Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-11T06:11:02.682Z Has data issue: false hasContentIssue false

11 - Magnetic resonance angiography of the carotid artery

from Luminal imaging techniques

Published online by Cambridge University Press:  03 December 2009

Martin J. Graves
Affiliation:
University of Cambridge, Cambridge CB2 2QQ, UK
Jean Marie U-King-Im
Affiliation:
University of Cambridge, Cambridge CB2 2QQ, UK
Jonathan H. Gillard
Affiliation:
University of Cambridge, Cambridge CB2 2QQ, UK
Jonathan Gillard
Affiliation:
University of Cambridge
Martin Graves
Affiliation:
University of Cambridge
Thomas Hatsukami
Affiliation:
University of Washington
Chun Yuan
Affiliation:
University of Washington
Get access

Summary

Introduction

Magnetic resonance angiography (MRA) has emerged as one of the leading noninvasive modalities used to image the carotid artery. The core of MRA is its ability to portray blood vessels in a projective format similar to the gold standard, conventional digital subtraction angiography (DSA). The potential advantages of MRA over DSA are, however, numerous and compelling: MRA is less expensive, is the modality that patients tend to prefer, does not require iodinated contrast medium, is an outpatient procedure and more significantly, does not incur the 1–2% risks of neurological complications generally associated with intra-arterial catheterization (Willinsky et al., 2003; U-King-Im et al., 2004a, b). Recent advances in MRA technology, resulting from fast gradients and use of contrast agents has allowed substantial improvement in the quality of MRA examinations, leading to increased confidence of both radiologists and clinicians in the modality. Not surprisingly, this has been followed by the widespread use of MRA in the routine clinical work-up of patients with suspected carotid stenosis. This chapter summarizes the current state of carotid MRA. The first sections deal with the technical aspects of the various types of MRA, including time-of-flight (TOF), phase-contrast and contrast-enhanced MRA and highlight promising future developments as well as potential novel contrast agents. The current utility and efficacy of MRA in clinical practice is then discussed from an evidence-based perspective.

Type
Chapter
Information
Carotid Disease
The Role of Imaging in Diagnosis and Management
, pp. 140 - 157
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez-Linera, J., Benito-Leon, J., Escribano, J., Campollo, J. and Gesto, R. (2003). Prospective evaluation of carotid artery stenosis: elliptic centric contrast-enhanced Magnetic resonance angiography and spiral Computerized tomography angiography compared with digital subtraction angiography. AJNR. American Journal of Neuroradiology, 24, 1012–19.Google ScholarPubMed
Anderson, C. M., Lee, R. E., Levin, D. L., Torre Alonso, S. and Saloner, D. (1994). Measurement of internal carotid artery stenosis from source Magnetic resonance angiograms. Radiology, 193, 219–26.CrossRefGoogle Scholar
Anderson, C. M., Saloner, D., Lee, R. E., et al. (1992). Assessment of carotid artery stenosis by Magnetic resonance angiography: comparison with x-ray angiography and color-coded Doppler ultrasound. AJNR. American Journal of Neuroradiology, 13, 989–1003; discussion 1005–8.Google ScholarPubMed
Anderson, C. M., Saloner, D., Tsuruda, J. S., Shapeero, L. G. and Lee, R. E. (1990). Artifacts in maximum-intensity-projection display of Magnetic resonance angiograms. AJR. American Journal of Roentgenology, 154, 623–9.CrossRefGoogle Scholar
Athanasoulis, C. A. and Plomaritoglou, A. (2000). Preoperative imaging of the carotid bifurcation. Current trends. International Angiology, 19, 1–7.Google ScholarPubMed
