Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T11:44:26.786Z Has data issue: false hasContentIssue false

1 - Introduction to Carnivora

Published online by Cambridge University Press:  05 July 2014

Anjali Goswami
Affiliation:
University of Cambridge
Anjali Goswami
Affiliation:
University College London
Anthony Friscia
Affiliation:
University of California, Los Angeles
Get access

Summary

Why Carnivora?

The placental mammal order Carnivora encompasses many charismatic taxa, from dogs and cats to bears, otters, hyaenas, and seals. Perhaps more than any other mammalian clade, carnivorans are a source of fascination for humans, partially due to our intimate observation of the domesticated species that reside in many of our own homes. Beyond our quirky cats and loyal dogs, however, carnivorans have long and often been the subject of a variety of studies and documentaries of natural history concerning behaviour, ecology, and evolution, and for many good reasons. With over 260 living species, Carnivora is one of the most species-rich clades of mammals. It should be noted that the term ‘carnivoran’ is a phylogenetic classification, in contrast to ‘carnivore’, an ecological classification describing any meat-eater.

Evolutionarily, Carnivora is divided into two major branches (Flynn et al., this volume, Chapter 2, Figure 2.2): Feliformia (including cats, linsangs, civets, mongooses, fossas, falanoucs, and hyaenas; Figure 1.1) and Caniformia (encompassing dogs, bears, seals, sea lions, walruses, the red panda, raccoons, skunks, weasels, badgers, otters, and wolverines; Figure 1.2) (Wozencraft, 2005; Myers et al., 2008). As that list suggests, this taxonomic diversity is well matched by their ecological breadth. While the name Carnivora usually conjures up images of tigers and wolves, carnivorans range in diet from pure carnivores to species that specialise on fruit, leaves, and insects, as well as the full spectrum of mixed diets; carnivorans are represented by omnivorous bears, frugivorous raccoons, and even insectivorous hyaenas. Even better for students of evolution, many carnivoran families have given rise to multiple dif ferent ecomorphs.

