Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T21:25:35.628Z Has data issue: false hasContentIssue false

Methodology

from Part I - The Essence of Prevention Science

Published online by Cambridge University Press:  21 January 2017

Moshe Israelashvili
Affiliation:
Tel-Aviv University
John L. Romano
Affiliation:
University of Minnesota
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Biglan, A., Duncan, T., Irvine, A., Ary, D., Smolkowski, K., & James, L. (1997). A drug abuse prevention strategy for rural America. NIDA Research Monograms 168: 364–97.Google Scholar
Burkhart, G. (2015). International standards in pervention: how to influence prevention systems by policy interventions? International Journal of Prevention and Treatment of Substance Use Disorders 1: 1837. ijptsud.sljol.info/articles/abstract/10.4038/ijptsud.v1i3-4.7836/.Google Scholar
CCSA (Canadian Centre on Substance Abuse) (2010). Building on Our Strengths: Canadian Standards for School-Based Youth. Ottawa, ON: Canadian Centre. www.ccsa.ca/Resource%20Library/ccsa-011815-2010.pdfGoogle Scholar
Coombes, L., Allen, D., & McCall, D. (2012). The Strengthening Families Programme 10-14 (UK): engagement and academic success at school. Community Practice 85: 30–3.Google Scholar
Cooper, P., Tomlison, M., Swartz, L., Landman, M., Molteno, C., Stein, A., … . Murray, L. (2009). Improving quality of mother–infant relationship and infant attachment in socioeconomically deprived community in South Africa: randomised clinical trials. BMJ 14: 338.Google Scholar
Dawe, S., & Harnett, P. H. (2007). Reducing potential for child abuse among methadone-maintained parents: results from a randomised controlled trial. Journal of Substance Abuse Treatment 32: 381–90.Google Scholar
Denham, S., & Weissberg, R. (2004). Social-emotional learning in early childhood: what we know and where we go from here. In Chesebrough, E., King, P., Gullotta, T., & Bloom, M., A Blueprint for the Promotion of Prosocial Behavior in Early Childhood. New York: Kluwer/Plenum, pp. 1350.Google Scholar
EMCDDA (European Monitoring Centre for Drugs and Drug Addiction) (2011). European Drug Prevention Quality Standards. Lisbon: European Monitoring Centre for Drugs and Drug Addiction.Google Scholar
Knerr, W., Garder, F., & Cluver, L. (2013). Improving positive parenting skills and reducing harsh and abusive parenting in low- and middle-income countries: a systematic review. Prevention Science 14: 352–63.CrossRefGoogle ScholarPubMed
Koegl, C., Farrington, D., Augimeri, L., & Day, D. (2008). Evaluation of a targeted cognitive-behavioral program for children with conduct problems – the SNAP under 12 Outreach Project: service intensity, age and gender effects on short and long term outcomes. Clinical Child Psychology & Psychiatry 13: 419–34.Google Scholar
Kratchowill, T. R., McDonald, L., Levin, J. R., Scalia, P. A., & Coover, G. (2009). Families and Schools Together: an experimental study of multifamily support groups for children at risk. Journal of School Psychology 47: 245–65.Google Scholar
Maalouf, W., & Campello, G. (2014). The influence of family skills programmes on violence indicators: experience from a multi-site project of the United Nations Office on Drugs and Crime in low and middle income countries. Aggression and Violent Behavior 19: 616–24.Google Scholar
McDonald, L., & Doostgharin, T. (2013). UNODC Family Skills Initiative: outcome evaluation in Central Asia of Families and Schools Together (FAST) Multi-Family Groups. Social Work and Social Sciences Review 16: 5175.Google Scholar
Mejia, A., Calam, R., & Sanders, M. R. (2012 ). A review of parenting programs in developing countries: opportunities and challenges for preventing emotional and behavioral difficulties in children. Clinical Child & Family Psychology Review, 15 163–75.Google Scholar
Meija, A., Ulph, F., & Calam, R. (2014). An exploration of parents’ perceptions and beliefs about changes following participation in a family skill training program: a qualitative study in a developing country. Prevention Science 16: 674–84.Google Scholar
Molgaard, V. K., Spoth, R. L., & Redmond, C. (2000). Competency training: the Strengthening the Families Programme – for parents and youth 10–14. Juvenile Justice Bulletin (NCJ 182208), 111. Washington, DC: U.S. Department of Justice, Office of Juvenile Justice and Delinquency Prevention (OJJDP).Google Scholar
NIDA (National Institute on Drug Abuse) (2003). Preventing Drug Use among Children and Adolescents: A Research-based Guide for Parents and Community Leaders, 2nd ed. Bethesda, MD: NIH.Google Scholar
Rahman, A., Iqbal, Z., Roberts, C., & Hussain, N. (2009). Cluster randomized trial of a parent-based intervention to support early development of children in a low-income country. Child Care & Health Development 35: 5662.Google Scholar
Sanders, M. R. (1999). Triple P–Positive Parenting Programme: towards an empirically validated multilevel parenting and family support strategy for the prevention of behavior and emotional problems in children. Clinical Child and Family Psychology Review 2: 7190.Google Scholar
Shortt, A. L., Toumbourou, J. W., & Chapman, R. (2006). The Resilient Family Program: helping to prepare adolescents for success in school and life. Youth Studies Australia 25: 5788.Google Scholar
