Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T04:57:44.190Z Has data issue: false hasContentIssue false

20 - Prevention in the Context of Cross-Cultural Neuroscience

Addressing Insomnia with EEG Biofeedback

from Expansion

Published online by Cambridge University Press:  21 January 2017

Moshe Israelashvili
Affiliation:
Tel-Aviv University
John L. Romano
Affiliation:
University of Minnesota
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

APA (American Psychiatric Association) (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th ed. Arlington, VA: American Psychiatric Publishing.Google Scholar
Arns, M., de Ridder, S., Strehl, U., Breteler, M., & Coenen, A. (2009). Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clinical EEG & Neuroscience 40: 180–9.Google Scholar
Arns, M., Feddema, I., & Kenemans, J. (2014). Differential effects of Theta/Beta and SMR neurofeedback in ADHD on sleep onset latency. Frontiers in Human Neuroscience 8: 1019. doi: 10.3389/fnhum.2014.01019Google Scholar
Arns, M., & Kenemans, J. L. (2014). Neurofeedback in ADHD and insomnia: vigilance stabilization through sleep spindles and circadian networks. Neuroscience & Biobehavioral Reviews 44: 183–94. doi: 10.1016/j.neubiorev.2012.10.006Google Scholar
Baglioni, C., Regen, W., Teghen, A., Spiegelhalder, K., Feige, B., Nissen, CRiemann, D. (2013). Sleep changes in the disorder of insomnia: a meta-analysis of polysomnographic studies. Sleep Medicine Reviews 18: 195213.Google Scholar
Baglioni, C., Spiegelhalder, K., Nissen, C., & Riemann, D. (2011). Clinical implications of the causal relationship between insomnia and depression: how individually tailored treatment of sleeping difficulties could prevent the onset of depression. EPMA Journal 2: 287–93. doi: 10.1007/s13167-011-0079-9Google Scholar
Bazanova, O. M., & Aftanas, L. I. (2010). Individual EEG alpha activity analysis for enhancement neurofeedback efficiency: two case studies. Journal of Neurotherapy 14(3): 244–53. doi: 10.1080/10874208.2010.501517CrossRefGoogle Scholar
Berger, H. (1929). Über das elektroenkephalogramm des menschen [About the elektroenkephalogram of humans]. Archiv für Psychiatrie und NerveMrankheilen 87: 527–70.Google Scholar
Bonnet, M., & Arand, D. (2010). Hyperarousal and insomnia: state of the science. Sleep Medicine Reviews 14(1): 915. doi: 10.1016/j.smrv.2009.05.002Google Scholar
Buckelew, S. P., DeGood, D. E., Roberts, K. D., Butkovic, J. D., & MacKewn, A. S. (2009). Awake EEG disregulation in good compared to poor sleepers. Applied Psychophysiology and Biofeedback 34: 99103. doi: 10.1007/s10484-009-9080-7Google Scholar
Buckelew, S. P., DeGood, D. E., Taylor, J., Cunningham, N. B., Thornton, J., & MacKewn, A. (2013). Neuroflexibility and sleep onset insomnia among college students: Implications for neurotherapy. Journal of Neurotherapy 17(2): 106–15. doi: 10.1080/10874208.2013.784681Google Scholar
Calem, M., Bisla, J., Begum, A., Dewey, M., Bebbington, P., Brugha, T., … Stewart, R. (2012). Increased prevalence of insomnia and changes in hypnotics use in England over 15 years: analysis of the 1993, 2000, and 2007 national psychiatric morbidity surveys. Sleep 35(3): 377–84.CrossRefGoogle ScholarPubMed
Calhoun, S., Fernandez-Mendoza, J., Vgontzas, A., Liao, D., & Bixler, E. (2013). Prevalence of insomnia symptoms in a general population sample of young children and preadolescents: gender effects. Sleep Medicine 15: 91–5.Google Scholar
CDC (Centers for Disease Control and Prevention) (2011). Effect of short sleep duration on daily activities –United States, 2005–2008. Morbidity and Mortality Weekly Report 60: 239–42.Google Scholar
Cortoos, A., DeValck, E., Arns, M., Breteler, M. H. M., & Cluydts, R. (2010). An exploratory study on the effects of tele-neurofeedback and tele-biofeedback on objective and subjective sleep in patients with primary insomnia. Applied Psychophysiology and Biofeedback 35: 125–34. doi: 10.1007/s10484-009-9116-zGoogle Scholar
