Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T16:59:46.519Z Has data issue: false hasContentIssue false

11 - Temperament and Brain Networks of Attention

from Part III - Development, Health and Change: Life Span and Health Outcomes

Published online by Cambridge University Press:  18 September 2020

Philip J. Corr
Affiliation:
City, University London
Gerald Matthews
Affiliation:
University of Central Florida
Get access

Summary

Temperament is linked to the structure and function of the nervous system and to the experience of the organism. When we measure the person’s readiness to anger, to seek reward, to focus and switch attention, etc., we are measuring temperament and these in turn are linked to brain networks. Hyperreactivity to an unexpected, novel or intense stimulus, is also a measure of temperament important in understanding the development of behavior problems in children and psychopathologies of stress and attention in adults (Rothbart, 2011; Zentner & Shiner, 2012). Studies of resting state MRI have allowed tracing humans brain changes from birth (Gao et al., 2016), allowing examination of the development of attention and other networks early in life. The advance of epigenetic studies (Meaney, 2010) has offered a framework for thinking about the how the environment and gene expression work in concert to produce the pattern of connectivity unique to the individual.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksan, N., & Kochanska, G. (2004). Links between systems of inhibition from infancy to preschool years. Child Development, 75, 14771490.Google Scholar
Allman, J. M., Tetreault, N. A., Hakeem, A. Y., Manaye, K. F., Semendeferi, K., Erwin, J. M., … Hof, P. R. (2010). The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Structure and Function, 214, 495517.Google Scholar
Arbelle, S., Benjamin, J., Golin, M., Kremer, I., Belmaker, R. H., & Ebstein, R. P. (2003). Relation of shyness in grade school children to the genotype for the long form of the serotonin transporter promoter region polymorphism. American Journal of Psychiatry, 160, 671676.Google Scholar
Asghari, V., Schoots, O., van Kats, S., Ohara, K., Jovanovic, V., Guan, H. C., … Van Tol, H. H. (1994). Dopamine D4 receptor repeat: Analysis of different native and mutant forms of the human and rat genes. Molecular Pharmacology, 46, 364373.Google Scholar
Auerbach, J., Geller, V., Lezer, S., Shinwell, E., Belmaker, R. H., Levine, J., & Ebstein, R. (1999). Dopamine D4 receptor (D4DR) and serotonin transporter promoter (5-HTTLPR) polymorphisms in the determination of temperament in 2-month-old infants. Molecular Psychiatry, 4, 369-73.Google Scholar
Auerbach, J. G., Faroy, M., Ebstein, R., Kahana, M., Levine, J. (2001). The association of the Dopamine D4 receptor gene and the serotonin transporter promoter gene (5-HTTLPD) with temperament in 12-month old infants. Journal of Child Psychology and Psychiatry, 4246, 77777783.Google Scholar
Bailey, J. N., Breidenthal, S. E., Jorgensen, M. J., McCracken, J. T., & Fairbanks, L. A. (2007). The association of DRD4 and novelty seeking is found in a nonhuman primate model. Psychiatric Genetics, 17, 2327.Google Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2006). Gene-environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Developmental Psychobiology, 48, 406409.Google Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Developmental Psychopathology, 23, 3952.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., Pijlman, F. T. A., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers’ externalizing behavior in a randomized controlled trial. Developmental Psychology, 44, 293300.Google Scholar
