Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-30T20:10:30.895Z Has data issue: false hasContentIssue false

23 - The Embodiment Principle in Multimedia Learning

from Part VI - Principles Based on Social and Affective Features of Multimedia Learning

Published online by Cambridge University Press:  19 November 2021

Richard E. Mayer
Affiliation:
University of California, Santa Barbara
Logan Fiorella
Affiliation:
University of Georgia
Get access

Summary

According to the embodiment principle, students learn better when they engage in task-relevant sensorimotor experiences during learning, such as gesturing or manipulating objects. Students may benefit from enacting movements themselves and/or observing them performed by others. Embodied instruction supports learning by offloading thinking to the physical world (i.e., reduced cognitive load) and by drawing analogies between abstract concepts and meaningful actions (i.e., increased generative processing). Prior research has identified a wide range of promising embodiment methods – using gestures to represent math concepts or to trace important elements of diagrams; manipulating concrete (or virtual) objects to understand stories, math concepts, molecular structures, or physics principles; and designing visualizations that present lessons from the learner’s perspective.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostinho, S., Tindall-Ford, S., Ginns, P., Howard, S. J., Leahy, W., & Paas, F. (2015). Giving learning a helping hand: Finger tracing of temperature graphs on an iPad. Educational Psychology Review, 27(3), 427443.Google Scholar
Alibali, M. W., & Nathan, M. J. (2012). Embodiment in mathematics teaching and learning: Evidence from learners’ and teachers’ gestures. Journal of the Learning Sciences, 21(2), 247286.CrossRefGoogle Scholar
Ayres, P., Marcus, N., Chan, C., & Qian, N. (2009). Learning hand manipulative tasks: When instructional animations are superior to equivalent static representations. Computers in Human Behavior, 25(2), 348353.Google Scholar
Barrett, T. J., Stull, A. T., Hsu, T. M., & Hegarty, M. (2015). Constrained interactivity for relating multiple representations in science: When virtual is better than real. Computers & Education, 81, 6981.CrossRefGoogle Scholar
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617645.Google Scholar
Broaders, S. C., Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2007). Making children gesture brings out implicit knowledge and leads to learning. Journal of Experimental Psychology: General, 136(4), 539550.Google Scholar
Brooks, N., & Goldin‐Meadow, S. (2016). Moving to learn: How guiding the hands can set the stage for learning. Cognitive Science, 40(7), 18311849.Google Scholar
Boucheix, J. M., & Forestier, C. (2017). Reducing the transience effect of animations does not (always) lead to better performance in children learning a complex hand procedure. Computers in Human Behavior, 69, 358370.Google Scholar
Boucheix, J. M., Gauthier, P., Fontaine, J. B., & Jaffeux, S. (2018). Mixed camera viewpoints improve learning medical hand procedure from video in nurse training? Computers in Human Behavior, 89, 418429.Google Scholar
Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete manipulatives. Journal of Educational Psychology, 105(2), 380.Google Scholar
Castro-Alonso, J. C., Ayres, P., & Paas, F. (2014). Learning from observing hands in static and animated versions of non-manipulative tasks. Learning and Instruction, 34, 1121.CrossRefGoogle Scholar
Castro-Alonso, J. C., Ayres, P., & Paas, F. (2016). Comparing apples and oranges? A critical look at research on learning from statics versus animations. Computers & Education, 102, 234243.Google Scholar
Cherdieu, M., Palombi, O., Gerber, S., Troccaz, J., & Rochet-Capellan, A. (2017). Make gestures to learn: Reproducing gestures improves the learning of anatomical knowledge more than just seeing gestures. Frontiers in Psychology, 8, 1689.Google Scholar
Congdon, E. L., Novack, M. A., Brooks, N., Hemani-Lopez, N., O’Keefe, L., & Goldin-Meadow, S. (2017). Better together: Simultaneous presentation of speech and gesture in math instruction supports generalization and retention. Learning and Instruction, 50, 6574.Google Scholar
Cook, S. W., Duffy, R. G., & Fenn, K. M. (2013). Consolidation and transfer of learning after observing hand gesture. Child Development, 84(6), 18631871.Google Scholar
Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2008). Gesturing makes learning last. Cognition, 106(2), 10471058.CrossRefGoogle ScholarPubMed
de Koning, B. B., & Tabbers, H. K. (2011). Facilitating understanding of movements in dynamic visualizations: An embodied perspective. Educational Psychology Review, 23(4), 501521.Google Scholar
de Koning, B. B., & Tabbers, H. K. (2013). Gestures in instructional animations: A helping hand to understanding non‐human movements? Applied Cognitive Psychology, 27(5), 683689.CrossRefGoogle Scholar
de Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2010). Attention guidance in learning from a complex animation: Seeing is understanding? Learning and Instruction, 20(2), 111122.Google Scholar
Du, X., & Zhang, Q. (2019). Tracing worked examples: Effects on learning in geometry. Educational Psychology, 39(2), 169187.Google Scholar
Fiorella, L., & Mayer, R. E. (2015). Learning As a Generative Activity. New York: Cambridge University Press.Google Scholar
Fiorella, L., & Mayer, R. E. (2016a). Eight ways to promote generative learning. Educational Psychology Review, 28(4), 717741.Google Scholar
Fiorella, L., & Mayer, R. E. (2016b). Effects of observing the instructor draw diagrams on learning from multimedia messages. Journal of Educational Psychology, 108(4), 528.CrossRefGoogle Scholar
Fiorella, L., Stull, A. T., Kuhlmann, S., & Mayer, R. E. (2019). Instructor presence in video lectures: The role of dynamic drawings, eye contact, and instructor visibility. Journal of Educational Psychology, 111(7), 1162.Google Scholar
Fiorella, L., Stull, A. T., Kuhlmann, S., & Mayer, R. E. (2020). Fostering generative learning from video lessons: Benefits of instructor-generated drawings and learner-generated explanations. Journal of Educational Psychology, 112(5), 895906.Google Scholar
Fiorella, L., van Gog, T., Hoogerheide, V., & Mayer, R. E. (2017). It’s all a matter of perspective: Viewing first-person video modeling examples promotes learning of an assembly task. Journal of Educational Psychology, 109, 653665.Google Scholar
Fujimura, N. (2001). Facilitating children’s proportional reasoning: A model of reasoning processes and effects of intervention on strategy change. Journal of Educational Psychology, 93(3), 589603.Google Scholar
Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science instruction: A systematic review. Educational Psychology Review, 26(1), 925.Google Scholar
Ganier, F., & de Vries, P. (2016). Are instructions in video format always better than photographs when learning manual techniques? The case of learning how to do sutures. Learning and Instruction, 44, 8796.CrossRefGoogle Scholar
Garland, T. B., & Sanchez, C. A. (2013). Rotational perspective and learning procedural tasks from dynamic media. Computers & Education, 69, 3137.CrossRefGoogle Scholar
Ginns, P., Hu, F. T., Byrne, E., & Bobis, J. (2016). Learning by tracing worked examples. Applied Cognitive Psychology, 30(2), 160169.Google Scholar
Glenberg, A. M. (2008). Embodiment for education. In Calvo, P., & Gamila, T. (eds.), Handbook of Cognitive Science (pp. 355372). Amsterdam: Elsevier.Google Scholar
Glenberg, A. M., Goldberg, A. B., & Zhu, X. (2011). Improving early reading comprehension using embodied CAI. Instructional Science, 39(1), 2739.Google Scholar
Glenberg, A. M., Gutierrez, T., Levin, J. R., Japuntich, S., & Kaschak, M. P. (2004). Activity and imagined activity can enhance young children’s reading comprehension. Journal of Educational Psychology, 96(3), 424436.Google Scholar
Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9(3), 558565.Google Scholar
Glenberg, A. M., Witt, J. K., & Metcalfe, J. (2013). From the revolution to embodiment: 25 years of cognitive psychology. Perspectives on Psychological Science, 8(5), 573585.Google Scholar
Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2009). Gesturing gives children new ideas about math. Psychological Science, 20(3), 267272.CrossRefGoogle ScholarPubMed
Goldin‐Meadow, S., Levine, S. C., Zinchenko, E., Yip, T. K., Hemani, N., & Factor, L. (2012). Doing gesture promotes learning a mental transformation task better than seeing gesture. Developmental Science, 15(6), 876884.CrossRefGoogle ScholarPubMed
