Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T05:03:36.119Z Has data issue: false hasContentIssue false

4 - Neurobiology of Prosociality

Investigating the Link between Empathy and Prosocial Behavior in the Brain

from Part I - Development of Prosociality

Published online by Cambridge University Press:  25 May 2023

Tina Malti
Affiliation:
University of Toronto
Maayan Davidov
Affiliation:
The Hebrew University of Jerusalem
Get access

Summary

A neurobiological perspective can inform us about the proximate mechanisms of prosocial behavior. Brain regions involved in empathic processing have been implicated in prosocial behaviors. However, prosocial behavior is dependent on regions beyond those involved in empathy. We outline recent meta-analyses that have converged on the finding that regions implicated in reward processing also play key roles in prosocial behaviors as do ventromedial and dorsolateral regions of the prefrontal cortex. We describe instances in which empathic processing is affected – in psychiatric conditions or following psychopharmacological interventions – and what consequences this can have for the neural correlates of prosocial behavior. We emphasize the need to have clear definitions of concepts like “empathy” and “prosocial behavior,” as these will ultimately inform the behavioral tasks used to measure the neural underpinnings of these phenomena. Finally, we discuss how advancements in neuroscientific techniques could further our understanding of the neurocognitive basis of prosocial behavior.

Type
Chapter
Information
The Cambridge Handbook of Prosociality
Development, Mechanisms, Promotion
, pp. 61 - 84
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcalá-López, D., Smallwood, J., Jefferies, E., Van Overwalle, F., Vogeley, K., Mars, R. B., Turetsky, B. I., Laird, A. R., Fox, P. T., Eickhoff, S. B., & Bzdok, D. (2018). Computing the social brain connectome across systems and states. Cerebral Cortex, 28(7), 22072232. https://doi.org/10.1093/cercor/bhx121Google Scholar
Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268277. https://doi.org/10.1038/nrn1884Google Scholar
Andraka, K., Kondrakiewicz, K., Rojek-Sito, K., Ziegart-Sadowska, K., Meyza, K., Nikolaev, T., Hamed, A., Kursa, M., Wójcik, M., Danielewski, K., Wiatrowska, M., Kublik, E., Bekisz, M., Lebitko, T., Duque, D., Jaworski, T., Madej, H., Konopka, W., Boguszewski, P. M., & Knapska, E. (2021). Distinct circuits in rat central amygdala for defensive behaviors evoked by socially signaled imminent versus remote danger. Current Biology, 31(11), 23472358.e6. https://doi.org/10.1016/j.cub.2021.03.047Google Scholar
Ashar, Y. K., Andrews-Hanna, J. R., Dimidjian, S., & Wager, T. D. (2017). Empathic care and distress: Predictive brain markers and dissociable brain systems. Neuron, 94(6), 12631273. https://doi.org/10.1016/j.neuron.2017.05.014Google Scholar
Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., & Plumb, I. (2001). The “Reading the Mind in the Eyes” Test Revised Version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. Journal of Child Psychology and Psychiatry, 42(2), 241251. https://doi.org/10.1111/1469-7610.00715Google Scholar
Batson, C. D. (2009). These things called empathy: Eight related but distinct phenomena. In Decety, J. & Ickes, E. (Eds.), The social neuroscience of empathy (pp. 315). MIT Press. https://doi.org/10.7551/mitpress/9780262012973.003.0002CrossRefGoogle Scholar
Bellucci, G., Camilleri, J. A., Eickhoff, S. B., & Krueger, F. (2020). Neural signatures of prosocial behaviors. Neuroscience & Biobehavioral Reviews, 118, 186195. https://doi.org/10.1016/j.neubiorev.2020.07.006Google Scholar
Bird, G., Silani, G., Brindley, R., White, S., Frith, U., & Singer, T. (2010). Empathic brain responses in insula are modulated by levels of alexithymia but not autism. Brain, 133(5), 15151525. https://doi.org/10.1093/brain/awq060Google Scholar
