Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T21:52:48.247Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 January 2025

N. H. Bingham
Affiliation:
Imperial College London
Adam J. Ostaszewski
Affiliation:
London School of Economics and Political Science
Get access
Type
Chapter
Information
Category and Measure
Infinite Combinatorics, Topology and Groups
, pp. 291 - 323
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarts, J.M., de Groot, J. and McDowell, R.H. Cocompactness. Nieuw Arch. Wisk. 18 (1970), 215. 57Google Scholar
Aarts, J.M., de Groot, J. and McDowell, R.H. Cotopology for metrizable spaces. Duke Math. J. 37 (1970), 291295. 57, 135, 136CrossRefGoogle Scholar
Aarts, J.M. and Lutzer, D.J. Completeness properties designed for recognizing Baire spaces. Dissertationes Math. (Rozprawy Mat.) 116 (1974), 48. 37Google Scholar
Aczél, J. and Dhombres, J. Functional Equations in Several Variables. Encycl. Math. Appl. 31. Cambridge University Press, 1989. 8Google Scholar
Alberti, G. and Marchese, A. On the differentiability of Lipschitz functions with respect to measures in the Euclidean space. Geom. Funct. Anal. 26 (2016), 166. 228CrossRefGoogle Scholar
Albeverio, S., Garko, I., Ibragim, M. and Torbin, G. Non-normal numbers: Full Hausdorff dimensionality vs zero dimensionality. Bull. Sci. Math. 141 (2017), 119. 226CrossRefGoogle Scholar
Alon, N. and Spencer, J.H. The Probabilistic Method, 3rd ed. Wiley, 2008 (2nd ed. 2000, 1st ed. 1992). 37CrossRefGoogle Scholar
Ambrose, W. Measures on locally compact topological groups. Trans. Am. Math. Soc. 61 (1947), 106121. 253CrossRefGoogle Scholar
Anantharaman, R. and Lee, J.P. Planar sets whose complements do not contain a dense set of lines. Real Anal. Exchange 11 (19851986), 168179. 156Google Scholar
Ancel, F.D. An alternative proof and applications of a theorem of E.G. Effros. Michigan Math. J. 34 (1987), 3955. 172, 173, 176, 178, 181, 182, 196, 216CrossRefGoogle Scholar
Arhangelskii, A.V. On a class of spaces containing all metric and all locally compact spaces. Soviet Math. Dokl. 151 (1963), 751754. 49, 165Google Scholar
Arhangelskii, A.V. Paracompactness and metrization: The method of covers in the classification of spaces. In Arhangelskii, A.V. (ed), General Topology III. Encyclopaedia Math. Sci. 51. Springer, 1995, 170. 49CrossRefGoogle Scholar
Arhangelskii, A.V. and Malykhin, V.I. Metrizability of topological groups (in Russian). Vestnik Moskov. Univ. Ser. I Mat. Mekh. 91 (1996), 1316; English translation in Moscow Univ. Math. Bull. 51 (1996), 911. 86Google Scholar
Arhangelskii, A.V. and Reznichenko, E.A. Paratopological and semitopological groups versus topological groups. Topol. Appl. 151 (2005), 107119. 109CrossRefGoogle Scholar
Arhangelskii, A. and Tkachenko, M. Topological Groups and Related Structures. Atlantis Press, 2008. 256CrossRefGoogle Scholar
Avigad, J. An effective proof that open sets are Ramsey. Arch. Math. Logic 37 (1998), 235240. 122CrossRefGoogle Scholar
Baernstein, A. A non-linear Tauberian theorem in function theory. Trans. Am. Math. Soc. 146 (1969), 87105. 5CrossRefGoogle Scholar
Baernstein, A. A generalization of the cos πλ theorem. Trans. Am. Math. Soc. 193 (1974), 181197. 6Google Scholar
Bagaria, J. and Woodin, H.W. -sets of reals. J. Symbol. Logic 62 (1997), 13791428. 222, 231CrossRefGoogle Scholar