Spoth, R., Randall, G., & Chin, C. (2008). Increasing school success through partnership-based family competency training: experimental study of long-term outcomes. School Psychology Quarterly 23: 7089.Google Scholar
United Nations. (2014). Resolution 57/3: Promoting prevention of drug abuse based on scientific evidence as an investment in the well being of children, adolescents, youth, families and communities. In Commission on Narcotic Drugs Report on the Fifty-Seventh Session. New York: United Nations Economic and Social Council, p. 25.Google Scholar
UNODC (United Nations Office on Drugs and Crime) (2009). Guide to Implement Evidence Family Programmes. Vienna: United Nations Office on Drugs and Crime.Google Scholar
UNODC (United Nations Office on Drugs and Crime) (2010). Compilation of Evidence-based Family Skills Training Programmes. Vienna: United Nations Office on Drugs and Crime.Google Scholar
UNODC (United Nations Office on Drugs and Crime) (2013). International Standards on Drug Use Prevention. Vienna: UNODC. The standards are available at UNODC webpage: www.unodc.org/unodc/en/prevention/prevention-standards.html.Google Scholar
UNODC (United Nations Office on Drugs and Crime) (2014a). Joint ministerial statement. 2014 high level review by the Commission on Narcotic Drugs of the Implementation by member states of the Political Declaration and Plan of Action on International Cooperation towards Integrated and Balanced Strategy to Counter the World Drug Problem. Commission on Narcotic Drugs Fifty-seventh Session, Vienna. Official Records of the United Nations Economic and Social Council, Supplement No. 8A (E/2014/28/Add.1): 6–19.Google Scholar
UNODC (United Nations Office on Drugs and Crime) (2014b). Report of the Secretariat on the world situation with regard to drug abuse. Commission on Narcotic Drugs Fifty-eighth Session, Vienna. Official record of the United Nations Economic and Social Council (E/CN.7/2014/3).Google Scholar
Wight, D., & Fullerton, D. (2013). A review of interventions with parents to promote the sexual health of their children. Journal of Adolescent Health 52: 4-27.Google Scholar
WHO (World Health Organization) (2010). Violence Prevention: The Evidence. Geneva, Switzerland: World Health Organization.Google Scholar
Zins, J., Weissberg, R., Wang, M., & Walberg, H. (2004). Building Academic Success on Social and Emotional Learning. What Does the Research Say? New York: New York Teachers College Press.Google Scholar

References

Aarons, G. A. (2005). Measuring provider attitudes toward evidence-based practice: consideration of organizational context and individual differences. Child and Adolescent Psychiatric Clinics of North America 14: 255–71, viii. doi: 10.1016/j.chc.2004.04.008CrossRefGoogle ScholarPubMed
Abar, C. C., Jackson, K. M., Colby, S. M., & Barnett, N. P. (2014). Common and unique parenting predictors of adolescent tobacco and alcohol use. Addictive Behaviors 39: 1528–32. doi: 10.1016/j.addbeh.2014.06.003Google Scholar
APA (American Psychological Association). (2014). Guidelines for prevention in psychology. American Psychologist, 69, 285296. doi: 10.1037/a0034569Google Scholar
Atherton, H., Huckvale, C., & Car, J. (2010). Communicating health promotion and disease prevention information to patients via email: a review. Journal of Telemedicine and Telecare 16: 172–5. doi: 10.1258/jtt.2010.004002Google Scholar
Bandura, A. (1977). Social Learning Theory. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Bleich, S. N., Barry, C. L., Gary-Webb, T. L., & Herring, B. J. (2014). Reducing sugar-sweetened beverage consumption by providing caloric information: how black adolescents alter their purchases and whether the effects persist. American Journal of Public Health 104: 2417–24. doi: 10.2105/AJPH.2014.302150CrossRefGoogle ScholarPubMed
Bleich, S. N., Herring, B. J., Flagg, D. D., & Gary-Webb, T. L. (2012). Reduction in purchases of sugar-sweetened beverages among low-income black adolescents after exposure to caloric information. American Journal of Public Health 102: 329–35. doi: 10.2105/AJPH.2011.300350Google Scholar
Bobinac, A., van Exel, N. J., Rutten, F. F., & Brouwer, W. B. (2012). Inquiry into the relationship between equity weights and the value of the QALY. Value in Health 15: 1119–26. doi: 10.1016/j.jval.2012.07.002CrossRefGoogle ScholarPubMed
Bricker, J. B., Peterson, A. V., Robyn Andersen, M., Leroux, B. G., Bharat Rajan, K., & Sarason, I. G. (2006). Close friends’, parents’, and older siblings’ smoking: reevaluating their influence on children’s smoking. Nicotine & Tobacco Research 8: 217–26.Google Scholar
Britton, A., McKee, M., Black, N., McPherson, K., Sanderson, C., & Bain, C. (1999). Threats to applicability of randomised trials: exclusions and selective participation. Journal of Health Services Research & Policy 4: 112–21.CrossRefGoogle ScholarPubMed
Brown, T., Platt, S., & Amos, A. (2014). Equity impact of European individual-level smoking cessation interventions to reduce smoking in adults: a systematic review. European Journal of Public Health 24: 551–56. doi: 10.1093/eurpub/cku065Google ScholarPubMed