Cunnington, D., Junge, M. F., & Fernando, A. T. (2013). Insomnia: prevalence, consequences and effective treatment. Medical Journal Australia 199: S36S40. doi: 10.5694/mja13.10718CrossRefGoogle ScholarPubMed
Ellis, J., Perlis, M., Neale, L., Espie, C., & Bastien, C. (2012). The natural history of insomnia: focus on prevalence and incidence of acute insomnia. Journal of Psychiatric Research 46: 1278–85.Google Scholar
Fernández, F., Harmony, T., Fernández-Bouzas, A., Díaz-Comas, L., Prado-Alcalá, R., Valdés-Sosa, P., … García-Martínez, F. (2007). Changes in EEG current sources induced by neurofeedback in learning disabled children: an exploratory study. Applied Psychophysiology and Biofeedback 32(3–4): 169–83. doi: 10.1007/s10484-007-9044-8CrossRefGoogle ScholarPubMed
Ferrie, J., Kumari, M., Salo, P., Singh-Manoux, A., & Kivimaki, M. (2011). Sleep epidemiology – a rapidly growing field. International Journal of Epidemiology 40: 1431–7. doi: 10.1093/ije/dyr203Google Scholar
Gagnon, C., Belanger, L., Ivers, H., & Morin, C. (2013). Validation of the insomnia severity index in primary care. Journal of the American Board of Family Medicine 26: 701–10.Google Scholar
Goldman-Mellor, S., Caspi, A., Gregory, A., Harrington, H., Poulton, R., & Moffitt, T. (2014a). Is insomnia associated with deficits in neuropsychological functioning? Evidence from a population-based study. Sleep ISSN: 01618105Google Scholar
Green, M., Espie, C., & Benzeval, M. (2014). Social class and gender patterning of insomnia symptoms and psychiatric distress: a 20-year prospective cohort study. BMC Psychiatry 14: 152.Google Scholar
Green, M., Espie, C., Hunt, K., & Benzeval, M., (2012). The longitudinal course of insomnia symptoms: inequalities by sex and occupational class among two different age cohorts followed for 20 years in the west of Scotland. Sleep 35(6): 815–23.Google Scholar
Hammer, B. U., Colbert, A. P., Brown, K. A., & Llioi, E. C. (2011). Neurofeedback for insomnia: a pilot study of Z-score SMR and individualized protocols. Applied Psychophysiology and Biofeedback 36(4): 251–64.Google Scholar
Hammond, D. C. (2010). The need for individualization in neurofeedback: heterogeneity in QEEG patterns associated with diagnoses and symptoms. Applied Psychophysiology and Biofeedback 35: 31–6. doi: 10.1007/s10484-009-9106-1Google Scholar
Harvey, C., Gehrman, P., & Espiea, C. (2013). Who is predisposed to insomnia: a review of familial aggregation, stress-reactivity, personality and coping style. Sleep Medicine Reviews 18(3): 237–47. doi: 10.1016/j.smrv.2013.11.004Google Scholar
Hauri, P. J. (2008). EEG biofeedback in the treatment of insomnia: a historical perspective. Applied Psychophysiology and Biofeedback 33(4): 246.Google Scholar
Hauri, P. J., Percy, L., Hellekson, C., Hartmann, E., & Russ, D. (1982). The treatment of psychophysiologic insomnia disorder with biofeedback: a replication study. Biofeedback and Self-Regulation 7(2): 223–35.Google Scholar
Hoedlmoser, K., Pecherstorfer, T., Gruber, E., Anderer, P., Doppelmayr, M., Klimesch, W., … Schabus, M. (2008). Instrumental conditioning of human sensorimotor rhythm (12–15 Hz) and its impact on sleep as well as declarative learning. Sleep 31(10): 1401–8.Google Scholar
Hughes, J. R., & John, E. R. (1999). Conventional and quantitative electroencephalography in psychiatry. Journal of Neuropsychiatry and Clinical Neurosciences 11(2): 190208.Google Scholar
Hysing, M., Pallesen, S., Stormark, K., Lundervold, A., & Vertsen, B. (2013). Sleep patterns and insomnia among adolescents: a population-based study. Journal of Sleep Research 22: 549–56.Google Scholar
Kamiya, J. (1968). Conscious control of brainwaves. Psychology Today 1: 5660.Google Scholar
Kassi, E. N., &Chrousos, G. P. (2013). The central CLOCK system and the stress axis in health and disease. Hormones 12(2): 172–91.Google Scholar