Böckler, A., Tusche, A., & Singer, T. (2016). The structure of human prosociality: Differentiating altruistically motivated, norm motivated, strategically motivated, and self-reported prosocial behavior. Social Psychological and Personality Science, 7(6), 530541. https://doi.org/10.1177/1948550616639650Google Scholar
Chakroff, A., & Young, L. (2014). The prosocial brain: Perceiving others in need and acting on it. In Padilla-Walker, L. M. & Carlo, G. (Eds.), Prosocial development: A multidimensional approach (pp. 90111). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199964772.003.0005Google Scholar
Chick, C. F., Rounds, J. D., Hill, A. B., & Anderson, A. K. (2020). My body, your emotions: Viscerosomatic modulation of facial expression discrimination. Biological Psychology, 149, 107779. https://doi.org/10.1016/j.biopsycho.2019.107779CrossRefGoogle ScholarPubMed
Christov-Moore, L., Sugiyama, T., Grigaityte, K., & Iacoboni, M. (2017). Increasing generosity by disrupting prefrontal cortex. Social Neuroscience, 12(2), 174181. https://doi.org/10.1080/17470919.2016.1154105Google Scholar
Corradi-Dell’Acqua, C., Hofstetter, C., & Vuilleumier, P. (2011). Felt and seen pain evoke the same local patterns of cortical activity in insular and cingulate cortex. Journal of Neuroscience, 31(49), 1799618006. https://doi.org/10.1523/JNEUROSCI.2686-11.2011Google Scholar
Craig, A. D. B. (2009). How do you feel – Now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 5970. https://doi.org/10.1038/nrn2555CrossRefGoogle Scholar
Cutler, J., & Campbell-Meiklejohn, D. (2019). A comparative fMRI meta-analysis of altruistic and strategic decisions to give. NeuroImage, 184, 227241. https://doi.org/10.1016/j.neuroimage.2018.09.009Google Scholar
Cutler, J., Nitschke, J. P., Lamm, C., & Lockwood, P. L. (2021). Older adults across the globe exhibit increased prosocial behavior but also greater in-group preferences. Nature Aging, 1(10), 880888. https://doi.org/10.1038/s43587-021-00118-3CrossRefGoogle ScholarPubMed
Decety, J., & Holvoet, C. (2021). The emergence of empathy: A developmental neuroscience perspective. Developmental Review, 62, 100999. https://doi.org/10.1016/j.dr.2021.100999Google Scholar
Decety, J., & Michalska, K. J. (2010). Neurodevelopmental changes in the circuits underlying empathy and sympathy from childhood to adulthood. Developmental Science, 13(6), 886899. https://doi.org/10.1111/j.1467-7687.2009.00940.xGoogle Scholar
Do, K. T., McCormick, E. M., & Telzer, E. H. (2019). The neural development of prosocial behavior from childhood to adolescence. Social Cognitive and Affective Neuroscience, 14(2), 129139. https://doi.org/10.1093/scan/nsy117Google Scholar
Duell, N., van Hoorn, J., McCormick, E. M., Prinstein, M. J., & Telzer, E. H. (2021). Hormonal and neural correlates of prosocial conformity in adolescents. Developmental Cognitive Neuroscience, 48, 100936. https://doi.org/10.1016/j.dcn.2021.100936Google Scholar
Eickhoff, S. B., Constable, R. T., & Yeo, B. T. T. (2018). Topographic organization of the cerebral cortex and brain cartography. Segmenting the Brain, 170, 332347. https://doi.org/10.1016/j.neuroimage.2017.02.018Google Scholar
Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 29072926. https://doi.org/10.1002/hbm.20718Google Scholar
FeldmanHall, O., Dalgleish, T., & Mobbs, D. (2013). Alexithymia decreases altruism in real social decisions. Cortex, 49(3), 899904. https://doi.org/10.1016/j.cortex.2012.10.015Google Scholar
Feng, C., Luo, Y.-J., & Krueger, F. (2015). Neural signatures of fairness‐related normative decision making in the ultimatum game: A coordinate‐based meta‐analysis. Human Brain Mapping, 36, 591602. https://doi.org/10.1002/hbm.22649Google Scholar
Fontaine, N. M. G., McCrory, E. J. P., Boivin, M., Moffitt, T. E., & Viding, E. (2011). Predictors and outcomes of joint trajectories of callous–unemotional traits and conduct problems in childhood. Journal of Abnormal Psychology, 120(3), 730742. https://doi.org/10.1037/a0022620Google Scholar