Bernstein, M. A. and Ikezaki, Y. (1991). Comparison of phase-difference and complex-difference processing in phase-contrast Magnetic resonance angiography. Journal of Magnetic Resonance Imaging, 1, 725–9.CrossRefGoogle Scholar
Bernstein, M. A., Fain, S. B. and Riederer, S. J. (2001). Effect of windowing and zero-filled reconstruction of Magnetic resonance imaging data on spatial resolution and acquisition strategy. Journal of Magnetic Resonance Imaging, 14, 270–80.CrossRefGoogle ScholarPubMed
Blatter, D. D., Bahr, A. L., Parker, D. L., et al. (1993). Cervical carotid Magnetic resonance angiography with multiple overlapping thin-slab acquisition: comparison with conventional angiography. AJR. American Journal of Roentgenology, 161, 1269–77.CrossRefGoogle ScholarPubMed
Bluemke, D. A., Stillman, A. E., Bis, K. G., et al. (2001). Carotid Magnetic resonance angiography: phase II study of safety and efficacy for MS-325. Radiology, 219, 114–22.CrossRefGoogle ScholarPubMed
Bossuyt, P. M., Reitsma, J. B., Bruns, D. E., et al. (2003). Towards complete and accurate reporting of studies of diagnostic accuracy: the Standards for reporting of diagnostic accuracy initiative. British Medical Journal, 326, 41–4.CrossRefGoogle ScholarPubMed
Brown, D. G. and Riederer, S. J. (1992). Contrast-to-noise ratios in maximum intensity projection images. Magnetic Resonance in Medicine, 23, 130–7.CrossRefGoogle ScholarPubMed
Carr, J. C., Ma, J., Desphande, V., et al. (2002). High-resolution breath-hold contrast-enhanced Magnetic resonance angiography of the entire carotid circulation. AJR. American Journal of Roentgenology, 178, 543–9.CrossRefGoogle ScholarPubMed
Catalano, C., Pediconi, F., Nardis, P., et al. (2004). Magnetic resonance angiography with MultiHance for imaging the supra-aortic vessels. European Radiology, 14 (Suppl. 7), O45–51; discussion O61–2.CrossRefGoogle ScholarPubMed
Cloft, H. J., Murphy, K. J., Prince, M. R. and Brunberg, J. A. (1996). 3D gadolinium-enhanced Magnetic resonance angiography of the carotid arteries. Magnetic Resonance Imaging, 14, 593–600.CrossRefGoogle ScholarPubMed
Cosottini, M., Calabrese, R., Puglioli, M., et al. (2003). Contrast-enhanced three-dimensional Magnetic resonance angiography of neck vessels: does dephasing effect alter diagnostic accuracy?European Radiology, 13, 571–81.Google ScholarPubMed
Davis, S. M. and Donnan, G. A. (2003). Is carotid angiography necessary? Editors disagree. Stroke, 34, 1819.CrossRefGoogle Scholar
Dawson, D. L., Roseberry, C. A. and Fujitani, R. M. (1997). Preoperative testing before carotid endarterectomy: a survey of vascular surgeons' attitudes. Annals of Vascular Surgery, 11, 264–72.CrossRefGoogle ScholarPubMed
Graaf, R. G. and Groen, J. P. (1992). Magnetic resonance angiography with pulsatile flow. Magnetic Resonance Imaging, 10, 25–34.CrossRefGoogle ScholarPubMed
Marco, J. K., Schonfeld, S., Keller, I. and Bernstein, M. A. (2001). Contrast-enhanced carotid Magnetic resonance angiography with commercially available triggering mechanisms and elliptic centric phase encoding. AJR. American Journal of Roentgenology, 176, 221–7.CrossRefGoogle ScholarPubMed
Demarco, J. K., Rutt, B. K. and Clarke, S. E. (2001). Carotid plaque characterization by magnetic resonance imaging: review of the literature. Topics in Magnetic Resonance Imaging, 12, 205–17.CrossRefGoogle ScholarPubMed
Ding, X., Tkach, J. A., Ruggieri, P. R. and Masaryk, T. J. (1994). Sequential three-dimensional time-of-flight Magnetic resonance angiography of the carotid arteries: value of variable excitation and postprocessing in reducing venetian blind artifact. AJR. American Journal of Roentgenology, 163, 683–8.CrossRefGoogle ScholarPubMed