Kim, B., Jeon, H. J., Hong, J. P., Bae, J. N., Lee, J., Chang, S. M., … Cho, M. J. (2012). DSM-IV psychiatric comorbidity according to symptoms of insomnia: a nationwide sample of Korean adults. Social Psychiatry and Psychiatric Epidemiology 47: 2019–33. doi: 10.1007/s00127-012-0502-0Google Scholar
Koyanagi, A., Garin, N., Olaya, B., Ayuso-Mateos, J. L., Chatterji, S., Leonardi, M., … Haro, J. M. (2014). Chronic conditions and sleep problems among adults aged 50 years or over in nine countries: a multi-country study. PLoS One 9(12): e114742. doi: 10.1371/journal.pone.0114742Google Scholar
Krigbaum, G., & Wigton, N. L. (2014). When discussing neurofeedback, does modality matter?NeuroRegulation 1(1): 4860. doi: 10.15540/nr.1.1.48Google Scholar
Lubar, J. F., & Shouse, M. N. (1976). EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm (SMR): a preliminary report. Biofeedback & Self-Regulation 1: 293306.Google Scholar
Matthews, K., Changd, Y., Kravitze, H., Brombergera, J., Owensa, J., Buyssea, D., … Halla, M. (2014). Sleep and risk for high blood pressure and hypertension in midlife women: the SWAN (Study of Women’s Health across the Nation) Sleep Study. Sleep Medicine 15(2): 203–8. doi: 10.1016/j.sleep.2013.11.002Google Scholar
Mindell, J. A., Bartle, A., Ahn, Y., Ramamurthy, M. B., Huong, H. T. D., Kohyama, J., … Goh, D. Y. T. (2013). Sleep education in pediatric residency programs: a cross-cultural look. BioMed Central Research Notes 6(130): 15. doi: 10.1186/1756-0500-6-130Google Scholar
Moghanloo, M., Vafaie, M. E. A., Rostami, R., & Farahani, H. (2014). Determination of the effects of neurofeedback training in the neuropsychological rehabilitation in inattentive and combined subtypes of attention deficit/hyperactivity disorder. NeuroRegulation 1(2): 131–50. doi: 10.15540/nr.1.2.131Google Scholar
Morin, C., Belleville, G., Bélanger, L., & Ivers, H. (2011). The insomnia severity index: psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep 34(5): 601–8.Google Scholar
Morin, C., & Jarrin, D. (2013). Epidemiology of insomnia – prevalence, course, risk factors, and public health burden. Sleep Medicine Clinic 8: 281–97. dx.doi.org/10.1016/j.jsmc.2013.05.002Google Scholar
Myers, J. E., & Young, J. S. (2012). Brain wave biofeedback: benefits of integrating neurofeedback in counseling. Journal of Counseling and Development 90: 20–8.Google Scholar
Palaginia, L., Biberb, K., & Riemann, D. (2014). The genetics of insomnia –evidence for epigenetic mechanisms? Sleep Medicine Reviews 18(3): 225–35. doi: 10.1016/j.smrv.2013.05.002Google Scholar
Pallesen, S., Sivertsen, B., Nordhus, I., & Bjorvatn, B. (2014). A 10-year trend of insomnia prevalence in the adult Norwegian population. Journal of Sleep Medicine 15: 173–9.Google Scholar
Pigeon, W., & Cribbet, M. (2012). The pathophysiology of insomnia from models to molecules (and back). Current Opinion in Pulmonary Medicine 18(6): 546–53. doi: 10.1097/MCP.0b013e328358be41Google Scholar
Riemann, D., Kloepfer, C., & Berger, M. (2009). Functional and structural brain alterations in insomnia: Implications for pathophysiology. European Journal of Neuroscience 29(9): 1754–60. doi: 10.1111/j.1460-9568.2009.06721.xCrossRefGoogle ScholarPubMed
Riemann, D., Spiegelhalder, K., Espie, C., Pollmächer, T., Léger, D., Bassetti, C., … van Someren, E. (2011). Chronic insomnia: clinical and research challenges – an agenda. Journal of Pharmacopsychiatry 44: 114.Google Scholar
Riemann, D., Spiegelhaldera, K., Feigea, B., Voderholzera, U., Bergera, M., Perlisb, M., … Nissena, C. (2010). The hyperarousal model of insomnia: a review of the concept and its evidence. Sleep Medicine Reviews 14(1): 1931.Google Scholar
Robbins, J. (2000). A Symphony in the Brain. New York: Grove Press.Google Scholar