Forbes, P. A. G., Aydogan, G., Braunstein, J. T., Todorova, B., Wagner, I. C., Lockwood, P. L., Apps, M. A. J., Ruff, C. C., & Lamm, C. (2022, October 13). Acute stress reduces effortful prosocial behaviour. https://doi.org/10.31234/osf.io/mgn32Google Scholar
Frey, A.-L., & McCabe, C. (2020). Impaired social learning predicts reduced real-life motivation in individuals with depression: A computational fMRI study. Journal of Affective Disorders, 263, 698706. https://doi.org/10.1016/j.jad.2019.11.049Google Scholar
Fujino, J., Yamasaki, N., Miyata, J., Kawada, R., Sasaki, H., Matsukawa, N., Takemura, A., Ono, M., Tei, S., Takahashi, H., Aso, T., Fukuyama, H., & Murai, T. (2014). Altered brain response to others׳ pain in major depressive disorder. Journal of Affective Disorders, 165, 170175. https://doi.org/10.1016/j.jad.2014.04.058Google Scholar
Gilam, G., Abend, R., Gurevitch, G., Erdman, A., Baker, H., Ben-Zion, Z., & Hendler, T. (2018). Attenuating anger and aggression with neuromodulation of the vmPFC: A simultaneous tDCS-fMRI study. Cortex, 109, 156170. https://doi.org/10.1016/j.cortex.2018.09.010CrossRefGoogle ScholarPubMed
Guthridge, M., & Giummarra, M. J. (2021). The taxonomy of empathy: A meta-definition and the nine dimensions of the empathic system. Journal of Humanistic Psychology. https://doi.org/10.1177/00221678211018015Google Scholar
Harbaugh, W. T., Mayr, U., & Burghart, D. R. (2007). Neural responses to taxation and voluntary giving reveal motives for charitable donations. Science, 316(5831), 16221625. https://doi.org/10.1126/science.1140738Google Scholar
Hartmann, H., Forbes, P., Rütgen, M., & Lamm, C. (2022, January 24). Placebo analgesia reduces costly prosocial helping to lower another’s pain. https://doi.org/10.31234/osf.io/drfhtGoogle Scholar
Hartmann, H., Rütgen, M., Riva, F., & Lamm, C. (2021). Another’s pain in my brain: No evidence that placebo analgesia affects the sensory-discriminative component in empathy for pain. NeuroImage, 224, 117397. https://doi.org/10.1016/j.neuroimage.2020.117397Google Scholar
Hein, G., Lamm, C., Brodbeck, C., & Singer, T. (2011). Skin conductance response to the pain of others predicts later costly helping. PLoS ONE, 6(8), e22759. https://doi.org/10.1371/journal.pone.0022759Google Scholar
Hein, G., Morishima, Y., Leiberg, S., Sul, S., & Fehr, E. (2016). The brain’s functional network architecture reveals human motives. Science, 351(6277), 10741078. https://doi.org/10.1126/science.aac7992CrossRefGoogle ScholarPubMed
Hofelich Mohr, A., Kross, E., & Preston, S. D. (2016). Devil in the details: Effects of depression on the prosocial response depend on timing and similarity. Adaptive Human Behavior and Physiology, 2(4), 281297. https://doi.org/10.1007/s40750-016-0044-xGoogle Scholar
Hoffmann, F., Grosse Wiesmann, C., Singer, T., & Steinbeis, N. (2021). Development of functional network architecture explains changes in children’s altruistically motivated helping. Developmental Science, e13167. https://doi.org/10.1111/desc.13167CrossRefGoogle Scholar
Holmgren, R. A., Eisenberg, N., & Fabes, R. A. (1998). The relations of children’s situational empathy-related emotions to dispositional prosocial behaviour. International Journal of Behavioral Development, 22(1), 169193. https://doi.org/10.1080/016502598384568Google Scholar
Jauniaux, J., Khatibi, A., Rainville, P., & Jackson, P. L. (2019). A meta-analysis of neuroimaging studies on pain empathy: Investigating the role of visual information and observers’ perspective. Social Cognitive and Affective Neuroscience, 14(8), 789813. https://doi.org/10.1093/scan/nsz055CrossRefGoogle ScholarPubMed
Kanel, D., Al-Wasity, S., Stefanov, K., & Pollick, F. E. (2019). Empathy to emotional voices and the use of real-time fMRI to enhance activation of the anterior insula. NeuroImage, 198, 5362. https://doi.org/10.1016/j.neuroimage.2019.05.021Google Scholar