Campbell, M., Fitzpatrick, R., Haines, A., Kinmonth, A. L., Sandercock, P., Spiegelhalter, D., & Tyrer, P. (2000). Framework for design and evaluation of complex interventions to improve health. British Medical Journal 321: 694–6.Google Scholar
Charafeddine, R., Demarest, S., Van der Heyden, J., Tafforeau, J., & Van Oyen, H. (2013). Using multiple measures of inequalities to study the time trends in social inequalities in smoking. European Journal of Public Health 23: 546–51. doi: 10.1093/eurpub/cks083Google Scholar
Collins, L. M., Baker, T. B., Mermelstein, R. J., Piper, M. E., Jorenby, D. E., Smith, S. S., … Fiore, M. C. (2011). The multiphase optimization strategy for engineering effective tobacco use interventions. Annals of Behavioral Medicine 41: 208–26. doi: 10.1007/s12160-010–9253-xGoogle Scholar
Cooney, G. M., Dwan, K., Greig, C. A., Lawlor, D. A., Rimer, J., Waugh, F. R., … Mead, G. E. (2013). Exercise for depression. Cochrane Database of Systematic Reviews 9: CD004366. doi: 10.1002/14651858.CD004366.pub6Google Scholar
Craig, P., Dieppe, P., Macintyre, S., Michie, S., Nazareth, I., & Petticrew, M. (2008). Developing and evaluating complex interventions: the new Medical Research Council guidance. British Medical Journal 337: a1655. doi: 10.1136/bmj.a1655Google ScholarPubMed
Culyer, A. J. (1989). The normative economics of health care finance and provision. Oxford Review of Economic Policy 5: 3458.Google Scholar
Deogan, C., Zarabi, N., Stenstrom, N., Hogberg, P., Skarstrand, E., Manrique-Garcia, E., … Mansdotter, A. (2015). Cost-effectiveness of school-based prevention of cannabis use. Applied Health Economics and Health Policy 13: 525–42. doi: 10.1007/s40258-015–0175-4Google Scholar
Des Jarlais, D. C., Lyles, C., & Crepaz, N. (2004). Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: the TREND statement. American Journal of Public Health 94: 361–6.Google Scholar
Drummond, M. F., O’Brien, B., Stoddart, G. L., & Torrance, G. W. (2005). Methods for Economic Evaluation of Health Care Programmes, 3rd ed. Corby Northants, UK: Oxford University Press.Google Scholar
Eriksson, T., Maclure, M., & Kragstrup, J. (2005). To what extent do mass media health messages trigger patients’ contacts with their GPs? British Journal of General Practice 55: 212–17.Google Scholar
Faggiano, F., Allara, E., Giannotta, F., Molinar, R., Sumnall, H., Wiers, R., … Conrod, P. (2014). Europe needs a central, transparent, and evidence-based approval process for behavioural prevention interventions. PLoS Medicine 11: e1001740. doi: 10.1371/journal.pmed.1001740Google Scholar
Flay, B. R. (1986). Efficacy and effectiveness trials (and other phases of research) in the development of health promotion programs. Preventive Medicine, 15, 451474.Google Scholar
Flay, B. R., Biglan, A., Boruch, R. F., Castro, F. G., Gottfredson, D., Kellam, S., … Ji, P. (2005). Standards of evidence: criteria for efficacy, effectiveness and dissemination. Prevention Science 6: 151–75.Google Scholar
Glasgow, R. E., & Emmons, K. M. (2007). How can we increase translation of research into practice? Types of evidence needed. Annual Review of Public Health 28: 413–33.Google Scholar
Glasgow, R. E., Klesges, L. M., Dzewaltowski, D. A., Bull, S. S., & Estabrooks, P. (2004). The future of health behavior change research: what is needed to improve translation of research into health promotion practice? Annals of Behavioral Medicine 27: 312. doi: 10.1207/s15324796abm2701_2.Google Scholar
Green, J. (2015). Editorial: process to progress? Investigative trials, mechanism and clinical science. Journal of Child Psychology and Psychiatry and Allied Disciplines 56: 13. doi: 10.1111/jcpp.12377Google Scholar
Guyatt, G., Oxman, A. D., Akl, E. A., Kunz, R., Vist, G., Brozek, J., … Schunemann, H. J. (2011). GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. Journal of Clinical Epidemiology 64: 383–94. doi: 10.1016/j.jclinepi.2010.04.026Google Scholar
Habicht, J. P., Victora, C. G., & Vaughan, J. P. (1999). Evaluation designs for adequacy, plausibility and probability of public health programme performance and impact. International Journal of Epidemiology 28: 1018.Google Scholar
Hallgren, M., Kraepelien, M., Ojehagen, A., Lindefors, N., Zeebari, Z., Kaldo, V., & Forsell, Y. (2015). Physical exercise and Internet-based cognitive behavioural therapy in the treatment of depression: randomised controlled trial. British Journal of Psychiatry 207: 227–34. doi: 10.1192/bjp.bp.114.160101Google Scholar
Hawe, P., Di Ruggiero, E., & Cohen, E. (2012). Frequently asked questions about population health intervention research. Canadian Journal of Public Health 103: e468–71.Google Scholar
Henderson, J., Milligan, K., Niccols, A., Thabane, L., Sword, W., Smith, A., & Rosenkranz, S. (2012). Reporting of feasibility factors in publications on integrated treatment programs for women with substance abuse issues and their children: a systematic review and analysis. Health Research Policy and Systems 10: 37. doi: 10.1186/1478–4505-10–37Google Scholar
Hernan, M. A., Hernandez-Diaz, S., & Robins, J. M. (2013). Randomized trials analyzed as observational studies. Annals of Internal Medicine 159: 560–2. doi: 1735165Google Scholar