Baire, R. Thèse: Sur les fonctions de variable réelle. Ann. di Math. 3 (1899), 1123. 34, 36Google Scholar
Baire, R. Sur la représentation des fonctions discontinues (2me partie). Acta Math. 32 (1909), 97176. 34Google Scholar
Bajšanski, B. and Karamata, J. Regular varying functions and the principle of equicontinuity. Publ. Ramanujan Inst. 1 (1969), 235246. 278Google Scholar
Balkema, A.A. Monotone Transformations and Limit Laws. Mathematical Centre Tracts 45. Mathematisch Centrum, 1973. v+170 pp. 278Google Scholar
Banach, S. Sur l’équation fonctionelle f(x + y) = f(x) + f(y). Fund. Math. 1 (1920), 123124. Reprinted in Collected Works I, 4748, PWN, 1967 (Commentary by Fast, H., p. 314). 8, 190CrossRefGoogle Scholar
Banach, S. Über additive Maßfunktionen in abstrakten Mengen. Fund. Mathe. 15 (1930), 97101.CrossRefGoogle Scholar
Banach, S. Über metrische Gruppen. Studia Math. III (1931), 101113. Reprinted in Collected Works II, 401411, PWN, 1979. vii+254 pp. 184CrossRefGoogle Scholar
Banach, S. Théorie des Opérations Linéaires. Monog. Mat. I (1932). Reprinted in Collected Works II, PWN, 1979. 21, 162, 176, 184, 186, 187, 189, 190, 191, 232, 283Google Scholar
Banach, S. and Tarski, A. Sur la décomposition des ensembles de points en parties respectivement congruents. Fund. Math. 6 (1924), 244277. 223CrossRefGoogle Scholar
Banakh, T. Cardinal characteristics of the ideal of Haar null sets. Comment. Math. Univ. Carolin. 45 (2004), 119137. 234Google Scholar
Banakh, T., Glab, S., Jablonska, E. and Swaczyna, J. Haar-I sets: Looking at small sets in Polish groups through compact glasses. Diss. Math. 564 (2021), 1105. 255Google Scholar
Banakh, T. and Jablonska, E. Null-finite sets in topological groups and their applications. Israel J. Math. 230 (2019), 361386. 249, 264, 265, 266CrossRefGoogle Scholar
Bartle, R.G. Implicit functions and solutions of equations in groups. Math. Z. 62 (1955), 335346. 86CrossRefGoogle Scholar
Bartoszewicz, A., Filipczak, M. and Filipczak, T. On supports of probability Bernoulli-like measures. J. Math. Anal. Appl. 462 (2018), 2635. 254, 255CrossRefGoogle Scholar
Bartoszewicz, A., Filipczak, M. and Natkaniec, T. On Smítal properties. Topol. Appl. 158 (2011), 20662075. 255, 256, 258CrossRefGoogle Scholar
Bartoszynski, T. Additivity of measure implies additivity of category. Trans. Am. Math. Soc. 28 (1984), 209213. 230, 232CrossRefGoogle Scholar
Bartoszynski, T. A note on duality between measure and category. Proc. Am. Math. Soc. 128 (2000), 27452748. 138, 228CrossRefGoogle Scholar
Bartoszynski, T. Invariants of measure and category. In Forman, M. and Kanamori, A. (eds), Handbook of Set Theory, vol. 1. Springer, 2010, 491556. 232CrossRefGoogle Scholar
Bartoszynski, T., Goldstern, M., Judah, H. and Shelah, S. All meager filters may be null. Proc. Am. Math. Soc. 117 (1993), 515521. 228CrossRefGoogle Scholar
Bartoszynski, T., Judah, H. and Shelah, S. The Cichon diagram. J. Symbol. Logic 58 (1993), 401423. 138CrossRefGoogle Scholar
Bartoszynski, T. and Judah, H. On the Structure of the Real Line. A.K. Peters, 1995. 154, 222, 232, 233, 234Google Scholar
Barwise, J. (ed). Handbook of Mathematical Logic. North-Holland, 1977. 301Google Scholar
Bary, N.K. A Treatise on Trigonometric Series, vols. I, II. Pergamon, 1964. 120, 138Google Scholar