Klimecki, O. M., Leiberg, S., Lamm, C., & Singer, T. (2013). Functional neural plasticity and associated changes in positive affect after compassion training. Cerebral Cortex, 23(7), 15521561. https://doi.org/10.1093/cercor/bhs142Google Scholar
Knutson, B., & Cooper, J. C. (2005). Functional magnetic resonance imaging of reward prediction. Current Opinion in Neurology, 18(4), 411417. https://doi.org/10.1097/01.wco.0000173463.24758.f6Google Scholar
Krishnan, A., Woo, C.-W., Chang, L. J., Ruzic, L., Gu, X., López-Solà, M., Jackson, P. L., Pujol, J., Fan, J., & Wager, T. D. (2016). Somatic and vicarious pain are represented by dissociable multivariate brain patterns. ELife, 5, e15166. https://doi.org/10.7554/eLife.15166Google Scholar
Lamm, C., Bukowski, H., & Silani, G. (2016). From shared to distinct self–other representations in empathy: Evidence from neurotypical function and socio-cognitive disorders. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1686), 20150083. https://doi.org/10.1098/rstb.2015.0083Google Scholar
Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54(3), 24922502. https://doi.org/10.1016/j.neuroimage.2010.10.014Google Scholar
Lamm, C., & Majdandžić, J. (2015). The role of shared neural activations, mirror neurons, and morality in empathy – A critical comment. Neuroscience Research, 90, 1524. https://doi.org/10.1016/j.neures.2014.10.008Google Scholar
Lamm, C., Rütgen, M., & Wagner, I. C. (2019). Imaging empathy and prosocial emotions. Neuroscience Letters, 693, 4953. https://doi.org/10.1016/j.neulet.2017.06.054Google Scholar
Lamm, C., Silani, G., & Singer, T. (2015). Distinct neural networks underlying empathy for pleasant and unpleasant touch. Cortex, 70, 7989. https://doi.org/10.1016/j.cortex.2015.01.021Google Scholar
Lamm, C., & Singer, T. (2010). The role of anterior insular cortex in social emotions. Brain Structure & Function, 214(5–6), 579591. https://doi.org/10.1007/s00429-010-0251-3Google Scholar
Lengersdorff, L. L., Wagner, I. C., Lockwood, P. L., & Lamm, C. (2020). When implicit prosociality trumps selfishness: The neural valuation system underpins more optimal choices when learning to avoid harm to others than to oneself. Journal of Neuroscience, 40(38), 72867299. https://doi.org/10.1523/JNEUROSCI.0842-20.2020Google Scholar
Lockwood, P. L., Abdurahman, A., Gabay, A. S., Drew, D., Tamm, M., Husain, M., & Apps, M. A. J. (2021). Aging increases prosocial motivation for effort. Psychological Science, 32(5), 668681. https://doi.org/10.1177/0956797620975781Google Scholar
Lockwood, P. L., Apps, M. A. J., Valton, V., Viding, E., & Roiser, J. P. (2016). Neurocomputational mechanisms of prosocial learning and links to empathy. Proceedings of the National Academy of Sciences, 113(35), 97639768. https://doi.org/10.1073/pnas.1603198113Google Scholar
Lockwood, P. L., Sebastian, C. L., McCrory, E. J., Hyde, Z. H., Gu, X., De Brito, S. A., & Viding, E. (2013). Association of callous traits with reduced neural response to others’ pain in children with conduct problems. Current Biology, 23(10), 901905. https://doi.org/10.1016/j.cub.2013.04.018Google Scholar
Lockwood, P. L., Wittmann, M. K., Apps, M. A. J., Klein-Flügge, M. C., Crockett, M. J., Humphreys, G. W., & Rushworth, M. F. S. (2018). Neural mechanisms for learning self and other ownership. Nature Communications, 9(1), 4747. https://doi.org/10.1038/s41467-018-07231-9Google Scholar
Luberto, C. M., Shinday, N., Song, R., Philpotts, L. L., Park, E. R., Fricchione, G. L., & Yeh, G. Y. (2018). A systematic review and meta-analysis of the effects of meditation on empathy, compassion, and prosocial behaviors. Mindfulness, 9(3), 708724. https://doi.org/10.1007/s12671-017-0841-8Google Scholar
Luo, J. (2018). The neural basis of and a common neural circuitry in different types of pro-social behavior. Frontiers in Psychology, 9, 859. https://doi.org/10.3389/fpsyg.2018.00859Google Scholar
Mascaro, J. S., Rilling, J. K., Tenzin Negi, L., & Raison, C. L. (2013). Compassion meditation enhances empathic accuracy and related neural activity. Social Cognitive and Affective Neuroscience, 8(1), 4855. https://doi.org/10.1093/scan/nss095Google Scholar