Dixon, W. T., Du, L. N., Faul, D. D., Gado, M. and Rossnick, S. (1986). Projection angiograms of blood labeled by adiabatic fast passage. Magnetic Resonance in Medicine, 3, 454–62.CrossRefGoogle ScholarPubMed
Dumoulin, C. L., Cline, H. E., Souza, S. P., Wagle, W. A. and Walker, M. F. (1989a). Three-dimensional time-of-flight magnetic resonance angiography using spin saturation. Magnetic Resonance in Medicine, 11, 35–46.CrossRefGoogle Scholar
Dumoulin, C. L., Souza, S. P., Walker, M. F. and Wagle, W. (1989b). Three-dimensional phase contrast angiography. Magnetic Resonance in Medicine, 9, 139–49.CrossRefGoogle Scholar
Dumoulin, C. L., Souza, S. P., Darrow, R. D., et al. (1991). Simultaneous acquisition of phase-contrast angiograms and stationary-tissue images with Hadamard encoding of flow-induced phase shifts. Journal of Magnetic Resonance Imaging, 1, 399–404.CrossRefGoogle ScholarPubMed
Fain, S. B., Riederer, S. J., Bernstein, M. A. and Huston, J., 3rd, (1999). Theoretical limits of spatial resolution in elliptical-centric contrast-enhanced 3D-Magnetic resonance angiography. Magnetic Resonance in Medicine, 42, 1106–16.3.0.CO;2-Q>CrossRefGoogle Scholar
Fellner, F. A., Fellner, C., Wutke, R., et al. (2000). Fluoroscopically triggered contrast-enhanced 3D Magnetic resonance Digital subtraction angiography and 3D time-of-flight turbo Magnetic resonance angiography of the carotid arteries: first clinical experiences in correlation with ultrasound, x-ray angiography, and endarterectomy findings. Magnetic Resonance Imaging, 18, 575–85.CrossRefGoogle Scholar
Fellner, C., Lang, W., Janka, R., Wutke, R., Bautz, W. and Fellner, F. A. (2005). Magnetic resonance angiography of the carotid arteries using three different techniques: accuracy compared with intraarterial x-ray angiography and endarterectomy specimens. Journal of Magnetic Resonance Imaging, 21, 424–31.CrossRefGoogle ScholarPubMed
Golay, X., Brown, S. J., Itoh, R. and Melhem, E. R. (2001). Time-resolved contrast-enhanced carotid Magnetic resonance angiography using sensitivity encoding (Sensitivity encoding). AJNR. American Journal of Neuroradiology, 22, 1615–19.Google Scholar
Goyen, M., Herborn, C. U., Vogt, F. M., et al. (2003). Using a 1 M Gd-chelate (gadobutrol) for total-body three-dimensional Magnetic resonance angiography: preliminary experience. Journal of Magnetic Resonance Imaging, 17, 565–71.CrossRefGoogle ScholarPubMed
Grist, T. M., Korosec, F. R., Peters, D. C., et al. (1998). Steady-state and dynamic Magnetic resonance angiography with MS-325: initial experience in humans. Radiology, 207, 539–44.CrossRefGoogle ScholarPubMed
Hausmann, R., Lewin, J. S. and Laub, G. (1991). Phase-contrast Magnetic resonance angiography with reduced acquisition time: new concepts in sequence design. Journal of Magnetic Resonance Imaging, 1, 415–22.CrossRefGoogle ScholarPubMed
Heiserman, J. E., Drayer, B. P., Fram, E. K., et al. (1992). Carotid artery stenosis: clinical efficacy of two-dimensional time-of-flight Magnetic resonance angiography. Radiology, 182, 761–8.CrossRefGoogle Scholar
Heiserman, J. E., Zabramski, J. M., Drayer, B. P. and Keller, P. J. (1996). Clinical significance of the flow gap in carotid magnetic resonance angiography. Journal of Neurosurgery, 85, 384–7.CrossRefGoogle ScholarPubMed
Hennig, J., Scheffler, K., Laubenberger, J. and Strecker, R. (1997). Time-resolved projection angiography after bolus injection of contrast agent. Magnetic Resonance in Medicine, 37, 341–5.CrossRefGoogle ScholarPubMed