Hiscock, R., Murray, S., Brose, L. S., McEwen, A., Bee, J. L., Dobbie, F., & Bauld, L. (2013). Behavioural therapy for smoking cessation: the effectiveness of different intervention types for disadvantaged and affluent smokers. Addictive Behaviors 38: 2787–96, doi: 10.1016/j.addbeh.2013.07.010Google Scholar
Hofler, M. (2005a). Causal inference based on counterfactuals. BMC Medical Research Methodology 5: 28. doi: 1471–2288-5-28Google Scholar
Hofler, M. (2005b). The effect of misclassification on the estimation of association: a review. International Journal of Methods in Psychiatric Research 14: 92101.Google Scholar
Hysong, S. J., Best, R. G., & Pugh, J. A. (2006). Audit and feedback and clinical practice guideline adherence: making feedback actionable. Implementation Science 1: 9. doi: 1748–5908-1–9Google Scholar
Institute of Health Equity (2010). Fair Society, Healthy Lives: The Marmot Review Executive Summary. www.instituteofhealthequity.org/projects/fair-society-healthy-lives-the-marmot-reviewGoogle Scholar
Johannesson, M., & Gerdtham, U. (1996). A note on the estimation of the equity-efficiency trade-off for QALYs. Journal of Health Economics 15: 359–68.Google Scholar
Lich, K. H., Ginexi, E. M., Osgood, N. D., & Mabry, P. L. (2013). A call to address complexity in prevention science research. Prevention Science 14: 279–89. doi: 10.1007/s11121-012–0285-2Google Scholar
Lindholm, L., & Rosen, M. (1998). On the measurement of the nation’s equity adjusted health. Health Economics 7: 621–8. doi: 10.1002/(SICI)1099-1050(1998110)Google Scholar
Maclure, M., & Mittleman, M. A. (2000). Should we use a case-crossover design? Annual Review of Public Health 21: 193221. doi: 10.1146/annurev.publhealth.21.1.193Google Scholar
Mascha, E. J., Dalton, J. E., Kurz, A., & Saager, L. (2013). Statistical grand rounds: understanding the mechanism: mediation analysis in randomized and nonrandomized studies. Anesthesia & Analgesia 117: 980–94. doi: 10.1213/ANE.0b013e3182a44cb9CrossRefGoogle ScholarPubMed
Miettinen, O. S. (2010). Etiologic study vis-a-vis intervention study. European Journal of Epidemiology 25: 671–5. doi: 10.1007/s10654-010–9486-9Google Scholar
Mittleman, M. A., & Mostofsky, E. (2014). Exchangeability in the case-crossover design. International Journal of Epidemiology 43: 1645–55. doi: 10.1093/ije/dyu081Google Scholar
Molinar, R., Coppo, A., & Faggiano, F. (2014). Effective interventions for prevention of alcohol abuse and illicit substance use in adolescence: reviewing theories and mediators. Paper presented at the European Society for Prevention Research, Palma de Mallorca. euspr.org/fifth-euspr-conference/Google Scholar
Mrazek, P. J., & Haggerty, R. J. (eds.). (1994). Reducing Risks for Mental Disorders: Frontiers for Preventive Intervention Research. Washington, DC: Institute of Medicine (US) Committee on Prevention of Mental Disorders.Google Scholar
Oxman, A. D., Lavis, J. N., Lewin, S., & Fretheim, A. (2009). SUPPORT Tools for evidence-informed health policymaking (STP) 10: taking equity into consideration when assessing the findings of a systematic review. Health Research Policy and Systems 7 (Suppl 1): S10. doi: 10.1186/1478–4505-7-S1-S10CrossRefGoogle ScholarPubMed
Rickles, D. (2009). Causality in complex interventions. Medicine, Health Care and Philosophy 12: 7790. doi: 10.1007/s11019-008–9140-4Google Scholar
Saltz, R., Biglan, A., Miller Brotman, L., Gonzalez Castro, F., & Gorman-Smith, D. Advocacy for Prevention Science. www.preventionresearch.org/Advocacy_principles_051205RFSa2.pdfGoogle Scholar
Schwartz, S., Campbell, U. B., Gatto, N. M., & Gordon, K. (2015). Toward a clarification of the taxonomy of “bias” in epidemiology textbooks. Epidemiology 26: 216–22. doi: 10.1097/EDE.0000000000000224Google Scholar
Sen, A. (1980). Equality of What? The Tanner Lectures on Human Values. Cambridge, UK: Cambridge University Press.Google Scholar
Shepperd, S., Lewin, S., Straus, S., Clarke, M., Eccles, M. P., Fitzpatrick, R., … Sheikh, A. (2009). Can we systematically review studies that evaluate complex interventions? PLoS Medicine 6: e1000086. doi: 10.1371/journal.pmed.1000086Google Scholar
Sorensen, H. T., Lash, T. L., & Rothman, K. J. (2006). Beyond randomized controlled trials: a critical comparison of trials with nonrandomized studies. Hepatology 44: 1075–82. doi: 10.1002/hep.21404Google Scholar
Stead, L. F., Hartmann-Boyce, J., Perera, R., & Lancaster, T. (2013). Telephone counselling for smoking cessation. Cochrane Database of Systematic Reviews 8: CD002850. doi: 10.1002/14651858.CD002850.pub3Google Scholar
Teixeira, P. J., Silva, M. N., Mata, J., Palmeira, A. L., & Markland, D. (2012). Motivation, self-determination, and long-term weight control. International Journal of Behavioral Nutrition and Physical Activity 9: 22. doi: 10.1186/1479–5868-9-22Google Scholar
Victora, C. G., Habicht, J. P., & Bryce, J. (2004). Evidence-based public health: moving beyond randomized trials. American Journal of Public Health 94: 400–5.Google Scholar
WHO (World Health Organization), Programme on Mental Health (1997). Life Skills Education for Children and Adolescents in Schools. Geneva, Switzerland: World Health Organization.Google Scholar

References

Achenbach, T. M., McConaughy, S. H., & Howell, C. T. (1987). Child/adolescent behavioral and emotional problems: implications of cross-informant correlations for situational specificity. Psychological Bulletin 101: 213–32. doi.org/10.1037/0033–2909.101.2.213Google Scholar