Barnett, J. H., Scoriels, L., & Munafò, M. R. (2008). Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biological Psychiatry, 64, 137144.Google Scholar
Battaglia, M., Ogliari, A., Zanoni, A., Citterio, A., Pozzoli, U., Giorda, R., … Marino, C. (2005). Influence of the serotonin transporter promoter gene and shyness on children’s cerebral responses to facial expressions. Archives of General Psychiatry, 62, 8594.Google Scholar
Beckmann, M., Johansen-Berg, H., & Rushworth, M. F. S. (2009). Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. The Journal of Neuroscience, 29, 11751190.Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential Susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.Google Scholar
Belsky, J., Jonassaint, C., Pluess, M., Stanton, M., Brummett, B., & Williams, R. (2009). Vulnerability genes or plasticity genes? Molecular Psychiatry, 14, 746754.Google Scholar
Benjamin, J., Li, L., Patterson, C., Greenberg, B. D., Murphy, D. L., & Hamer, D. H. (1996). Population and familial association between the D4 dopamine receptor gene and measures of Novelty Seeking. Nature Genetics, 12, 8184.Google Scholar
Bergman, D., & Escalona, S. K. (1949). Unusual sensitivities in very young children. Psychoanalytic Study of the Child, 3, 333352.Google Scholar
Berry, D., Mccartney, K., Petrill, S., Deater-Deckard, K., & Blair, C. (2013). Gene-environment interaction between DRD4 7-repeat VNTR and early child-care experiences predicts self-regulation abilities in prekindergarten. Developmental Psychobiology, 56, 373391.Google Scholar
Burt, C. (1939). The factorial analysis of emotional traits. Part I. Journal of Personality, 7, 238254.Google Scholar
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215222.Google Scholar
Calati, R., Porcelli, S., Giegling, I., Hartmann, A. M., Möller, H. J., De Ronchi, D., … Rujescu, D. (2011). Catechol-o-methyltransferase gene modulation on suicidal behavior and personality traits: Review, meta-analysis and association study. Journal of Psychiatric Research, 45, 309321.Google Scholar
Casey, B. J., Sommerville, L. H., Gotlib, I. H., Ayduk, O., Franklin, N. T., Askren, M. K., … Shoda, Y. (2011). Behavioral and neural correlates of delay of gratification 40 years later. Proceedings of the national academy of sciences USA, 108, 1499815003.Google Scholar
Cloninger, C. R., Svrakic, D. M., & Przybeck, T. R. (1993). A psychobiological model of temperament and character. Archives of General Psychiatry, 50, 975990.Google Scholar
Coe, B. P., Witherspoon, K., Rosenfeld, J. A., Van Bon, B. W., Vulto-van Silfhout, A. T., Bosco, P., … Schuurs-Hoeijmakers, J. H. (2014). Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nature genetics, 46, 10631071.Google Scholar
Coll, C. G., Kagan, J., & Reznick, J. S. (1984). Behavioral inhibition in young children. Child Development, 55, 10051019.Google Scholar
Corral-Frías, N. S., Pizzagalli, D. A., Carré, J. M., Michalski, L. J., Nikolova, Y. S., Perlis, R. H, … Bogdan, R. (2016). COMT Val158Met genotype is associated with reward learning: A replication study and meta-analysis. Genes, Brain and Behavior, 15, 503513.Google Scholar
Curran, T., & Keele, S. (1993). Attentional and nonattentional forms of sequence learning. Journal of Experimental Psychology, 19, 189202.Google Scholar
Deisseroth, K., Feng, G., Majewska, A. K., Miesenböck, G., Ting, A., & Schnitzer, M. J. (2006). Next-generation optical technologies for illuminating genetically targeted brain circuits. The Journal of Neuroscience, 26, 1038010386.Google Scholar
Depue, R. A., & Iacono, W. G. (1989). Neurobehavioral aspects of affective disorders. Annual Review of Psychology, 40, 457492.Google Scholar