Hu, H. H., Madhuranthakam, A. J., Kruger, D. G., Huston, J., 3rd, and Riederer, S. J. (2004). Improved venous suppression and spatial resolution with Sensitivity encoding in elliptical centric 3D contrast-enhanced Magnetic resonance angiography. Magnetic Resonance in Medicine, 52, 761–5.CrossRefGoogle Scholar
Huston, J., 3rd, , Fain, S. B., Wald, J. T., et al. (2001). Carotid artery: elliptic centric contrast-enhanced Magnetic resonance angiography compared with conventional angiography. Radiology, 218, 138–43.Google ScholarPubMed
Huston, J., 3rd, , Lewis, B. D., Wiebers, D. O., et al. (1993). Carotid artery: prospective blinded comparison of two-dimensional time-of-flight Magnetic resonance angiography with conventional angiography and duplex Ultrasound. Radiology, 186, 339–44.CrossRefGoogle Scholar
Ikushima, I., Korogi, Y., Hirai, T. and Takahashi, M. (1997). Variable tip angle slab selection pulses for carotid and cerebral time-of-flight Magnetic resonance angiography. Theory and experimental analysis. Acta Radiologica, 38, 275–80.Google ScholarPubMed
Iseda, T., Nakano, S., Miyahara, D., et al. (2000). Poststenotic signal attenuation on 3D phase-contrast Magnetic resonance angiography: a useful finding in haemodynamically significant carotid artery stenosis. Neuroradiology, 42, 868–73.CrossRefGoogle ScholarPubMed
Isoda, H., Takehara, Y., Isogai, S., et al. (1998). Technique for arterial-phase contrast-enhanced three-dimensional Magnetic resonance angiography of the carotid and vertebral arteries. AJNR. American Journal of Neuroradiology, 19, 1241–4.Google ScholarPubMed
Kallmes, D. F., Omary, R. A., Dix, J. E., Evans, A. J. and Hillman, B. J. (1996). Specificity of Magnetic resonance angiography as a confirmatory test of carotid artery stenosis. American Journal of Neuroradiology, 17, 1501–6.Google ScholarPubMed
Keller, P. J., Drayer, B. P., Fram, E. K., et al. (1989). Magnetic resonance angiography with two-dimensional acquisition and three-dimensional display. Work in progress. Radiology, 173, 527–32.CrossRefGoogle ScholarPubMed
Kim, J. K., Farb, R. I. and Wright, G. A. (1998). Test bolus examination in the carotid artery at dynamic gadolinium-enhanced Magnetic resonance angiography. Radiology, 206, 283–9.CrossRefGoogle Scholar
Korosec, F. R., Frayne, R., Grist, T. M. and Mistretta, C. A. (1996). Time-resolved contrast-enhanced 3D Magnetic resonance angiography. Magnetic Resonance in Medicine, 36, 345–51.CrossRefGoogle Scholar
Korosec, F. R., Turski, P. A., Carroll, T. J., Mistretta, C. A. and Grist, T. M. (1999). Contrast-enhanced Magnetic resonance angiography of the carotid bifurcation. Journal of Magnetic Resonance Imaging, 10, 317–25.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Laub, G. (1990). Displays for Magnetic resonance angiography. Magnetic Resonance in Medicine, 14, 222–9.CrossRefGoogle Scholar
Laub, G. A. and Kaiser, W. A. (1988). Magnetic resonance angiography with gradient motion refocusing. Journal of Computer Assisted Tomography, 12, 377–82.CrossRefGoogle ScholarPubMed
Lev, M. H., Romero, J. M. and Gonzalez, R. G. (2003). Flow voids in time-of-flight Magnetic resonance angiography of carotid artery stenosis? It depends on the TE!AJNR. American Journal of Neuroradiology, 24, 2120.Google ScholarPubMed
Levy, R. A. and Prince, M. R. (1996). Arterial-phase three-dimensional contrast-enhanced Magnetic resonance angiography of the carotid arteries. AJR. American Journal of Roentgenology, 167, 211–15.CrossRefGoogle ScholarPubMed
Li, W., Tutton, S., Vu, A. T., et al. (2005). First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (UltrasoundPIO)-based blood pool agent. Journal of Magnetic Resonance Imaging, 21, 46–52.CrossRefGoogle Scholar