Michalska, K. J., Zeffiro, T. A., & Decety, J. (2016). Brain response to viewing others being harmed in children with conduct disorder symptoms. Journal of Child Psychology and Psychiatry, 57(4), 510519. https://doi.org/10.1111/jcpp.12474Google Scholar
Mischkowski, D., Crocker, J., & Way, B. M. (2016). From painkiller to empathy killer: Acetaminophen (paracetamol) reduces empathy for pain. Social Cognitive and Affective Neuroscience, 11(9), 13451353. https://doi.org/10.1093/scan/nsw057Google Scholar
Mischkowski, D., Crocker, J., & Way, B. M. (2019). A social analgesic? Acetaminophen (paracetamol) reduces positive empathy. Frontiers in Psychology, 10, 538. https://doi.org/10.3389/fpsyg.2019.00538Google Scholar
Moll, J., Krueger, F., Zahn, R., Pardini, M., de Oliveira-Souza, R., & Grafman, J. (2006). Human fronto–mesolimbic networks guide decisions about charitable donation. Proceedings of the National Academy of Sciences, 103(42), 1562315628. https://doi.org/10.1073/pnas.0604475103Google Scholar
Morelli, S. A., Lieberman, M. D., & Zaki, J. (2015). The emerging study of positive empathy. Social and Personality Psychology Compass, 9(2), 5768. https://doi.org/10.1111/spc3.12157Google Scholar
Morelli, S. A., Sacchet, M. D., & Zaki, J. (2015). Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis. NeuroImage, 112, 244253. https://doi.org/10.1016/j.neuroimage.2014.12.056Google Scholar
Morishima, Y., Schunk, D., Bruhin, A., Ruff, C. C., & Fehr, E. (2012). Linking brain structure and activation in temporoparietal junction to explain the neurobiology of human altruism. Neuron, 75(1), 7379. https://doi.org/10.1016/j.neuron.2012.05.021Google Scholar
Nitschke, J. P., Forbes, P. A., & Lamm, C. (2022). Does stress make us more – or less – prosocial? A systematic review and meta-analysis of the effects of acute stress on prosocial behaviours using economic games. Neuroscience & Biobehavioral Reviews, 142, 104905. https://doi.org/10.1016/j.neubiorev.2022.104905Google Scholar
Nitschke, J. P., Pruessner, J., & Bartz, J. A. (2021). Stress and stress-induced glucocorticoids facilitate empathic accuracy in men, with no effects for women. PsyArXiv, January 15. https://doi.org/10.31234/osf.io/msxarGoogle Scholar
Nummenmaa, L., Manninen, S., Tuominen, L., Hirvonen, J., Kalliokoski, K. K., Nuutila, P., Jääskeläinen, I. P., Hari, R., Dunbar, R. I. M., & Sams, M. (2015). Adult attachment style is associated with cerebral μ‐opioid receptor availability in humans. Human Brain Mapping, 36, 36213628. https://doi.org/10.1002/hbm.22866Google Scholar
Paradiso, E., Gazzola, V., & Keysers, C. (2021). Neural mechanisms necessary for empathy-related phenomena across species. Current Opinion in Neurobiology, 68, 107115. https://doi.org/10.1016/j.conb.2021.02.005Google Scholar
Pärnamets, P., Shuster, A., Reinero, D. A., & Van Bavel, J. J. (2020). A value-based framework for understanding cooperation. Current Directions in Psychological Science, 29(3), 227234. https://doi.org/10.1177/0963721420906200Google Scholar
Pfaff, D., Tabansky, I., & Haubensak, W. (2019). Tinbergen’s challenge for the neuroscience of behavior. Proceedings of the National Academy of Sciences, 116(20), 97049710. https://doi.org/10.1073/pnas.1903589116Google Scholar
Pulcu, E., Zahn, R., Moll, J., Trotter, P. D., Thomas, E. J., Juhasz, G., Deakin, J. F. W., Anderson, I. M., Sahakian, B. J., & Elliott, R. (2014). Enhanced subgenual cingulate response to altruistic decisions in remitted major depressive disorder. NeuroImage: Clinical, 4, 701710. https://doi.org/10.1016/j.nicl.2014.04.010Google Scholar
Quarantelli, E. L. (1954). The nature and conditions of panic. American Journal of Sociology, 60(3), 267275. JSTOR.CrossRefGoogle Scholar
Quesque, F., & Brass, M. (2019). The role of the temporoparietal junction in self-other distinction. Brain Topography, 32(6), 943955. https://doi.org/10.1007/s10548-019-00737-5Google Scholar