Aguinis, H., Beaty, J. C., Boik, R. J., & Pierce, C. A. (2005). Effect size and power in assessing moderating effects of categorical variables using multiple regression: a 30-year review. Journal of Applied Psychology 90: 94107. doi: 10.1037/0021–9010.90.1.94Google Scholar
Aiken, L. S., & West, S. G. (1991). Multiple Regression: Testing and Interpreting Interactions. Newbury Park, CA: Sage.Google Scholar
Albert, J. M. (2008). Mediation analysis via potential outcomes models. Statistics in Medicine 27(8): 12821304. doi: 10.1002/sim.3016Google Scholar
Angrist, J., Imbens, G., & Rubin, D. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association 91: 444–72. doi: 10.1080/01621459.1996.10476902Google Scholar
Arbuckle, J. L. (2006). Amos 7.0 User’s Guide. Chicago, IL: SPSS.Google Scholar
Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology 51: 1173–82. doi.org/10.1037/0022–3514.51.6.1173Google Scholar
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin 107: 238–46. doi.org/10.1037/0033–2909.107.2.238Google Scholar
Bentler, P. M. (2006). EQS 6 Structural Equation Program Manual. Encino, CA: Multivariate Software, Inc.Google Scholar
Blankson, A. N., & McArdle, J. J. (2013). Measurement invariance of cognitive abilities across ethnicity, gender, and time among older Americans. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences 70: 386–97. doi: 10.1093/geronb/gbt106Google Scholar
Brown, C. H., & Liao, J. (1999). Principles for designing randomized preventive trials in mental health: an emerging developmental epidemiology paradigm. American Journal of Community Psychology 27: 673710. doi.org/10.1023/A:1022142021441Google Scholar
Brown, C. H., Wang, W., Kellam, S. G., Muthén, M. O., Petras, H., Topinbo, P., … et al., Prevention Science and Methodology Group (2008). Methods for testing theory and evaluating Impact in randomized field trials: intent-to-treat analyses for integrating the perspectives of person, place, and time. Journal of Drug and Alcohol Dependence 95(Supplement 1): s74s104. doi.org/10.1016/j.drugalcdep.2007.11.013Google Scholar
Cázares, A., & Beatty, L. A. (eds.) (1994). Scientific Methods for Prevention Intervention Research. Rockville, MD: National Institute on Drug Abuse Research Monograph.Google ScholarPubMed
Chen, F. F., West, S. G., & Sousa, K. H. (2006). A comparison of bifactor and second-order models of quality of life. Multivariate Behavioral Research 41: 189225. doi.org/10.1207/s15327906mbr4102_5Google Scholar
Chen, H.-T. (1990). Theory-Driven Evaluations. Newbury Park, CA: Sage.Google Scholar
Coertjens, L., Donche, V., De Maeyer, S., Vanthournout, G., & Van Petegem, P. (2012). Longitudinal measurement invariance of Likert-type learning strategy scales: are we using the same ruler at each wave? Journal of Psychoeducational Assessment 30: 577–87. doi.org/10.1177/0734282912438844Google Scholar
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd ed. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Connell, A. (2009). Employing complier average causal effect analytic methods to examine effects of randomized encouragement trials. American Journal of Drug and Alcohol Abuse 35: 253–59. doi: 10.1080/00952990903005882Google Scholar
Cotter, R. B., Burke, J. D., Loeber, R,, & Navratil, J. L. (2002). Innovative retention methods in longitudinal research: a case study of the developmental trends study. Journal of Child and Family Studies 11: 485–98. doi: 10.1023/A:1020939626243Google Scholar
Cronbach, L. J., Ambron, S. R., Dornbursch, S. M., Hess, R. D., Hornik, R. C., Phillips, D. C., … Weiner, S. S. (1980). Toward Reform of Program Evaluation. San Francisco, CA: Jossey-Bass.Google Scholar
Dane, A. V., & Schneider, B. H. (1998). Program integrity in primary and early secondary prevention: are implementation effects out of control? Clinical Psychology Review 18: 2345. doi.org/10.1016/S0272-7358(97)00043–3Google Scholar
De Los Reyes, A., Thomas, S. A., Goodman, K. L., & Kundey, S. M. A. (2013). Principles underlying the use of multiple informants’ reports. Annual Review of Clinical Psychology 9: 123–49. doi: 10.1146/annurev-clinpsy-050212–185617Google Scholar
Demidenko, E. (2007). Sample size determination for logistic regression revisited. Statistics in Medicine 26: 3385–97. doi: 10.1002/sim.2771Google Scholar
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B 39: 138.Google Scholar
Diggle, P. J., & Kenward, M. G. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics 43: 4973. doi.org/10.2307/2986113Google Scholar
Durlak, J. A. & DuPre, E. P. (2008). Implementation matters: a review of research on the influence of implementation on program outcomes and the factors affecting implementation. American Journal of Community Psychology 41: 327–50. doi.org/10.1007/s10464-008–9165-0Google Scholar
Elwood, P. C. (1982). Randomised controlled trials: sampling, British Journal of Clinical Pharmacology 13: 631–6. doi: 10.1111/j.1365–2125.1982.tb01429.xGoogle Scholar
Enders, C. K. (n. d.). Applied missing data.com: companion website for applied missing data analysis. www.appliedmissingdata.com/macro-programs.html.Google Scholar