Derryberry, D., & Rothbart, M. K. (1997). Reactive and effortful processes in the organization of temperament. Development and Psychopathology, 9, 633652.Google Scholar
Diamond, S. (1974). The roots of psychology: A sourcebook in the history of ideas. New York: Basic Books.Google Scholar
Diano, M., Tamietto, M., Celeghin, A., Weiskrantz, L., Tatu, M., Bagnis, A., … Costa, T. (2017). Dynamic changes in amygdala psychophysiological connectivity reveal distinct neural networks for facial expressions of basic emotions. Scientific Reports, 7, 45260.Google Scholar
Dickinson, D., & Elvevåg, B. (2009). Genes, cognition and brain through a COMT lens. Neuroscience, 164, 7287.Google Scholar
Digman, J. M., & Inouye, J. (1986). Further specification of the five robust factors of personality. Journal of Personality and Social Psychology, 50, 116123.Google Scholar
Ebstein, R. B., Levine, J., Geller, V., Auerbach, J., Gritsenko, I., & Belmaker, R. H. (1998). Dopamine 4 receptor and serotonin transporter promoter in the determination of neonatal temperament. Molecular Psychiatry, 3, 238246.Google Scholar
Ebstein, R. B., Novick, O., Umansky, R., Priel, B., Osher, Y., Blaine, D., … Belmaker, R. H. (1996). Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of novelty seeking. Nature Genetics, 12, 7880.Google Scholar
Eisenberg, N., & Fabes, R. A. (1998). Prosocial development. In Damon, W. & Eisenberg, N. (Eds.), Handbook of child psychology: Vol. 3. Social, emotional, and personality development (5th ed., pp. 701778). New York: Wiley.Google Scholar
Elia, J., Glessner, J. T, Wang, K., Takahashi, N., Shtir, C. J., Hadley, D., … Hakonarson, H. (2012). Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nature Genetics, 44, 7884.Google Scholar
Escalona, S. (1968). The roots of individuality: Normal patterns of development in infancy. Chicago, IL: Aldine.Google Scholar
Etkin, A., Klemenhagen, K. C., Dudman, J. T., Rogan, M. T., Hen, R., Kandel, E. R., & Hirsch, J. (2004). Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron, 44, 10431055.Google Scholar
Evans, D. E., & Rothbart, M. K. (2007). Developing a model for adult temperament. Journal of Research in Personality, 41, 868888.Google Scholar
Eysenck, H. J. (1947). Dimensions of personality. New York: Praeger.Google Scholar
Eysenck, H. J. (1970). The structure of human personality (3rd ed.). London: Methuen.Google Scholar
Fan, J., Fossella, J., Sommer, T., Wu, Y., & Posner, M. I. (2003). Mapping the genetic variation of executive attention onto brain activity. Proceedings of the National Academy of Sciences, 100, 74067411.Google Scholar
Fan, J., McCandliss, B. D., Sommer, T., Raz, M., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340347.Google Scholar
Feng, G-F., & English, J. (1972). Translation from Lao-Tzu Tao Te Ching (Way of Life). New York: Vintage Books.Google Scholar
Fox, A. S., Oler, J. A., Birn, R. M., Shackman, A. L., & Kalin, N. H. (2018). Functional connectivity within the primate extended amygdala is heritable and associated with early-life anxious temperament. Journal of Neuroscience, 38, 76117621.Google Scholar
Fox, N. A., Henderson, H. A., Marshall, P. J., Nichols, K. E., & Ghera, M. M. (2005). Behavioral inhibition: Linking biology and behavior within a developmental framework. Annual Review of Psychology, 56, 235262.Google Scholar
Fuemmeler, B. F., Lee, C-T., Soubry, A., Iversen, E. S., Huang, Z., … Hoyo, C. (2016). DNA methylation of regulatory regions of imprinted genes at birth and its relation to infant temperament. Genetics and Epigenetics, 8, 5967.Google Scholar
Gabard, L. J., Goff, B., Gee, D. G., Humphreys, K. L., Telzeer, E., Hare, T., & Tottenham, N. (2014). The development of human amygdala functional connectivity at rest from 4 to 23 years: A cross-sectional study. Neuroimage, 95, 193207.Google Scholar