Ros, T., Baars, B. J., Lanius, R. A., & Vuilleumier, P. (2014). Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework. Frontiers in Human Neuroscience 8( 1008): 137. doi: 10.3389/fnhum.2014.01008Google Scholar
Salo, P., Vahtera, J., Ferrie, J., Akbaraly, T., Goldberg, M., Zins, M., … Kivimaki, M. (2012). Trajectories of sleep complaints from early midlife to old age: longitudinal modeling study. Sleep 35(11): 1559–68.Google Scholar
Sanchez-Ortuno, M. M., Edinger, J. D., & Wyatt, J. K. (2011). Daytime symptom patterns in insomnia sufferers: is there evidence for subtyping insomnia? Journal of Sleep Research 20: 425–33. doi: 10.1111/j.1365-2869.2010.00905.xGoogle Scholar
Schabus, M., Heib, D. P. J., Lechinger, J., Griessenberger, H., Klimesch, W., Pawlizki, A., … Hoedlmoser, K. (2014). Enhancing sleep quality and memory in insomnia using instrumental sensorimotor rhythm conditioning. Biological Psychology 95: 126–34. doi: 10.1016/j.biopsycho.2013.02.020Google Scholar
Sterman, M. B., & Egner, T. (2006). Foundation and practice of neurofeedback for the treatment of epilepsy. Applied Psychophysiology and Biofeedback 31(1): 2135.Google Scholar
Sterman, M. B., Howe, R. C., & Macdonald, L. R. (1970). Facilitation of spindle-burst sleep by conditioning of electroencephalographic activity while awake. Science 167(921): 1146–8.Google Scholar
Stokes, D. A. & Lappin, M. S. (2010). Neurofeedback and biofeedback with 37 migraineurs: a clinical outcome study. Behavioral and Brain Functions 6: 919. doi: 10.1186/1744-9081-6-9Google Scholar
Stranges, S., Tigbe, W., Gómez-Olivé, F., Thorogood, M., & Kandala, N. (2012). Sleep problems: an emerging global epidemic? Findings from the indepth WHO-SAGE study among more than 40,000 older adults from 8 countries across Africa and Asia. Sleep 35(8): 1173–81.Google Scholar
Suh, S., Yang, H., Fairholme, C., Kim, H., Manber, R., & Shin, C. (2014). Who is at risk for having persistent insomnia symptoms? A longitudinal study in the general population in Korea. Sleep Medicine 15(2): 180–6. doi: 10.1016/j.sleep.2013.09.024Google Scholar
Trudeau, D. L., Sokhadze, T. M., & Cannon, R. L. (2009). Neurofeedback in alcohol and drug dependency. In Budzynski, T. H., Budzynski, H. K., Evans, J. R., & Abarbanel, A. (eds.), Introduction to Quantitative EEG and Neurofeedback: Advanced Theory and Applications, 2nd ed. Burlington, MA: Elsevier, pp. 241–67.Google Scholar
Van Boxtel, G. J. M., & Gruzelier, J. H. (2014). Neurofeedback: introduction to the special issue. Biological Psychology 95: 13.Google Scholar
Vandekerckhove, M., & Cluydts, R. (2010). Physiological review –the emotional brain and sleep: an intimate relationship. Sleep Medicine Review 14(4): 219–26.Google Scholar
Vgontzas, A. N., Fernandez-Mendoza, J., Bixler, E. O., Singareddy, R., Shaffer, M. L., Calhoun, S. L., … Chrousos, G. P. (2012). Persistent insomnia: the role of objective short sleep duration and mental health. Sleep 35(1): 61–8. doi: 10.5665/sleep.1586Google Scholar
Vgontzas, A. N., Fernandez-Mendoza, J., Liao, D., & Bixler, E. O. (2013). Insomnia with objective short sleep duration: the most biologically severe phenotype of the disorder. Sleep Medicine Reviews 17: 241–54. doi: 10.1016/j.smrv.2012.09.005Google Scholar
Voinescu, B. I., & Orasan, R. (2014). Sleep disturbance in relation to alcohol misuse. Journal of Evidence-Based Psychotherapies 14(1): 95104.Google Scholar
Xia, L., Chen, G-H., Li, Z-H., Jiang, S., & Shen, J. (2013). Alterations in hypothalamus-pituitary-adrenal/thyroid axes and gonadotropin-releasing hormone in the patients with primary insomnia: a clinical research. PLoS One 8(8): e71065. doi: 10.1371/journal.pone.0071065Google Scholar
Zhonggui, X., Shuhua, S., & Haiqing, X. (2005). A controlled study of the effectiveness of EEG biofeedback training on children with attention deficit hyperactivity disorder. Journal of Huazhong University of Science and Technology 25(3): 368–70.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×