Enders, C. K. (2011). Missing not at random models for latent growth curve analyses. Psychological Methods 16: 116. doi.org/10.1037/a0022640Google Scholar
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2009). Statistical power analyses using G * Power 3.1: tests for correlation and regression analyses. Behavior Research Methods 41: 1149–60. doi: 10.3758/BRM.41.4.1149Google Scholar
Fritz, M. S., & MacKinnon, D. P. (2007). Required sample size to detect the mediated effect. Psychological Science 18: 233–9. doi.org/10.1111/j.1467–9280.2007.01882.xCrossRefGoogle ScholarPubMed
Hansen, W. B., Collin, L. M., Malotte, C. K., Johnson, C. A., & Fielding, J. E. (1985). Attrition in prevention research. Journal of Behavioral Medicine 8: 261–75. doi.org/10.1007/BF00870313Google Scholar
Hedeker, D., & Gibbons, R. D. (1997). Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Methods 2: 6478. doi.org/10.1037/1082–989X.2.1.64Google Scholar
Hedges, L. V., & Hedberg, E. C. (2007). Intraclass correlations for planning group-randomized experiments in education. Educational Evaluation and Policy Analysis 29: 6087.Google Scholar
Hedges, L. V., & Rhoads, C. (2009). Statistical Power Analysis in Education Research (NCSER 2010–3006). Washington, DC: National Center for Special Education Research, Institute of Education Sciences, U.S. Department of Education.Google Scholar
Hox, J. (2010). Multilevel Analysis: Techniques and Applications, 2nd ed. New York: Routledge.Google Scholar
Hsieh, F. Y., Bloch, D. A., & Larsen, M. D. (1998). A simple method of sample size calculation for linear and logistic regression. Statistics in Medicine 17: 1623–34. doi.org/10.1002/(SICI)1097-0258(19980730)17:14%3C1623::AID-SIM871%3E3.0.CO;2-SGoogle Scholar
Hui, C. H., & Triandis, H. C. (1985). Measurement in cross-cultural psychology: a review and comparison of strategies. Journal of Cross-Cultural Psychology 16: 131–52. doi: 1177/0022002186017002006Google Scholar
Hunsley, J., & Mash, E. J. (2007). Evidence-based assessment. Annual Review of Clinical Psychology 3: 2951. doi.org/10.1146/annurev.clinpsy.3.022806.091419Google Scholar
IBM Corp. (2013). IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.Google Scholar
Imai, K., Keele, L., & Tingley, D. (2010). A general approach to causal mediation analysis. Psychological Methods 15: 309–34. doi.org/10.1037/a0020761Google Scholar
Jo, B. (2002). Estimating intervention effects with noncompliance: alternative model specifications. Journal of Educational and Behavioral Statistics 27: 385420. doi.org/10.3102/10769986027004385Google Scholar
Jo, B. (2008). Causal inference in randomized experiments with mediational processes. Psychological Methods 13: 314–36. doi.org/10.1037/a0014207Google Scholar
Jones, B. L., Nagin, D. S., & Roeder, K. (2001). A SAS procedure based on mixture models for estimating developmental trajectories. Sociological Methods & Research 29: 374–93.Google Scholar
Jöreskog, K. G. & Sörbom, D. (1988). LISREL 7 – a Guide to the Program and Applications, 2nd ed. Chicago, IL: SPSS.Google Scholar
Jöreskog, K. G., & Sörbom, D. (2006). LISREL 8.8 for Windows [computer software]. Skokie, IL: Scientific Software International, Inc.Google Scholar
Jurs, S. G., & Glass, G.V. (1971). The effect of experimental mortality on the internal and external validity of the randomized comparative experiment. Journal of Experimental Education 40: 62–6. doi: 10.1080/00220973.1971.11011304Google Scholar
King, G., Honaker, J., Joseph, A., & Scheve, K. (2001). Analyzing incomplete political science data: an alternative algorithm for multiple imputation. American Political Science Review 95: 4969.Google Scholar
Kraemer, H. C., Stice, E., Kazdin, A., Offord, D., & Kupfer, D. (2001). How do risk factors work together? Mediators, moderators, and independent, overlapping and proxy risk factors. American Journal of Psychiatry 158: 848–83. doi.org/10.1176/appi.ajp.158.6.848Google Scholar
Kraemer, H. C., Wilson, G. T., Fairburn, C. G., & Agras, W. S. (2002). Mediators and moderators of treatment effects in randomized clinical trials. Archives of General Psychiatry 59: 877–84. doi.org/10.1001/archpsyc.59.10.877Google Scholar
Kwok, O., Haine, R. A., Sandler, I. N., Ayers, T. S., Wolchik, S. A., & Tein, J.-Y. (2005). Positive parenting as a mediator of the relations between parental psychological distress and mental health problems of parentally bereaved children. Journal of Clinical Child and Adolescent Psychology 34: 260–71. doi: 10.1207/s15374424jccp3402_5Google Scholar
Lipsey, M. W. (1990). Design Sensitivity: Statistical Power for Experimental Research. Newbury Park, CA: Sage.Google Scholar
Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association 83: 11981202. doi.org/10.1080/01621459.1988.10478722Google Scholar
Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association 88: 125–34. doi.org/10.1080/01621459.1993.10594302Google Scholar
Little, R. J. A. (1995). Modeling the dropout mechanism in repeated-measures studies. Journal of the American Statistical Association 90: 1112–21. doi.org/10.1080/01621459.1995.10476615Google Scholar
Little, R. J. A., & Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd ed. New York: John Wiley & Sons.Google Scholar