Rabut, C., Ferrier, J., Bertolo, A., Osmanski, B., Mousset, X., Pezet, S., Deffieux, T., Lenkei, Z., & Tanter, M. (2020). Pharmaco-fUS: Quantification of pharmacologically-induced dynamic changes in brain perfusion and connectivity by functional ultrasound imaging in awake mice. NeuroImage, 222, 117231. https://doi.org/10.1016/j.neuroimage.2020.117231Google Scholar
Rhoads, S. A., Cutler, J., & Marsh, A. A. (2021). A feature-based network analysis and fMRI meta-analysis reveal three distinct types of prosocial decisions. BioRxiv, 1–66. https://doi.org/10.1101/2020.12.09.415034Google Scholar
Riva, F., Lenger, M., Kronbichler, M., Lamm, C., & Silani, G. (2019, September 26). Age-related changes in human emotional egocentricity: Evidence from multi-level neuroimaging. BioRxiv. https://doi.org/10.1101/784215Google Scholar
Riva, F., Triscoli, C., Lamm, C., Carnaghi, A., & Silani, G. (2016). Emotional egocentricity bias across the life-span. Frontiers in Aging Neuroscience, 8, 74. https://doi.org/10.3389/fnagi.2016.00074CrossRefGoogle ScholarPubMed
Riva, F., Tschernegg, M., Chiesa, P. A., Wagner, I. C., Kronbichler, M., Lamm, C., & Silani, G. (2018). Age-related differences in the neural correlates of empathy for pleasant and unpleasant touch in a female sample. Neurobiology of Aging, 65, 717. https://doi.org/10.1016/j.neurobiolaging.2017.12.028Google Scholar
Rorden, C., & Brett, M. (2000). Stereotaxic display of brain lesions. Behavioural Neurology, 12(4), 191200. https://doi.org/10.1155/2000/421719Google Scholar
Rubia, K., Halari, R., Cubillo, A., Mohammad, A.-M., Brammer, M., & Taylor, E. (2009). Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naïve children with ADHD during a rewarded continuous performance task. Neuropharmacology, 57(7), 640652. https://doi.org/10.1016/j.neuropharm.2009.08.013Google Scholar
Rütgen, M., Pfabigan, D. M., Tik, M., Kraus, C., Pletti, C., Sladky, R., Klöbl, M., Woletz, M., Vanicek, T., Windischberger, C., Lanzenberger, R., & Lamm, C. (2021). Detached empathic experience of others’ pain in remitted states of depression – An fMRI study. NeuroImage: Clinical, 31, 102699. https://doi.org/10.1016/j.nicl.2021.102699Google Scholar
Rütgen, M., Pletti, C., Tik, M., Kraus, C., Pfabigan, D. M., Sladky, R., Klöbl, M., Woletz, M., Vanicek, T., Windischberger, C., Lanzenberger, R., & Lamm, C. (2019). Antidepressant treatment, not depression, leads to reductions in behavioral and neural responses to pain empathy. Translational Psychiatry, 9(1), 164. https://doi.org/10.1038/s41398-019-0496-4CrossRefGoogle Scholar
Rütgen, M., Seidel, E.-M., Pletti, C., Riečanský, I., Gartus, A., Eisenegger, C., & Lamm, C. (2018). Psychopharmacological modulation of event-related potentials suggests that first-hand pain and empathy for pain rely on similar opioidergic processes. Neuropsychologia, 116(Pt A), 514. https://doi.org/10.1016/j.neuropsychologia.2017.04.023Google Scholar
Rütgen, M., Seidel, E.-M., Riečanský, I., & Lamm, C. (2015a). Reduction of empathy for pain by placebo analgesia suggests functional equivalence of empathy and first-hand emotion experience. The Journal of Neuroscience, 35(23), 89388947. https://doi.org/10.1523/JNEUROSCI.3936-14.2015Google Scholar
Rütgen, M., Seidel, E.-M., Silani, G., Riečanský, I., Hummer, A., Windischberger, C., Petrovic, P., & Lamm, C. (2015b). Placebo analgesia and its opioidergic regulation suggest that empathy for pain is grounded in self pain. Proceedings of the National Academy of Sciences, 112(41), E5638E5646. https://doi.org/10.1073/pnas.1511269112Google Scholar
Schreuders, E., Klapwijk, E. T., Will, G.-J., & Güroğlu, B. (2018). Friend versus foe: Neural correlates of prosocial decisions for liked and disliked peers. Cognitive, Affective, & Behavioral Neuroscience, 18(1), 127142. https://doi.org/10.3758/s13415-017-0557-1Google Scholar