Höffler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17(6), 722738.CrossRefGoogle Scholar
Hu, F. T., Ginns, P., & Bobis, J. (2015). Getting the point: Tracing worked examples enhances learning. Learning and Instruction, 35, 8593.Google Scholar
Johnson-Glenberg, M. C., Birchfield, D. A., Tolentino, L., & Koziupa, T. (2014). Collaborative embodied learning in mixed reality motion-capture environments: Two science studies. Journal of Educational Psychology, 106(1), 86104.Google Scholar
Kontra, C., Lyons, D. J., Fischer, S. M., & Beilock, S. L. (2015). Physical experience enhances science learning. Psychological Science, 26(6), 737749.Google Scholar
Korbach, A., Ginns, P., Brünken, R., & Park, B. (2020). Should learners use their hands for learning? Results from an eye‐tracking study. Journal of Computer Assisted Learning, 36(1), 102113.Google Scholar
Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. Chicago, IL: University of Chicago Press.Google Scholar
Laski, E. V., & Siegler, R. S. (2014). Learning from number board games: You learn what you encode. Developmental Psychology, 50(3), 853864.CrossRefGoogle ScholarPubMed
Leopold, C., Mayer, R. E., & Dutke, S. (2019). The power of imagination and perspective in learning from science text. Journal of Educational Psychology, 111(5), 793808.CrossRefGoogle Scholar
Lindgren, R. (2012). Generating a learning stance through perspective-taking in a virtual environment. Computers in Human Behavior, 28(4), 11301139.CrossRefGoogle Scholar
Macken, L., & Ginns, P. (2014). Pointing and tracing gestures may enhance anatomy and physiology learning. Medical Teacher, 36(7), 596601.Google Scholar
Marley, S. C., Levin, J. R., & Glenberg, A. M. (2010). What cognitive benefits does an activity-based reading strategy afford young Native American readers? The Journal of Experimental Education, 78(3), 395417.Google Scholar
Marley, S. C., & Szabo, Z. (2010). Improving children’s listening comprehension with a manipulation strategy. The Journal of Educational Research, 103(4), 227238.Google Scholar
Marley, S. C., Szabo, Z., Levin, J. R., & Glenberg, A. M. (2011). Investigation of an activity-based text-processing strategy in mixed-age child dyads. The Journal of Experimental Education, 79(3), 340360.Google Scholar
Martin, T., & Schwartz, D. L. (2005). Physically distributed learning: Adapting and reinterpreting physical environments in the development of fraction concepts. Cognitive Science, 29(4), 587625.Google Scholar
Mayer, R. E., & DaPra, C. S. (2012). An embodiment effect in computer-based learning with animated pedagogical agents. Journal of Experimental Psychology: Applied, 18(3), 239252.Google Scholar
Mayer, R. E., Hegarty, M., Mayer, S., & Campbell, J. (2005). When static media promote active learning: Annotated illustrations versus narrated animations in multimedia instruction. Journal of Experimental Psychology: Applied, 11(4), 256.Google Scholar
McNeil, N. M., & Fyfe, E. R. (2012). “Concreteness fading” promotes transfer of mathematical knowledge. Learning and Instruction, 22(6), 440448.Google Scholar
McNeil, N. M., Uttal, D. H., Jarvin, L., & Sternberg, R. J. (2009). Should you show me the money? Concrete objects both hurt and help performance on mathematics problems. Learning and Instruction, 19(2), 171184.Google Scholar
Novack, M. A., Congdon, E. L., Hemani-Lopez, N., & Goldin-Meadow, S. (2014). From action to abstraction: Using the hands to learn math. Psychological Science, 25(4), 903910.Google Scholar
Novack, M., & Goldin-Meadow, S. (2015). Learning from gesture: How our hands change our minds. Educational Psychology Review, 27(3), 405412.Google Scholar
Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: An effort to improve students’ conceptual understanding through science laboratory experimentation. Science Education, 96(1), 2147.Google Scholar
Ouwehand, K., van Gog, T., & Paas, F. (2015). Designing effective video-based modeling examples using gaze and gesture cues. Educational Technology & Society (online), 18, 7888.Google Scholar
Paas, F., & Sweller, J. (2012). An evolutionary upgrade of cognitive load theory: Using the human motor system and collaboration to support the learning of complex cognitive tasks. Educational Psychology Review, 24(1), 2745.Google Scholar
Padalkar, S., & Hegarty, M. (2015). Models as feedback: Developing representational competence in chemistry. Journal of Educational Psychology, 107(2), 451467.CrossRefGoogle Scholar