Liu, Y., Millsap, R., West, S. G., Tein, J.-Y., Tanaka, R., & Grimm, K. J. (in press). Testing measurement invariance in longitudinal data with ordered-categorical measures. Psychological Methods.Google Scholar
Lynch, K. G., Cary, M., Gallop, R., & Ten Have, T. (2008). Causal mediation analyses for randomized trials. Health Services and Outcomes Research Methodology 8: 5776. doi: 10.1007/s10742-008-0028-9Google Scholar
MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods 7: 1940. doi: 10.1037//1082–989X.7.1.19Google Scholar
MacKinnon, D. P. (2008). Introduction to Statistical Mediation Analysis. New York: Taylor & Francis Group.Google Scholar
MacKinnon, D. P., Krull, J. L., & Lockwood, C. M. (2000). Equivalence of the mediation, confounding, and suppression effect. Prevention Science 1: 173–81. doi.org/10.1023/A:1026595011371Google Scholar
MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test the significance of the mediated effect. Psychological Methods 7: 83104. doi.org/10.1037/1082–989X.7.1.83Google Scholar
MacKinnon, D. P., Taborga, M. P., & Morgan-Lopez, A. A. (2002). Mediation designs for tobacco prevention research. Journal of Drug and Alcohol Dependence 68(Supplement 1): s74s104. doi.org/10.1016/S0376-8716(02)00216–8Google Scholar
Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods 12: 2344. doi.org/10.1037/1082–989X.12.1.23Google Scholar
McClelland, G. H., & Judd, C. M. (1993). Statistical difficulties of detecting interactions and moderator effects. Psychological Bulletin 114: 376–90. doi.org/10.1037/0033–2909.114.2.376Google Scholar
McKay, M. M., & Bannon, W. M. J. (2004). Engaging families in child mental health services. Child and Adolescent Psychiatric Clinics of North America 13: 905–21. doi: 10.1016/j.chc.2004.04.001Google Scholar
Milfont, T. L., & Fischer, R. (2010). Testing measurement invariance across groups: application in cross-cultural research. International Journal of Psychological Research 3: 111–21.Google Scholar
Millsap, R. E. (2011). Statistical Approaches to Measurement Invariance. New York: Routledge.Google Scholar
Millsap, R. E., & Tein, J.-Y. (2004). Assessing factorial invariance in ordered-categorical measures. Multivariate Behavioral Research 39: 479515. doi: 10.1207/S15327906MBR3903_4Google Scholar
Moher, D., Hopewell, S., Schulz, K. F., Montori, V., Gøtzsche, P. C., Devereaux, P. J., Elbourne, D., Egger, M., & Altman, D. G. (2010). CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Journal of Clinical Epidemiology 63: e1e37. doi: 10.1016/j.jclinepi.2010.03.004Google Scholar
Múthen, B. O., Brown, C. H., Masyn, K., Jo, B., Khoo, S., Yang, C.-C., Wang, C.-P, Kellam, S., Carlin, J. B., & Liao, J. (2002). General growth mixture modeling for randomized preventive interventions. Biostatistics 3: 459–75. doi.org/10.1093/biostatistics/3.4.459Google Scholar
Múthen, B. O., & Curran, P. J. (1997). General longitudinal modeling of individual differences in experimental designs: a latent variable framework for analysis and power estimation. Psychological Methods 2: 371402. doi.org/10.1037/1082–989X.2.4.371Google Scholar
Muthén, L. K., & Muthén, B. O. (1998–2014). Mplus User’s Guide, 7th ed. Los Angeles, CA: Muthén & Muthén.Google Scholar
Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling 9: 599620. doi.org/10.1207/S15328007SEM0904_8CrossRefGoogle Scholar
Nagin, D. S. (1999). Analyzing developmental trajectories: a semiparametric group-based approach. Psychological Methods 4: 139–57. doi.org/10.1037/1082–989X.4.2.139Google Scholar
National Research Council and Institute of Medicine (2009). Preventing Mental, Emotional, and Behavioral Disorders among Young People: Progress and Possibilities. Committee on the Prevention of Mental Disorders and Substance Abuse among Children, Youth, and Young Adults: Research Advances and Promising Interventions. O’Connell, M. E., Boat, T., & Warner, K. E. (eds.), Board on Children, Youth, and Families, Division of Behavioral and Social Sciences and Education. Washington, DC: National Academies Press.Google Scholar
Pearl, J. (2014). Interpretation and identification of causal mediation. Psychological Methods 19: 459–81. doi: 10.1037/a0036434Google Scholar
Prince, M. (2008). Measurement validity in cross-cultural comparative research. Epidemiology and Psychiatric Science 17: 211–20. doi: 10.1017/S1121189X00001305Google Scholar
R Development Core Team (2007). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. www.R-project.orgGoogle Scholar
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods. Thousand Oaks, CA: Sage.Google Scholar
Raudenbush, S. W., Bryk, A. S., & Congdon, R. (2004). HLM 6 for Windows [computer software]. Skokie, IL: Scientific Software International, Inc.Google Scholar
Raudenbush, S. W., Spybrook, J., Congdon, R., Liu, X., & Martinez, A., Bloom, H., & Hill, C. (2011). Optimal Design Software Plus Empirical Evidence (Version 3.0) [software]. www.wtgrantfoundation.orgGoogle Scholar
Riecken, H. W., & Boruch, R. F. (1974). Social Experimentation: A Method for Planning and Evaluating Social Intervention. New York: Academic Press.Google Scholar
Rosseel, Y. (2012). lavaan: an R package for structural equation modeling. Journal of Statistical Software 48: 136. www.jstatsoft.org/v48/i02/Google Scholar