Gao, W., Lin, W., Grewen, K., & Gilmore, J. H. (2016). Functional connectivity of the infant human brain: plastic and modifiable. The Neuroscientist, 23, 169184.Google Scholar
Garstein, M. A., & Skinner, M. K. (2018) Parental influences on temperament and development: The role of environmental epigenetics. Development and Psychopathology, 30, 12691303Google Scholar
Gesell, A. (1928). Infancy and human growth. New York: The McMillan Company.Google Scholar
Glessner, J. T., Wang, K., Cai, G., Korvatska, O., Kim, C. E., Wood, S., … Hakonarson, H. (2009). Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459, 569573.CrossRefGoogle ScholarPubMed
Goldsmith, H. H., & Rothbart, M. K. (1991). Contemporary instruments of assessing early temperament by questionnaire in the laboratory. In Strelau, & Angleitner, (Eds.), Explorations in Temperament: International perspectives on theory and measurement (pp. 249272). New York: Plenum Press.Google Scholar
Gotlib, I. H., Joormann, J., Minor, K. L., & Hallmayer, J. (2007). HPA axis reactivity: A mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biological Psychiatry, 63, 847851.Google Scholar
Grady, D. L., Chi, H. C., Ding, Y. C., Smith, M., Wang, E., Schuck, S., … Moyzis, R. K. (2003). High prevalence of rare dopamine receptor D4 alleles in children diagnosed with attention-deficit hyperactivity disorder. Molecular Psychiatry, 8, 536545.Google Scholar
Grandy, D. K., & Kruzich, P. J. (2004). A molecular genetic approach to the neurobiology of attention utilizing dopamine receptor-deficient mice. In Posner, M. I. (Ed.), Cognitive neuroscience of attention (pp. 260268). New York: Guilford Press.Google Scholar
Gray, J. A. (1978). The neuropsychology of anxiety. British Journal of Psychology, 69, 417434.Google Scholar
Green, A. E., Munafo, M. R., DeYoung, C. G., Fossella, J. A., Fan, J., & Gray, J. R. (2008). Using genetic data in cognitive neuroscience: From growing pains to genuine insights. Nature Reviews, 9, 710720.Google Scholar
Green, C. G., Babineau, V., Jolicoeur-Martineau, A., Bouvette-Turcot, A., Minde, K., Sassi, R., … Wazana, A. (2017). Prenatal maternal depression and child serotonin transporter linked polymorphic region (5-HTTLPR) and dopamine receptor D4 (DRD4) genotype predict negative emotionality from 3 to 36 months. Development and Psychopathology, 29, 901917.Google Scholar
Hayden, E. P., Dougherty, L. R., Maloney, B., Durbin, C. E., Olino, T. M., Nurnberger, J. I. Jr., … Klein, D. N. (2007). Temperamental fearfulness in childhood and the serotonin transporter promoter region polymorphism: A multimethod association study. Psychiatric Genetics, 17, 135142.Google Scholar
Heils, A., Teufel, A., Petri, S., Stöber, G., Riederer, P., Bengel, D., & Lesch, K. P. (1996). Allelic variation of human serotonin transporter gene expression. Journal of Neurochemistry, 66, 26212624.Google Scholar
Heymans, G., & Wiersma, E. D. (1906). Beiträge zur speziellen Psychologie auf Grund einer Massenuntersuchung. Verlag von Johann Ambrosius Barth.Google Scholar
Holmboe, K., Nemoda, Z., Fearon, R. M., Sasvari-Szekely, M., & Johnson, M. H. (2011). Dopamine D4 receptor and serotonin transporter gene effects on the longitudinal development of infant temperament. Genes, Brain, & Behavior, 10, 513522.Google Scholar
International Schizophrenia Consortium (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460, 748752.Google Scholar
Kagan, J. (1998). Biology and the child. In Damon, W. (Series Ed.) & Eisenberg, N. (Vol. Ed.), Handbook of child psychology: Vol 3. Social, emotion, and personality development (6th ed., pp. 177235). New York: Wiley.Google Scholar