Type
Chapter
Information
Carnivoran Evolution
New Views on Phylogeny, Form and Function
, pp. 1 - 24
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, P. J. and Berta, A. (2002). Evolution of prey capture strategies and diet in the pinnipedimorpha (mammalia, carnivora). Oryctos, 4, 83–107.Google Scholar
Andersson, K. and Werdelin, L. (2003). The evolution of cursorial carnivores in the Tertiary: implications of elbow-joint morphology. Proceedings of the Royal Society of London, B, 270, s163–65.CrossRefGoogle ScholarPubMed
Argot, C. (2004). Evolution of South American mammalian predators (Borhyaenoidea): anatomical and palaeobiological implications. Zoological Journal of the Linnean Society, 140, 487–521.CrossRefGoogle Scholar
Berta, A. (1981). The Plio-Pleistocene hyaena Chasmaporthetes ossifragus from Florida. Journal of Vertebrate Paleontology, 1, 341–56.CrossRefGoogle Scholar
Berta, A., Ray, C. E. and Wyss, A. R. (1989). Skeleton of the oldest known pinniped, Enaliarctos mealsi. Science, 244, 60–62.CrossRefGoogle ScholarPubMed
Berta, A., Sumich, J. L. and Kovacs, K. (2006). Marine Mammals: Evolutionary Biology, 2nd ed. Amsterdam: Elsevier.Google Scholar
Bryant, H. N. (1991). Phylogenetic relationships and systematics of the Nimravidae (Carnivora). Journal of Mammalogy, 72, 56–78.CrossRefGoogle Scholar
Davis, C. S., Delisle, I., Stirling, I., Sinif f, D. B. and Strobeck, C. (2004). A phylogeny of the extant Phocidae inferred from complete mitochondrial DNA coding regions. Molecular Phylogenetics and Evolution, 33, 363–77.CrossRefGoogle ScholarPubMed
Deméré, T. A., Berta, A. and Adam, P. J. (2003). Pinnipedimorph evolutionary biogeography. Bulletin of the American Museum of Natural History, 279, 32–76.2.0.CO;2>CrossRefGoogle Scholar
Dragoo, J. W. and Honeycutt, R. L. (1997). Systematics of mustelid-like carnivores. Journal of Mammalogy, 78, 426–43.CrossRefGoogle Scholar
Finarelli, J. A. (2007). Mechanisms behind active trends in body size evolution in the Canidae (Carnivora: Mammalia). American Naturalist, 170, 876–85.CrossRefGoogle Scholar
Finarelli, J. A. (2008). A total evidence phylogeny of the Arctoidea (Carnivora: Mammalia): relationships among basal taxa. Journal of Mammalian Evolution, 15, 231–54.CrossRefGoogle Scholar
Finarelli, J. A. and Flynn, J. J. (2006). Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the ef fects of incorporating data from the fossil record. Systematic Biology, 55, 301–13.CrossRefGoogle Scholar
Flynn, J. J. and Nedbal, M. A. (1998). Phylogeny of the Carnivora (Mammalia): congruence versus incompatability among multiple data sets. Molecular Phylogenetics and Evolution, 9, 414–26.CrossRefGoogle Scholar
Flynn, J. J. and Wesley-Hunt, G. D. (2005). Carnivora. In The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades, ed. Archibald, D. and Rose, K.. Baltimore, MD: Johns Hopkins University Press, pp. 175–98.Google Scholar
Flynn, J. J., Nedbal, M. A., Dragoo, J. W. and Honeycutt, R. L. (2000). Whence the red panda?Molecular Phylogenetics and Evolution, 17, 190–99.CrossRefGoogle ScholarPubMed
Flynn, J. J., Finarelli, J. A., Zehr, S., Hsu, J. and Nedbal, M. A. (2005). Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Systematic Biology, 54, 317–37.CrossRefGoogle ScholarPubMed
Fox, R. C. and Youzwyshyn, G. P. (1994). New primitive Carnivorans (Mammalia) from the Paleocene of Western Canada, and their bearing on relationships of the order. Journal of Vertebrate Paleontology, 14, 382–404.CrossRefGoogle Scholar
Holliday, J. A. and Steppan, S. J. (2004). Evolution of hypercarnivory: the ef fect of specialization on morphological and taxonomic diversity. Palaeobiology, 30, 108–28.2.0.CO;2>CrossRefGoogle Scholar
Hunt, R. M. (1987). Evolution of Aelurioidea Carnivora: significance of the ventral promontorial process of the petrosal and the origin of basicranial patterns in the living families. American Museum Novitates, 2930, 1–32.Google Scholar
Hunt, R. M. (1996). Amphicyonidae. In The Terrestrial Eocene–Oligocene Transition in North America, ed. Prothero, D. R. and Emry, R. J.. Cambridge: Cambridge University Press, pp. 476–85.CrossRefGoogle Scholar
Hunt, R. M. (1998). Ursidae. In Evolution of Tertiary Mammals of North America, ed. Janis, C. M., Scott, K. M. and Jacobs, L.. Cambridge: Cambridge University Press, pp. 174–95.Google Scholar
Koepfli, K.-P., Jenks, S. M., Eizirik, E., Zahirpour, T., Van Valkenburgh, B. and Wayne, R. K. (2006). Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix. Molecular Phylogenetics and Evolution, 38, 603–20.CrossRefGoogle ScholarPubMed
Koepfli, K.-P., Deere, K. A., Slater, G. J., et al. (2008). Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biology, 6, 10.CrossRefGoogle ScholarPubMed
Krause, J., Unger, T., Nocon, A., et al. (2008). Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene–Pliocene boundary. BMC Evolutionary Biology, 8, 220.CrossRefGoogle ScholarPubMed
Lucas, P. W. (1979). The dental–dietary adaptations of mammals. Neues Jahrbuch fur Geologie und Palaeontologie, Monatshefte, 8, 486–512.Google Scholar
Marshall, L. G., Webb, S. G., Sepkoski, J. J. and Raup, D. M. (1982). Mammalian evolution and the great American biotic interchange. Science, 215, 1351–57.CrossRefGoogle Scholar
McKenna, M. C. and Bell, S. K. (1997). Classification of Mammals above the Species Level. New York: Columbia University Press.Google Scholar
Morlo, M., Peigné, S. and Nagel, D. (2004). A new species of Prosansansosmilus: implications for the systematic relationships of the family Barbourofelidae new rank (Carnivora, Mammalia). Zoological Journal of the Linnean Society, 140, 43–61.CrossRefGoogle Scholar