Post, L. S., van Gog, T., Paas, F., & Zwaan, R. A. (2013). Effects of simultaneously observing and making gestures while studying grammar animations on cognitive load and learning. Computers in Human Behavior, 29(4), 14501455.Google Scholar
Pouw, W. T., van Gog, T., & Paas, F. (2014). An embedded and embodied cognition review of instructional manipulatives. Educational Psychology Review, 26(1), 5172.Google Scholar
Schroeder, N. L., & Traxler, A. L. (2017). Humanizing instructional videos in physics: When less is more. Journal of Science Education and Technology, 26(3), 269278.CrossRefGoogle Scholar
Sepp, S., Howard, S. J., Tindall-Ford, S., Agostinho, S., & Paas, F. (2019). Cognitive load theory and human movement: Towards an integrated model of working memory. Educational Psychology Review, 31, 293317.Google Scholar
Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games – but not circular ones – improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101(3), 545.Google Scholar
Singer, M. A., & Goldin-Meadow, S. (2005). Children learn when their teacher’s gestures and speech differ. Psychological Science, 16(2), 8589.CrossRefGoogle ScholarPubMed
Sommerville, J. A., Woodward, A. L., & Needham, A. (2005). Action experience alters 3-month-old infants’ perception of others’ actions. Cognition, 96(1), B1B11.CrossRefGoogle ScholarPubMed
Stull, A. T., Gainer, M. J., & Hegarty, M. (2018). Learning by enacting: The role of embodiment in chemistry education. Learning and Instruction, 55, 8092.Google Scholar
Stull, A. T., & Hegarty, M. (2016). Model manipulation and learning: Fostering representational competence with virtual and concrete models. Journal of Educational Psychology, 108(4), 509527.CrossRefGoogle Scholar
Stull, A. T., Hegarty, M., Dixon, B., & Stieff, M. (2012). Representational translation with concrete models in organic chemistry. Cognition and Instruction, 30(4), 404434.Google Scholar
Tang, M., Ginns, P., & Jacobson, M. J. (2019). Tracing enhances recall and transfer of knowledge of the water cycle. Educational Psychology Review, 31(2), 439455.Google Scholar
Türkay, S. (2016). The effects of whiteboard animations on retention and subjective experiences when learning advanced physics topics. Computers & Education, 98, 102114.CrossRefGoogle Scholar
Uttal, D. H., Scudder, K. V., & DeLoache, J. S. (1997). Manipulatives as symbols: A new perspective on the use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology, 18(1), 3754.Google Scholar
Valenzeno, L., Alibali, M. W., & Klatzky, R. (2003). Teachers’ gestures facilitate students’ learning: A lesson in symmetry. Contemporary Educational Psychology, 28(2), 187204.Google Scholar
van Gog, T., Paas, F., Marcus, N., Ayres, P., & Sweller, J. (2009). The mirror neuron system and observational learning: Implications for the effectiveness of dynamic visualizations. Educational Psychology Review, 21(1), 2130.CrossRefGoogle Scholar
van Wermeskerken, M., Fijan, N., Eielts, C., & Pouw, W. T. (2016). Observation of depictive versus tracing gestures selectively aids verbal versus visual–spatial learning in primary school children. Applied Cognitive Psychology, 30(5), 806814.Google Scholar
van Wermeskerken, M., & van Gog, T. (2017). Seeing the instructor’s face and gaze in demonstration video examples affects attention allocation but not learning. Computers & Education, 113, 98107.Google Scholar
Wakefield, E. M., Congdon, E. L., Novack, M. A., Goldin-Meadow, S., & James, K. H. (2019). Learning math by hand: The neural effects of gesture-based instruction in 8-year-old children. Attention, Perception, & Psychophysics, 81(7), 23432353.CrossRefGoogle ScholarPubMed
Willingham, D. T. (2017). Ask the cognitive scientist: Do manipulatives help students learn? American Educator, 6(2017), 7.Google Scholar
Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625636.Google Scholar
Wittrock, M. C. (1989). Generative processes of comprehension. Educational Psychologist, 24(4), 345376.Google Scholar
Wong, A., Marcus, N., Ayres, P., Smith, L., Cooper, G. A., Paas, F., & Sweller, J. (2009). Instructional animations can be superior to statics when learning human motor skills. Computers in Human Behavior, 25(2), 339347.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×