Lin, W., Tkach, J. A., Haacke, E. M. and Masaryk, T. J. (1993). Intracranial Magnetic resonance angiography: application of magnetization transfer contrast and fat saturation to short gradient-echo, velocity-compensated sequences. Radiology, 186, 753–61.CrossRefGoogle ScholarPubMed
Litt, A. W., Eidelman, E. M., Pinto, R. S., et al. (1991). Diagnosis of carotid artery stenosis: comparison of 2DFT time-of-flight Magnetic resonance angiography with contrast angiography in 50 patients. AJNR. American Journal of Neuroradiology, 12, 149–54.Google ScholarPubMed
Little, W. C., Constantinescu, M., Applegate, R. J., et al. (1988). Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease?Circulation, 78, 1157–66.CrossRefGoogle ScholarPubMed
Liu, K. and Rutt, B. K. (1998). Sliding interleaved kY (Sliding interleaved kY) acquisition: a novel 3D Magnetic resonance angiography technique with suppressed slab boundary artifact. Journal of Magnetic Resonance Imaging, 8, 903–11.CrossRefGoogle ScholarPubMed
Long, A., Lepoutre, A., Corbillon, E., Branchereau, A. and Kretz, J. G. (2002). Modalities of preoperative imaging of the internal carotid artery used in France. Annals of Vascular Surgery, 16, 261–5.CrossRefGoogle ScholarPubMed
Maki, J. H., Prince, M. R., Londy, F. J. and Chenevert, T. L. (1996). The effects of time varying intravascular signal intensity and k-space acquisition order on three-dimensional Magnetic resonance angiography image quality. Journal of Magnetic Resonance Imaging, 6, 642–51.CrossRefGoogle ScholarPubMed
Melhem, E. R., Caruthers, S. D., Faddoul, S. G., Tello, R. and Jara, H. (1999). Use of three-dimensional Magnetic resonance angiography for tracking a contrast bolus in the carotid artery. AJNR. American Journal of Neuroradiology, 20, 263–6.Google ScholarPubMed
Moran, P. R. (1982). A flow velocity zeugmatographic interlace for NMagnetic resonance imaging in humans. Magnetic Resonance Imaging, 1, 197–203.CrossRefGoogle Scholar
Naganawa, S., Koshikawa, T., Fukatsu, H., et al. (2001). Contrast-enhanced Magnetic resonance angiography of the carotid artery using 3D time-resolved imaging of contrast kinetics: comparison with real-time fluoroscopic triggered 3D-elliptical centric view ordering. Radiation Medicine, 19, 185–92.Google ScholarPubMed
Nagele, T., Klose, U., Grodd, W., Nusslin, F. and Voigt, K. (1995). Nonlinear excitation profiles for three-dimensional inflow Magnetic resonance angiography. Journal of Magnetic Resonance Imaging, 5, 416–20.CrossRefGoogle Scholar
Nederkoorn, P. J., Elgersma, O. E., Mali, W. P., et al. (2002a). Overestimation of carotid artery stenosis with magnetic resonance angiography compared with digital subtraction angiography. Journal of Vascular Surgery, 36, 806–13.CrossRefGoogle Scholar
Nederkoorn, P. J., Graaf, Y., Eikelboom, B. C., et al. (2002b). Time-of-flight Magnetic resonance angiography of carotid artery stenosis: does a flow void represent severe stenosis?AJNR. American Journal of Neuroradiology, 23, 1779–84.Google Scholar
Nederkoorn, P. J., Graaf, Y., Hunink, M. G., Forsting, M. and Wanke, I. (2003). Duplex ultrasound and magnetic resonance angiography compared with digital subtraction angiography in carotid artery stenosis: a systematic review. Stroke, 34, 1324–32.CrossRefGoogle ScholarPubMed
Nishimura, D. G., Macovski, A. and Pauly, J. M. (1986). Magnetic resonance angiography. IEEE Transactions on Medical Imaging, 5, 140–51.CrossRefGoogle ScholarPubMed
Obuchowski, N. A., Lieber, M. L., Magdenic, M., et al. (1999). Small but quantifiable patient preference for Magnetic resonance angiography versus catheter angiography. Stroke, 30, 2247–8.CrossRefGoogle ScholarPubMed