Kagan, J., & Fox, N. A. (2006). Biology, culture, and temperamental biases: Temperament. In Damon, W., Lerner, R. & Eisenberg, N. (Eds.), Handbook of child psychology: Social, emotional, and personality development (6th edn., Vol. 3, pp. 167225). New York: Wiley.Google Scholar
Kagan, J., & Snidman, N. (2009). The long shadow of temperament. Cambridge, MA: Harvard University Press.Google Scholar
Kagan, J., Snidman, N., Zentner, M., & Peterson, E. (1999). Infant temperament and anxious symptoms in school age children. Development and psychopathology, 11, 209224.Google Scholar
Kanske, P., Heissler, J., Schönfelder, S., Bongers, A., & Wessa, M. (2011). How to regulate emotion? Neural networks for reappraisal and distraction. Cerebral Cortex, 21, 13791388.Google Scholar
Kanske, P., & Kotz, S. A. (2011). Emotion triggers executive attention: anterior cingulate cortex and amygdala responses to emotional words in a conflict task. Human Brain Mapping, 32, 198208.Google Scholar
Kant, I. (1798/1978). Anthropology from a pragmatic point of view. Carbondale, IL: Southern Illinois University Press.Google Scholar
Kessen, W. (Ed.) (1965). The Child. New York: John Wiley.Google Scholar
Kochanska, G., Murray, K., & Harlan, E. T. (2000). Effortful control in early childhood: Continuity and change, antecedents and implications for social development. Developmental Psychology, 36, 220232.Google Scholar
Kragel, P. A., Knodt, A. R., Hariri, A. R., & Labar, K. S. (2016). Decoding spontaneous emotional states in the human brain. PLoS Biology, 14.Google Scholar
Lachman, H., Papolos, D., Saito, T., Yu, Y., Szumlanski, L., & Weinshilboum, M. (1996). Human catechol-O-methyltransferase pharmacogenetics: Description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics, 6, 243250.Google Scholar
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., … Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 15271531.Google Scholar
Livak, K. J., Rogers, J., & Lichter, J. B. (1995). Variability of dopamine D4 receptor (DRD4) gene sequence within and among nonhuman primate species. Proceedings of the National Academy of Science of the USA, 92, 427431.Google Scholar
Lotta, T., Vidgren, J., Tilgmann, C., Ulmanen, I., Melen, K., Julkunen, I., & Taskinen, J. (1995). Kinetics of human soluble and membrane-bound catechol O-methyltransferase: A revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry, 34, 42024210.Google Scholar
Lundwall, R. A, Dannemiller, J. L., & Goldsmith, H. H. (2017). Genetic associations with reflexive visual attention in infancy and childhood. Developmental Science, 20, e12371.Google Scholar
McCrae, R. R., Costa, P. T. Jr., Ostendorf, F., Angleitner, A., Hřebíčková, M., Avia, M. D., … Smith, P. B. (2000). Nature over nurture: Temperament, personality, and life span development. Journal of Personality and Social Psychology, 78, 173186.Google Scholar
Meaney, M. J. (2010). Epigenetics and the biological definition of gene × environment interactions. Child Development, 81, 4179.Google Scholar
Meili-Dworetzki, G., & Meili, R. (1972). Grundlagen individueller Persönlichkeitsunterschiede: Ergebnisse einer Längsschnittuntersuchung mit zwei Gruppen von der Geburt bis zum 8. und 16. Altersjahr. Huber.Google Scholar
Meyer-Lindenberg, A., & Weinberger, D. R. (2006). Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature Reviews Neuroscience, 7, 818827.Google Scholar
Mischel, W., Shoda, Y., & Peake, P. K. (1988). The nature of adolescent competencies predicted by preschool delay of gratification. Journal of Personality and Social Psychology, 54, 687696.Google Scholar
