, K., & Slocombe, K. E. (2013). Chimpanzee alarm call production meets key criteria for intentionality. PLoS One, 8(10), e76674.Google Scholar
Seed, A. M., Tebbich, S., Emery, N., & Clayton, N. S. (2006). Investigating physical cognition in rooks, Corvus frugilegus. Current Biology, 16, 697701.Google Scholar
Shettleworth, S. J. (2009). The evolution of comparative cognition: Is the snark still a boojum? Behavioural Processes, 80, 210217.Google Scholar
Shultz, S., & Dunbar, R. I. M. (2007). The evolution of the social brain: Anthropoid primates contrast with other vertebrates. Proceedings of the Royal Society B: Biological Sciences, 274(1624), 24292436.Google Scholar
Stokes, E. J., & Byrne, R. W. (2001). Cognitive capacities for behavioural flexibility in wild chimpanzees (Pan troglodytes): The effect of snare injury on complex manual food processing. Animal Cognition, 4, 1128.Google Scholar
Street, S. E., Navarrete, A. F., Reader, S. M., & Laland, K. N. (2017). Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates. Proceedings of the National Academy of Sciences, 114(30), 79087914.Google Scholar
Taylor, A. H. (2014). Corvid cognition. WIREs Cognitive Science, https://doi.org/10.1002/wcs.1286Google Scholar
Tokuyama, N., & Furuichi, T. (2016). Do friends help each other? Patterns of female coalition formation in wild bonobos at Wamba. Animal Behaviour, 119, 2735.Google Scholar
Tomasello, M. (2014). The ultra-social animal. European Journal of Social Psychology, 44(3), 187194.Google Scholar
Tomasello, M. (2016). The ontogeny of cultural learning. Current Opinion in Psychology, 8, 14.Google Scholar
Tomasello, M., & Call, J. (1997). Primate cognition. Oxford: Oxford University Press.Google Scholar
Tomasello, M., Call, J., & Hare, B. (2003). Chimpanzees understand psychological states – The question is which ones and to what extent. Trends in Cognitive Sciences, 7(4), 153156.Google Scholar
Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28(5), 675–91; discussion 691735.Google Scholar
Tomasello, M., Kruger, A., & Ratner, H. (1993). Cultural learning. Behavioral and Brain Sciences, 16, 495552.Google Scholar
van de Waal, E., Borgeaud, C., & Whiten, A. (2013). Potent social learning and conformity shape a wild primate’s foraging decisions. Science, 340, 483485.Google Scholar
van de Waal, E., Bshary, R., & Whiten, A. (2014). Wild vervet monkey infants acquire the food-processing variants of their mothers. Animal Behaviour, 90, 4145.Google Scholar
van Leeuwen, E. J. C., Call, J., & Haun, D. B. M. (2014). Human children rely more on social information than chimpanzees do. Biology Letters, 10, 20140487.Google Scholar
van Schaik, C. P. (1983). Why are diurnal primates living in groups? Behaviour, 87, 120147.Google Scholar
van Schaik, C. P., Ancrenaz, M., Borgen, G., Galdikas, B., Knott, C. D., Singleton, I., et al. (2003). Orangutan cultures and the evolution of material culture. Science, 299, 102105.Google Scholar
van Schaik, C. P., & Burkart, J. M. (2011). Social learning and evolution: The cultural intelligence hypothesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1567), 10081016.Google Scholar
van Schaik, C. P., Deaner, R. O., & Merrill, M. Y. (1999). The conditions for tool use in primates: Implications for the evolution of material culture. Journal of Human Evolution, 36(6), 719741.Google Scholar
van Schaik, C. P., Isler, K., & Burkart, J. M. (2012). Explaining brain size variation: From social to cultural brain. Trends in Cognitive Sciences, 16(5), 277284.Google Scholar
Whiten, A., & Byrne, R. W. (1988). Tactical deception in primates. Behavioral and Brain Sciences, 11, 233273.Google Scholar
Whiten, A., Goodall, J., McGrew, W. C., Nishida, T., Reynolds, V., Sugiyama, Y., et al. (1999). Cultures in chimpanzees. Nature, 399(6737), 682685.Google Scholar
Wilson, M. L., Boesch, C., Fruth, B., Furuichi, T., Gilby, I. C., Hashimoto, C., et al. (2014). Lethal aggression in Pan is better explained by adaptive strategies than human impacts. Nature, 513(7518), 414417.Google Scholar
Wittig, R. M., Crockford, C., Wikberg, E., Seyfarth, R. M., & Cheney, D. L. (2007). Kin-mediated reconciliation substitutes for direct reconciliation in female baboons. Proceedings of the Royal Society B: Biological Sciences, 274, 11091115.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×