Munthe, K. (1998). Canidae. In Evolution of Tertiary Mammals of North America: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals, ed. Janis, C. M., Jacobs, L. and Scott, K. M.. Cambridge: Cambridge University Press, pp. 124–43.Google Scholar
Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A. and O'Brien, S. J. (2001). Molecular phylogenetics and the origins of placental mammals. Nature, 409, 614–18.CrossRefGoogle ScholarPubMed
Murphy, W. J., Pringle, T. H., Crider, T. A., Springer, M. S. and Miller, W. (2007). Using genomic data to unravel the root of the placental mammal phylogeny. Genome Research, 17, 413–21.CrossRefGoogle ScholarPubMed
Myers, P., Espinosa, R., Parr, C. S., Jones, T., Hammond, G. S. and Dewey, T. A. (2008). The animal diversity web ().
Peigné, S. (2003). Systematic review of European Nimravinae (Mammalia, Carnivora, Nimravidae) and the phylogenetic relationships of Palaeogene Nimravidae. Zoologica Scripta, 32, 199–229.CrossRefGoogle Scholar
Polly, P. D., Wesley-Hunt, G. D., Heinrich, R. E., Davis, G. and Houde, P. (2006). Earliest know carnivoran auditory bulla and support for a recent origin of crown-group carnivora (Eutheria, Mammalia). Palaeontology, 49, 1019–27.CrossRefGoogle Scholar
Rasmussen, D. T., Tilden, C. D. and Simons, E. L. (1989). New specimens of the giant creodont Megistotherium (Hyaenodontidae) from Moghara, Egypt. Journal of Mammalogy, 70, 442–47.CrossRefGoogle Scholar
Riggs, E. S. (1934). A new marsupial saber-tooth from the pliocene of Argentina and its relationships to other South American predaceous marsupials. Transactions of the American Philosophical Society, 24, 1–32.CrossRefGoogle Scholar
Rybczynski, N., Dawson, M. R. and Tedford, R. H. (2009). A semi-aquatic mammalian carnivore from the Miocene epoch and origin of Pinnipedia. Nature, 458, 1021–24.CrossRefGoogle ScholarPubMed
Sears, K. E., Goswami, A., Flynn, J. J. and Niswander, L. (2007). The correlated evolution of runx2 tandem repeats and facial length in carnivora. Evolution and Development, 9, 555–65.CrossRefGoogle ScholarPubMed
Van Valkenburgh, B. (1985). Locomotor diversity within past and present guilds of large predatory mammals. Palaeobiology, 11, 406–28.CrossRefGoogle Scholar
Van Valkenburgh, B. (1989). Carnivore dental adaptations and diet: a study of trophic diversity within guilds. In Carnivore Behavior, Ecology, and Evolution, ed. J. L. Gittleman. Ithaca, NY: Comstock Publishing Associates, pp. 410–36.CrossRefGoogle Scholar
Van Valkenburgh, B. (1999). Major patterns in the history of carnivorous mammals. Annual Review of Earth and Planetary Science, 27, 463–93.CrossRefGoogle Scholar
Van Valkenburgh, B. (2007). Deja vu: the evolution of feeding morphologies in the Carnivora. Integrative and Comparative Biology, 47, 147–63.CrossRefGoogle ScholarPubMed
Van Valkenburgh, B., Wang, X. M. and Damuth, J. (2004). Cope's rule, hypercarnivory, and extinction in North American canids. Science, 306, 101–04.CrossRefGoogle ScholarPubMed
Wang, X. M. (1994). Phylogenetic systematics of the Hesperocyoninae (Carnivora: Canidae). Bulletin of the American Museum of Natural History, 221, 1–207.Google Scholar
Wang, X. M., Tedford, R. H. and Taylor, B. E. (1999). Phylogenetic systematics of the Borophaginae (Carnivora: Canidae). Bulletin of the American Museum of Natural History, 243, 1–391.Google Scholar
Wayne, R. K. (1986). Cranial morphology of domestic and wild canids: the influence of development on morphological change. Evolution, 40, 243–61.CrossRefGoogle ScholarPubMed
Wayne, R. K., Van Valkenburgh, B. and O'Brien, S. J. (1991). Molecular distance and divergence time in carnivores and primates. Molecular Biology and Evolution, 8, 297–319.Google ScholarPubMed
Werdelin, L. (1996a). Carnivoran ecomorphology: a phylogenetic perspective. In Carnivore Behavior, Ecology, and Evolution, ed. Gittleman, J. L.. Ithaca, NY: Cornell University Press, pp. 582–624.Google Scholar
Werdelin, L. (1996b). Community-wide character displacement in Miocene hyaenas. Lethaia, 29, 97–106.CrossRefGoogle Scholar
Werdelin, L. and Solounias, N. (1991). The Hyaenidae: taxonomy, systematics, and evolution. Lethaia, 30, 1–105.Google Scholar
Wesley-Hunt, G. D. (2005). The morphological diversification of carnivores in North America. Palaeobiology, 31, 35–55.2.0.CO;2>CrossRefGoogle Scholar
Wesley-Hunt, G. D. and Flynn, J. J. (2005). Phylogeny of the Carnivora: basal relationships among the carnivoramorphans, and assessment of the position of ‘Miacoidea’ relative to crown-clade carnivora. Journal of Systematic Palaeontology, 3, 1–28.CrossRefGoogle Scholar
Wolsan, M. (1993). Phylogeny and classification of early European Mustelida (Mammalia: Carnivora). Acta Theriologica, 38, 345–84.CrossRefGoogle Scholar
Wozencraft, W. C. (2005). Order Carnivora. In Mammal Species of the World – A Taxonomic and Geographic Reference, ed. Wilson, D. E. and Reeder, D. M.. Baltimore, MD: Johns Hopkins University Press, pp. 532–628.Google Scholar
Wyss, A. R. (1988). On ‘retrogression’ in the evolution of the Phocinae and phylogenetic af finities of the monk seals. American Museum Novitates, 2924, 1–38.Google Scholar
Wyss, A. R. and Flynn, J. J. (1993). A phylogenetic analysis and definition of the Carnivora. In Mammal Phylogeny, ed. Szalay, F. S., Novacek, M. J. and McKenna, M. C.. New York: Springer Verlag, pp. 32–52.CrossRefGoogle Scholar
Yoder, A. D., Burns, M. M., Zehr, S., et al. (2003). Single origin of Malagasy Carnivora from an African ancestor. Nature, 421, 734–37.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×