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R.J., Harrington, H. L., … Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth and public safety. Proceedings of the National Academy of Sciences of the USA, 108, 26932698.Google Scholar
Nagel, I. E., Chicherio, C., Li, S., von Oertzen, T., Sander, T., Villringer, A., … Lindenberger, U. (2008). Human aging magnifies genetic effects on executive functioning and working memory. Frontiers in Human Neuroscience, 2.Google Scholar
Namburi, P., Beyeler, A., Yoruzu, S., Calhoon, G. G., Halbert, S. A., Wichmann, R., … Tye, K. M. (2015). A circuit mechanism for differentiating positive and negative associations. Nature, 520, 675678.Google Scholar
Nebylitsyn, V. D., & Gray, J. A. (Eds.) (1972). Biological bases of individual behavior. New York: Academic Press.Google Scholar
Nigg, J. T. (2006). Temperament and developmental psychopathology. Journal of Child Psychology and Psychiatry, 47, 395422.Google Scholar
Oler, J. A., Fox, A. S., Shelton, S. E., Christian, B. T., Murali, D., Oakes, T. R., … Kalin, N. H. (2009). Serotonin transporter availability in the amygdala and bed nucleus of the stria terminalis predicts anxious temperament and brain glucose metabolic activity. Journal of Neuroscience, 29, 99619966.Google Scholar
Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. Oxford, UK: Oxford University Press.Google Scholar
Pavlov, I. P. (1935). General types of animal and human higher nervous activity. Reprinted in Selected Works, 1955 Moscow: Foreign Language Publishing House.Google Scholar
Pérez-Edgar, K., Bar-Haim, Y., McDermott, J. M., Gorodetsky, E., Hodgkinson, C. A., Goldman, D., … Fox, N. A. (2010). Variations in the serotonin-transporter gene are associated with attention bias patterns to positive and negative emotion faces. Biological Psychology, 83, 269271.Google Scholar
Posner, M. I. (2012). Attention in a social world. New York: Oxford University Press.Google Scholar
Posner, M. I., & Rothbart, M. K. (2007). Educating the human brain. Washington, DC: American Psychological Association.Google Scholar
Posner, M. I., & Rothbart, M. K. (2018). Temperament and brain networks of attention. Philosophical Transactions of the Royal Society, B 37, 20170254.Google Scholar
Posner, M. I., Rothbart, M. K., Sheese, B. E., & Voelker, P. (2014). Developing attention: Behavioral and brain mechanisms. Advances in Neuroscience, 405094.Google Scholar
Rothbart, M. K. (1981). Measurement of temperament in infancy. Child Development, 52, 569578.Google Scholar
Rothbart, M. K. (2011). Becoming who we are: Temperament and personality in development. New York: Guilford Press.Google Scholar
Rothbart, M. K., & Bates, J. E. (2006). Temperament. In Damon, W. & Lerner, R. (Series Eds.) & Eisenberg, N. (Vol. Ed.), Handbook of child psychology: Vol 3. Social, emotion, and personality development (6th ed., pp. 99166). New York: Wiley.Google Scholar
Rothbart, M. K., & Derryberry, D. (1981). Development of individual differences in temperament. In Lamb, M. E., Brown, A. L. & Rogoff, B. (Eds.), Advances in developmental psychology (Vol. 1., pp. 3386). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Rothbart, M. K., & Rueda, M. R. (2005). The development of effortful control. In Mayr, U., Awh, E. & Keele, S. W. (Eds.), Developing individuality in the human brain: A tribute to Michael I. Posner (pp. 167188). Washington, DC: American Psychological Association.Google Scholar
Rothbart, M. K., & Sheese, B. E. (2007). Temperament and emotion-regulation. In Gross, J. (Ed.), Handbook of emotion-regulation (pp. 331350). New York: Guilford Press.Google Scholar
Rothbart, M. K., Sheese, B. E., & Conradt, L. (2009). Childhood temperament. In Corr, P. J. & Matthews, G. (Eds.), Cambridge handbook of personality psychology (pp. 177190). Cambridge, UK: Cambridge University Press.Google Scholar