Sethi, A., O’Nions, E., McCrory, E., Bird, G., & Viding, E. (2018). An fMRI investigation of empathic processing in boys with conduct problems and varying levels of callous-unemotional traits. NeuroImage: Clinical, 18, 298304. https://doi.org/10.1016/j.nicl.2018.01.027Google Scholar
Shackman, A. J., McMenamin, B. W., Maxwell, J. S., Greischar, L. L., & Davidson, R. J. (2009). Right dorsolateral prefrontal cortical activity and behavioral inhibition. Psychological Science, 20(12), 15001506. https://doi.org/10.1111/j.1467-9280.2009.02476.xGoogle Scholar
Silk, J. B., & House, B. R. (2011). Evolutionary foundations of human prosocial sentiments. Proceedings of the National Academy of Sciences, 108(Supplement 2), 1091010917. https://doi.org/10.1073/pnas.1100305108Google Scholar
Singer, T., & Klimecki, O. M. (2014). Empathy and compassion. Current Biology, 24(18), R875R878. https://doi.org/10.1016/j.cub.2014.06.054Google Scholar
Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 11571162. https://doi.org/10.1126/science.1093535Google Scholar
Smith, Adam. (1759). The theory of moral sentiments. Printed for A. Millar, A. Kincaid and J. Bell.Google Scholar
Soutschek, A., Ruff, C. C., Strombach, T., Kalenscher, T., & Tobler, P. N. (2016). Brain stimulation reveals crucial role of overcoming self-centeredness in self-control. Science Advances, 2(10), e1600992. https://doi.org/10.1126/sciadv.1600992Google Scholar
Strang, S., Gross, J., Schuhmann, T., Riedl, A., Weber, B., & Sack, A. T. (2015). Be nice if you have to – The neurobiological roots of strategic fairness. Social Cognitive and Affective Neuroscience, 10(6), 790796. https://doi.org/10.1093/scan/nsu114Google Scholar
Strombach, T., Weber, B., Hangebrauk, Z., Kenning, P., Karipidis, I. I., Tobler, P. N., & Kalenscher, T. (2015). Social discounting involves modulation of neural value signals by temporoparietal junction. Proceedings of the National Academy of Sciences, 112(5), 16191624. https://doi.org/10.1073/pnas.1414715112Google Scholar
Sul, S., Tobler, P. N., Hein, G., Leiberg, S., Jung, D., Fehr, E., & Kim, H. (2015). Spatial gradient in value representation along the medial prefrontal cortex reflects individual differences in prosociality. Proceedings of the National Academy of Sciences, 112(25), 78517856. https://doi.org/10.1073/pnas.1423895112Google Scholar
Taylor, S. E. (2006). Tend and befriend: Biobehavioral bases of affiliation under stress. Current Directions in Psychological Science, 15(6), 273277. https://doi.org/10.1111/j.1467-8721.2006.00451.xGoogle Scholar
Taylor, S. E., Klein, L. C., Lewis, B. P., Gruenewald, T. L., Gurung, R. A. R., & Updegraff, J. A. (2000). Biobehavioral responses to stress in females: Tend-and-befriend, not fight-or-flight. Psychological Review, 107(3), 411429. https://doi.org/10.1037/0033-295X.107.3.411Google Scholar
Tomova, L., Majdandžić, J., Hummer, A., Windischberger, C., Heinrichs, M., & Lamm, C. (2017). Increased neural responses to empathy for pain might explain how acute stress increases prosociality. Social Cognitive and Affective Neuroscience, 12(3), 401408. https://doi.org/10.1093/scan/nsw146Google Scholar
Van de Groep, S., Zanolie, K., & Crone, E. A. (2020). Familiarity and audience effects on giving: A functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 32(8), 15771589. https://doi.org/10.1162/jocn_a_01568CrossRefGoogle ScholarPubMed
Van Overwalle, F. (2009). Social cognition and the brain: A meta‐analysis. Human Brain Mapping, 30, 829858. https://doi.org/10.1002/hbm.20547Google Scholar
Veroude, K., von Rhein, D., Chauvin, R. J. M., van Dongen, E. V., Mennes, M. J. J., Franke, B., Heslenfeld, D. J., Oosterlaan, J., Hartman, C. A., Hoekstra, P. J., Glennon, J. C., & Buitelaar, J. K. (2016). The link between callous-unemotional traits and neural mechanisms of reward processing: An fMRI study. Psychiatry Research: Neuroimaging, 255, 7580. https://doi.org/10.1016/j.pscychresns.2016.08.005Google Scholar