Patel, M. R., Klufas, R. A., Kim, D., Edelman, R. R. and Kent, K. C. (1994). Magnetic resonance angiography of the carotid bifurcation: artifacts and limitations. AJR. American Journal of Roentgenology, 162, 1431–7.CrossRefGoogle ScholarPubMed
Pelc, N. J., Bernstein, M. A., Shimakawa, A. and Glover, G. H. (1991a). Encoding strategies for three-direction phase-contrast Magnetic resonance imaging of flow. Journal of Magnetic Resonance Imaging, 1, 405–13.CrossRefGoogle Scholar
Pelc, N. J., Herfkens, R. J., Shimakawa, A. and Enzmann, D. R. (1991b). Phase contrast cine magnetic resonance imaging. Magnetic Resonance Quarterly, 7, 229–54.Google Scholar
Phan, T., Huston, J., 3rd, , Bernstein, M. A., Riederer, S. J. and Brown, R. D. Jr. (2001). Contrast-enhanced magnetic resonance angiography of the cervical vessels: experience with 422 patients. Stroke, 32, 2282–6.CrossRefGoogle ScholarPubMed
Pike, G. B., Hu, B. S., Glover, G. H. and Enzmann, D. R. (1992). Magnetization transfer time-of-flight magnetic resonance angiography. Magnetic Resonance in Medicine, 25, 372–9.CrossRefGoogle ScholarPubMed
Powers, W. J. (2004). Carotid arteriography: still golden after all these years?Neurology, 62, 1246–7.CrossRefGoogle ScholarPubMed
Priatna, A. and Paschal, C. B. (1995). Variable-angle uniform signal excitation (VUltrasoundE) for three-dimensional time-of-flight Magnetic resonance angiography. Journal of Magnetic Resonance Imaging, 5, 421–7.CrossRefGoogle Scholar
Prince, M. R., Grist, T. M. and Debatin, J. F. (2003). 3D Contrast Magnetic resonance Angiography. Berlin: Springer.Google Scholar
Pruessmann, K. P., Weiger, M., Scheidegger, M. B. and Boesiger, P. (1999). Sensitivity encoding: sensitivity encoding for fast Magnetic resonance imaging. Magnetic Resonance in Medicine, 42, 952–62.3.0.CO;2-S>CrossRefGoogle Scholar
Riederer, S. J., Bernstein, M. A., Breen, J. F., et al. (2000). Three-dimensional contrast-enhanced Magnetic resonance angiography with real-time fluoroscopic triggering: design specifications and technical reliability in 330 patient studies. Radiology, 215, 584–93.CrossRefGoogle ScholarPubMed
Riedy, G., Golay, X. and Melhem, E. R. (2005). Three-dimensional isotropic contrast-enhanced Magnetic resonance angiography of the carotid artery using sensitivity-encoding and random elliptic centric k-space filling: technique optimization. Neuroradiology, 47, 668–73.CrossRefGoogle ScholarPubMed
Rothwell, P. M., Pendlebury, S. T., Wardlaw, J. and Warlow, C. P. (2000). Critical appraisal of the design and reporting of studies of imaging and measurement of carotid stenosis. Stroke, 31, 1444–50.CrossRefGoogle ScholarPubMed
Slosman, F., Stolpen, A. H., Lexa, F. J., et al. (1998). Extracranial atherosclerotic carotid artery disease: evaluation of non-breath-hold three-dimensional gadolinium-enhanced Magnetic resonance angiography. AJR. American Journal of Roentgenology, 170, 489–95.CrossRefGoogle Scholar
Sodickson, D. K. and Manning, W. J. (1997). Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magnetic Resonance in Medicine, 38, 591–603.CrossRefGoogle ScholarPubMed
U-King-Im, J., Hollingworth, W., Trivedi, R. A., et al. (2004a). Contrast-enhanced Magnetic resonance angiography vs intra-arterial digital subtraction angiography for carotid imaging: activity-based cost analysis. European Radiology, 14, 730–5.CrossRefGoogle Scholar
U-King-Im, J., Hollingworth, W., Trivedi, R. A., et al. (2005). Cost-effectiveness of diagnostic strategies prior to carotid endarterectomy. Annals of Neurology, 58, 506–15.CrossRefGoogle ScholarPubMed