Rubin, D. B. (1976). Inference and missing data. Biometrika 63: 581–92. doi.org/10.1093/biomet/63.3.581Google Scholar
Rubin, D. B. (1978). Bayesian inference for causal effects: the role of randomization. Annals of Statistics 6: 3458. doi.org/10.1214/aos/1176344064Google Scholar
Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley & Sons.Google Scholar
Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the American Statistical Association 91: 473–89. doi.org/10.1080/01621459.1996.10476908Google Scholar
Rubin, D. B. (2005). Causal inference using potential outcomes. Journal of the American Statistical Association 100: 322–31. doi: 10.1198/016214504000001880Google Scholar
SAS Institute Inc. (2008). SAS/STAT® 9.2 User’s Guide. Cary, NC: SAS Institute Inc.Google Scholar
Sandler, I. N., Ingram, A., Wolchik, S. A., Winslow, E. B., & Tein, J.-Y. (in press). Long-term effects of parenting preventive interventions to promote resilience of children and adolescents. Child Development Perspectives.Google Scholar
Sandler, I. N., Wolchik, S. A., MacKinnon, D., Ayers, T. S., & Roosa, M. W. (1997). Developing linkages between theory and intervention in stress and coping processes. In Wolchik, S. A., & Sandler, I. N. (eds.), Handbook of Children’s Coping: Linking Theory and Intervention. New York: Plenum, pp. 340.Google Scholar
Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. London: Chapman & Hall.Google Scholar
Schafer, J. L., & Graham, J. W. (2002). Missing data: our view of the state of the art. Psychological Methods 7: 147–77. doi.org/10.1037/1082–989X.7.2.147Google Scholar
Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: a data analyst’s perspective. Multivariate Behavioral Research 33: 545–71. doi: 10.1207/s15327906mbr3304_5Google Scholar
Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Boston: Houghton-Mifflin.Google Scholar
Shpitser, I. (2013). Counterfactual graphical models for longitudinal mediation analysis with unobserved confounding. Cognitive Science 37: 1011–35. doi: 10.1111/cogs.12058Google Scholar
Snijders, T. A. B., & Bosker, R. J. (2012). An Introduction to Basic and Advanced Multilevel Modeling, 2nd ed. Thousand Oaks, CA: Sage.Google Scholar
StataCorp (2013). Stata Statistical Software: Release 13. College Station, TX: StataCorp LP.Google Scholar
Steiger, J.H. (1990). Structural model evaluation and modification: an interval estimation approach. Multivariate Behavioral Research 25: 173–80. doi.org/10.1207/s15327906mbr2502_4Google Scholar
Sullivan, C. M., Rumptz, M. H., Campbell, R., Eby, K. K., Davidson, W. S. II (1996). Retaining participants in longitudinal community research: a comprehensive protocol. Journal of Applied Behavioral Science 32: 262–76.Google Scholar
Taylor, A. B., MacKinnon, D., & Tein, J.-Y. (2008). Test of the three path mediated effect. Organization Research Methods 11: 241–69. doi: 10.1177/1094428107300344Google Scholar
Tein, J.-Y., Roosa, M.W., & Michaels, M. (1994). Agreement between parent and child reports on parental behaviors. Journal of Marriage and the Family 56: 341–55. doi.org/10.2307/353104Google Scholar
Tobler, N., & Stratton, H. (1997) Effectiveness of school-based drug prevention programs: a meta-analysis of the research. Journal of Primary Prevention, 18: 71128. doi.org/10.1023/A:10246302059999Google Scholar
VanderWeele, T., & Vansteelandt, S. (2009). Conceptual issues concerning mediation, interventions and composition. Statistics and Its Interface 2: 457–68. doi.org/10.4310/SII.2009.v2.n4.a7Google Scholar
Widaman, K. F., & Reise, S. P. (1997). Exploring the measurement invariance of psychological instruments: Application in substance use domain. In Kendall, B. I., Windle, M. T., & West, S. G. (eds.), The Science of Prevention: Methodological Advances from Alcohol and Substance Abuse Research. Washington, DC: American Psychological Association, pp. 281324.Google Scholar
Widaman, K. F., Ferrer, E., & Conger, R. D. (2010). Factorial invariance within longitudinal structural equation models: measuring the same construct across time. Child Development Perspectives 4: 1018. doi.org/10.1111/j.1750–8606.2009.00110.xGoogle Scholar
Wilson, S. J., & Lipsey, M. J. (2007). Effectiveness of school-based intervention programs on aggressive behavior: update of a meta-analysis. American Journal of Preventive Medicine 33(Supplement 2): S130S143. doi: 10.1016/j.amepre.2007.04.011Google Scholar
Wolchik, S. A., Sandler, I. N., Tein, J. Y., Mahrer, N., Millsap, R., Winslow, E. B., … Reed, A. B. (2013). Fifteen-year follow-up of a randomized trial of preventive intervention for divorced families: effects on mental health and substance use outcomes in young adulthood. Journal of Consulting and Clinical Psychology 81: 660–73. doi: 0091–0627/04/0400-0175/0Google Scholar
Ye, C., Beyene, J., Browne, G., & Thabane, L. (2014). Estimating treatment effects in randomised controlled trials with non-compliance: a simulation study. BMJ Open 4: e005362. doi: 10.1136/bmjopen-2014-005362Google Scholar
Zhao, X., Lynch, J. G. Jr., & Chen, Q. (2010). Reconsidering Baron and Kenny: myths and truths about mediation analysis. Journal of Consumer Research 37: 197206. doi: 10.1086/651257Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×