Viding, E., Fontaine, N. M. G., Oliver, B. R., & Plomin, R. (2009). Negative parental discipline, conduct problems and callous–unemotional traits: Monozygotic twin differences study. The British Journal of Psychiatry, 195(5), 414419. https://doi.org/10.1192/bjp.bp.108.061192Google Scholar
von Dawans, B., Strojny, J., & Domes, G. (2021). The effects of acute stress and stress hormones on social cognition and behavior: Current state of research and future directions. Neuroscience & Biobehavioral Reviews, 121, 7588. https://doi.org/10.1016/j.neubiorev.2020.11.026Google Scholar
Wager, T. D., Lindquist, M. A., Nichols, T. E., Kober, H., & Van Snellenberg, J. X. (2009). Evaluating the consistency and specificity of neuroimaging data using meta-analysis. NeuroImage, 45(1, Supplement 1), S210S221. https://doi.org/10.1016/j.neuroimage.2008.10.061Google Scholar
Wagner, I. C., Rütgen, M., & Lamm, C. (2020). Pattern similarity and connectivity of hippocampal-neocortical regions support empathy for pain. Social Cognitive and Affective Neuroscience, 15(3), 273284. https://doi.org/10.1093/scan/nsaa045Google Scholar
Waytz, A., Zaki, J., & Mitchell, J. P. (2012). Response of dorsomedial prefrontal cortex predicts altruistic behavior. The Journal of Neuroscience, 32(22), 76467650. https://doi.org/10.1523/JNEUROSCI.6193-11.2012Google Scholar
Weng, H. Y., Fox, A. S., Shackman, A. J., Stodola, D. E., Caldwell, J. Z. K., Olson, M. C., Rogers, G. M., & Davidson, R. J. (2013). Compassion training alters altruism and neural responses to suffering. Psychological Science, 24(7), 11711180. https://doi.org/10.1177/0956797612469537Google Scholar
Wicker, B., Keysers, C., Plailly, J., Royet, J.-P., Gallese, V., & Rizzolatti, G. (2003). Both of us disgusted in my insula: The common neural basis of seeing and feeling disgust. Neuron, 40, 655664. https://doi.org/10.1016/S0896-6273(03)00679-2Google Scholar
Wiech, K., Kahane, G., Shackel, N., Farias, M., Savulescu, J., & Tracey, I. (2013). Cold or calculating? Reduced activity in the subgenual cingulate cortex reflects decreased emotional aversion to harming in counterintuitive utilitarian judgment. Cognition, 126(3), 364372. https://doi.org/10.1016/j.cognition.2012.11.002Google Scholar
Yamagishi, T., Takagishi, H., Fermin, A. de S. R., Kanai, R., Li, Y., & Matsumoto, Y. (2016). Cortical thickness of the dorsolateral prefrontal cortex predicts strategic choices in economic games. Proceedings of the National Academy of Sciences, 113(20), 55825587. https://doi.org/10.1073/pnas.1523940113Google Scholar
Yoder, K. J., Lahey, B. B., & Decety, J. (2016). Callous traits in children with and without conduct problems predict reduced connectivity when viewing harm to others. Scientific Reports, 6(1), 20216. https://doi.org/10.1038/srep20216Google Scholar
Yuan, B., Tolomeo, S., Yang, C., Wang, Y., & Yu, R. (2021). The tDCS effect on prosocial behavior: A meta-analytic review. Social Cognitive and Affective Neuroscience, nsab067. https://doi.org/10.1093/scan/nsab067Google Scholar
Zahn, R., de Oliveira-Souza, R., & Moll, J. (2020). Moral motivation and the basal forebrain. Neuroscience & Biobehavioral Reviews, 108, 207217. https://doi.org/10.1016/j.neubiorev.2019.10.022Google Scholar
Zahn, R., Moll, J., Paiva, M., Garrido, G., Krueger, F., Huey, E. D., & Grafman, J. (2009). The neural basis of human social values: Evidence from functional MRI. Cerebral Cortex, 19(2), 276283. https://doi.org/10.1093/cercor/bhn080Google Scholar
Zhao, Y., Rütgen, M., Zhang, L., & Lamm, C. (2021). Pharmacological fMRI provides evidence for opioidergic modulation of discrimination of facial pain expressions. Psychophysiology, 58(2), e13717. https://doi.org/10.1111/psyp.13717Google Scholar
Zhou, F., Li, J., Zhao, W., Xu, L., Zheng, X., Fu, M., Yao, S., Kendrick, K. M., Wager, T. D., & Becker, B. (2020). Empathic pain evoked by sensory and emotional-communicative cues share common and process-specific neural representations. ELife, 9, e56929. https://doi.org/10.7554/eLife.56929Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×