U-King-Im, J., Trivedi, R., Cross, J., et al. (2004b). Conventional digital subtraction x-ray angiography versus magnetic resonance angiography in the evaluation of carotid disease: patient satisfaction and preferences. Clinical Radiology, 59, 358–63.CrossRefGoogle Scholar
U-King-Im, J., Trivedi, R. A., Graves, M. J., et al. (2004c). Contrast-enhanced Magnetic resonance angiography for carotid disease: diagnostic and potential clinical impact. Neurology, 62, 1282–90.CrossRefGoogle Scholar
Unterweger, M., Froehlich, J. M., Kubik-Huch, R. A., et al. (2005). Dose optimization of contrast-enhanced carotid Magnetic resonance angiography. European Radiology, 15, 1797–805.CrossRefGoogle Scholar
Vanninen, R. L., Manninen, H. I., Partanen, P. L., Vainio, P. A. and Soimakallio, S. (1995a). Carotid artery stenosis: clinical efficacy of Magnetic resonance phase-contrast flow quantification as an adjunct to Magnetic resonance angiography. Radiology, 194, 459–67.CrossRefGoogle Scholar
Vanninen, R., Manninen, H. and Soimakallio, S. (1995b). Imaging of carotid artery stenosis: clinical efficacy and cost-effectiveness. AJNR. American Journal of Neuroradiology, 16, 1875–83.Google Scholar
Wagle, W. A., Dumoulin, C. L., Souza, S. P. and Cline, H. E. (1989). 3DFT Magnetic resonance angiography of carotid and basilar arteries. AJNR. American Journal of Neuroradiology, 10, 911–19.Google ScholarPubMed
Wang, Y., Johnston, D. L., Breen, J. F., et al. (1996). Dynamic Magnetic resonance digital subtraction angiography using contrast enhancement, fast data acquisition, and complex subtraction. Magnetic Resonance in Medicine, 36, 551–6.CrossRefGoogle ScholarPubMed
Wardlaw, J.M., Chapell, F.M., Best, J.J., Wartolowska, K. and Berry, E. (2006). Non-invasive imaging compared with intra-arterial angiography in the diagnosis of symptomatic carotid stenosis: a meta-analysis. Lancet, 367, 1503–12.Google Scholar
Watts, R., Wang, Y., Redd, B., et al. (2002). Recessed elliptical-centric view-ordering for contrast-enhanced 3D Magnetic resonance angiography of the carotid arteries. Magnetic Resonance in Medicine, 48, 419–24.CrossRefGoogle ScholarPubMed
Wehrli, F. W., Shimakawa, A., Gullberg, G. T. and Macfall, J. R. (1986). Time-of-flight Magnetic resonance flow imaging: selective saturation recovery with gradient refocusing. Radiology, 160, 781–5.CrossRefGoogle ScholarPubMed
Westwood, M. E., Kelly, S., Berry, E., et al. (2002). Use of magnetic resonance angiography to select candidates with recently symptomatic carotid stenosis for surgery: systematic review. British Medical Journal, 324, 198.CrossRefGoogle ScholarPubMed
Willinek, W. A., Gieseke, J., Conrad, R., et al. (2002). Randomly segmented central k-space ordering in high-spatial-resolution contrast-enhanced Magnetic resonance angiography of the supraaortic arteries: initial experience. Radiology, 225, 583–8.CrossRefGoogle ScholarPubMed
Willinsky, R. A., Taylor, S. M., Terbrugge, K., et al. (2003). Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology, 227, 522–8.CrossRefGoogle ScholarPubMed
Wilman, A. H., Riederer, S. J., Huston, J., 3rd, , Wald, J. T. and Debbins, J. P. (1998). Arterial phase carotid and vertebral artery imaging in 3D contrast-enhanced Magnetic resonance angiography by combining fluoroscopic triggering with an elliptical centric acquisition order. Magnetic Resonance in Medicine, 40, 24–35.CrossRefGoogle ScholarPubMed
Yuan, C., Tsuruda, J. S., Beach, K. N., et al. (1994). Techniques for high-resolution Magnetic resonance imaging of atherosclerotic plaque. Journal of Magnetic Resonance Imaging, 4, 43–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×