Rueda, M. R., Checa, P., & Cómbita, L. M. (2012). Enhanced efficiency of the executive attention network after training in preschool children: Immediate changes and effects after two months. Developmental Cognitive Neuroscience, 2, S192S204.Google Scholar
Rueda, M. R., Pozuelos, J. P., & Cómbita, L. M. (2015). Cognitive neuroscience of attention: From brain mechanisms to individual differences in efficiency. AIMS Neuroscience, 2, 183202.Google Scholar
Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L., & Posner, M. I. (2005). Training, maturation, and genetic influences on the development of executive attention. Proceedings of the national Academy of Sciences of the United States of America, 102, 1493114936.Google Scholar
Ruff, H. A., & Rothbart, M. K. (2001). Attention in early development: Themes and variations. Oxford, UK: Oxford University Press.Google Scholar
Saudino, K. J., & Wang, M. (2012). Quantitative and molecular genetic studies of temperament. In Zentner, M. & Shiner, R. (Eds.), The handbook of temperament (pp. 315346). New York: Guilford.Google Scholar
Schmidt, L. A., Foz, N. A., Rubin, K. H., Hu, S., & Hamer, D. H. (2002). Molecular genetics of shyness and aggression in preschoolers. Personality and Individual Differences, 33, 227238.Google Scholar
Schwartz, C. E., Kunwar, P. S., Greve, D. N., Kagan, J., Snidman, N. C., & Bloch, R. B. (2011). A phenotype of early infancy predicts reactivity of the amygdala in male adults. Molecular Psychiatry, 17, 10421050.Google Scholar
Sen, S., Burmeister, M., & Ghosh, D. (2004). Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traits. American Journal of Medical Genetics, 127B, 8589.Google Scholar
Shackman, A. J, Tromp, D. P. M., Stockbridge, M. D., Kaplan, C. M., Tillman, R. M., & Fox, A. S. (2016). Dispositional negativity: An integrative psychological and neurobiological perspective. Psychological Bulletin, 142, 12751314.Google Scholar
Sheese, B. E., Voelker, P. M., Rothbart, M. K., & Posner, M. I. (2007). Parenting quality interacts with genetic variation in dopamine receptor D4 to influence temperament in early childhood. Development and Psychopathology, 19, 10391046.Google Scholar
Shirley, M. M. (1933). The first two years: A study of 25 babies. Minneapolis, MN: University of Minnesota Press.Google Scholar
Smith, S. M., Fox, P. T., Miller, K., Glahn, D. C., Fox, P. M., McKay, C. E., … Beckman, C. F. (2009). Correspondence of the brains’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences U.S.A., 106, 1304013045.Google Scholar
Smith, H. J., Sheikh, H. I., Dyson, M. W., Olino, T. M., Laptook, R. S., Durbin, C. E., … Klein, D. N. (2012). Parenting and child DRD4 genotype interact to predict children’s early emerging effortful control. Child Development, 83, 19321944.Google Scholar
Smith, H. J., Kryski, K. R., Sheikh, H. I., Singh, S. M., & Hayden, E. P. (2013). The role of parenting and dopamine D4 receptor gene polymorphisms in children’s inhibitory control. Developmental Science, 16, 515530.Google Scholar
Strelau, J. (1987). Personality dimensions based on arousal theories. In Strelau, J. (Ed.), Personality dimensions and arousal (pp. 269286). Springer US.Google Scholar
Swanson, J. M., Flodman, P., Kennedy, J., Spence, M. A., Moyzis, R., Schuck, S., … Posner, M. (2000). Dopamine genes and ADHD. Neuroscience and Biobehavioral Reviews, 24, 2125.Google Scholar
Tang, Y. Y., & Posner, M. I. (2014) Training brain networks and states. Trends in Cognitive Science, 18, 345350.Google Scholar
Thomas, A., & Chess, S. (1977). Temperament and development. New York: Brunner/Mazel.Google Scholar
Thomas, A., Chess, S., Birch, H. G., Herzig, M. E., & Korn, S. (1963). Behavioral individuality in early childhood. New York: New York University Press.Google Scholar
Thomas, A., Chess, S., & Birch, H. G. (1968). Temperament and behavior disorders in children. New York: New York University Press.Google Scholar
Tunbridge, E. M., Weickert, C. S., Kleinman, J. E., Herman, M. M., Chen, J., Kolachana, B. S., … Weinberger, D. R. (2007). Catechol-o-methyltransferase enzyme activity and protein expression in human prefrontal cortex across the postnatal lifespan. Cerebral Cortex, 17, 12061212.Google Scholar
Van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2006). DRD4 7-repeat polymorphism moderates the association between maternal unresolved loss or trauma and infant disorganization. Attachment and Human Development, 8, 291307.Google Scholar
Voelker, P., Rothbart, M. K., & Posner, M. (2016). A polymorphism related to methylation influences attention during performance of speeded skills. AIMS Neuroscience, 3, 4055.Google Scholar
Voelker, P., Sheese, B. E., Rothbart, M. K., & Posner, M. I. (2017). Methylation polymorphism influences practice effect in children during attention task. Cognitive Neuroscience, 8, 7284.Google Scholar
Voelker, P., Sheese, B. E., Rothbart, M. K., & Posner, M. I. (2009). Variations in catechol-o-methyltransferase gene interact with parenting to influence attention in early development. Neuroscience, 164, 121130.Google Scholar
Wacker, J., Mueller, E M., Hennig, J., & Stemmler, G. (2012). How to consistently link extraversion and intelligence to the catechol-O-methyltransferase (COMT) gene: On defining and measuring psychological phenotypes in neurogenetic research. Journal of Personality and Social Psychology, 102, 427444.Google Scholar
Wan, L., Li, Y., Zhang, Z., Sun, Z., He, Y., & Li, R. (2018). Methylenetetrahydrofolate reductase and psychiatric diseases. Translational Psychiatry, 8, 242.Google Scholar
Wang, E., Ding, Y. C., Flodman, P., Kidd, J. R., Kidd, K. K., Grady, D. L., … Moyzis, R. K. (2004). The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. The American Journal of Human Genetics, 74, 931944.Google Scholar
Wang, S., & Young, K. M. (2014). White matter plasticity in adulthood. Neuroscience, 276, 148160.Google Scholar
Webb, E. (1915). Character and intelligence: An attempt at an exact study of character. Cambridge, UK: Cambridge University Press.Google Scholar
Wellman, L. L., Forcelli, P. A., Aguilar, B. L., & Malkova, L. (2016). Bidirectional control of social behavior by activity within basolateral and central amygdala of primates. Journal of Neuroscience, 36, 87468756.Google Scholar
White, L. K., Lamm, C., Helfinstein, S. M., & Fox, N. A. (2012). Neurobiology and neurochemistry of temperament in children. In Zentner, M., Zentner, M. & Shiner, R. (Eds.), Handbook of temperament (pp. 347367). New York: Guilford Press.Google Scholar
Willis-Owen, S. A., Turri, M. G., Munafò, M. R., Surtees, P. G., Wainwright, N. W., Brixey, R. D., & Flint, J. (2005). The serotonin transporter length polymorphism, neuroticism, and depression: A comprehensive assessment of association. Biological Psychiatry, 58, 451456.Google Scholar
Zentner, M. (2008). Current trends in the study of child temperament. International Journal of Developmental Science, 2, 26.Google Scholar
Zentner, M., & Shiner, R. (Eds.) (2012). Handbook of temperament. New York: Guilford Press.Google Scholar
Zuckerman, M., Kuhlman, D. M., & Camac, C. (1988). What lies beyond E and N? Factor analyses of scales believed to measure basic dimensions of personality. Journal of Personality and Social Psychology, 54, 96107.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×