Bauer, F. Aspects of modern potential theory. In Proc. Int. Conf. Math. Vancouver, 1974, vol., 4151. Canadian Mathematical Congress, 1975. 115, 118Google Scholar
Beck, A. A note on semi-groups in a locally compact group. Proc. Am. Math. Soc. 11 (1960), 992993. 239CrossRefGoogle Scholar
Beck, A., Corson, H.H. and Simon, A.B. The interior points of the product of two subsets of a locally compact group. Proc. Am. Math. Soc. 9 (1958), 648652. 239CrossRefGoogle Scholar
Becker, H. and Kechris, A.S. The Descriptive Set Theory of Polish Group Actions. London Math. Soc. Lect. Note Ser. 232. Cambridge University Press, 1996. 233CrossRefGoogle Scholar
Bell, J.L. and Slomson, A.B. Models and Ultraproducts: An Introduction. North-Holland, 1969. Reprinted by Dover, 2006. 62, 275Google Scholar
Berge, C. Topological Spaces, Including a Treatment of Multi-valued Functions, Vector Spaces and Convexity. Oliver and Boyd, 1963. Reprinted by Dover, 1997. 54Google Scholar
Bergelson, V., Hindman, N. and Weiss, B. All-sums sets in (0,1] – Category and measure. Mathematika 44 (1997), 6187. 74, 76, 79CrossRefGoogle Scholar
Bertoin, J. Lévy Processes. Cambridge Tracts in Math. 121. Cambridge University Press, 1996. 12Google Scholar
Berz, E. Sublinear functions on ℝ. Aequat. Math. 12 (1975), 200206. 232CrossRefGoogle Scholar
Beurling, A. and Deny, J. Dirichlet spaces. Proc. Nat. Acad. Sci. USA 45 (1959), 208215. 120CrossRefGoogle ScholarPubMed
Bingham, N.H. Tauberian theorems and the central limit theorem. Ann. Probab. 9 (1981), 221231. 14, 17CrossRefGoogle Scholar
Bingham, N.H. Tauberian theorems for summability methods of random-walk type. J. London Math. Soc. (2) 30 (1984), 281287. 16CrossRefGoogle Scholar
Bingham, N.H. On Valiron and circle convergence. Math. Z. 186 (1984), 273286. 15CrossRefGoogle Scholar
Bingham, N.H. Tauberian theorems for Jakimovski and Karamata–Stirling methods. Mathematika 35 (1988), 216224. 16CrossRefGoogle Scholar
Bingham, N.H. Regular variation and probability: The early years. J. Comput. Appl. Math. 200 (2007), 357363. 3CrossRefGoogle Scholar
Bingham, N.H. Finite additivity versus countable additivity. Elect. J. His. Probab. Stat. 6 (2010), 35p. 240Google Scholar
Bingham, N.H. The worldwide influence of the work of B. V. Gnedenko. Theory Probab. Appl. 58 (2014), 1724. 2CrossRefGoogle Scholar
Bingham, N.H. On scaling and regular variation. Publ. Inst. Math. Beograd (NS) 97 (111) (2015), 161174. 22CrossRefGoogle Scholar
Bingham, N.H. Hardy, Littlewood and probability. Bull. London Math. Soc. 47 (2015), 191201. 3CrossRefGoogle Scholar
Bingham, N.H. Riesz means and Beurling moving averages. In Barrieu, P.M. (ed). Risk and Stochastics: Ragnar Norberg Memorial Volume. World Scientific, 2019, 159172; arXiv:1502.07494. 17CrossRefGoogle Scholar
Bingham, N.H. and Fry, J.M. Regression: Linear models in Statistics. Springer Undergraduate Series in Mathematics (SUMS), Springer, 2010. 23CrossRefGoogle Scholar
Bingham, N.H. and Gashi, B. Logarithmic moving averages. J. Math. Anal. Appl. 421 (2015), 17901802. 17CrossRefGoogle Scholar
Bingham, N.H. and Gashi, B. Voronoi means, moving averages and power series. J. Math. Anal. Appl. 449 (2017), 682696. 17CrossRefGoogle Scholar
Bingham, N.H. and Goldie, C.M. Extensions of regular variation, I. Uniformity and quantifiers. Proc. London Math. Soc. 44 (1982), 473496. 10, 145, 239CrossRefGoogle Scholar
Bingham, N.H. and Goldie, C.M. Extensions of regular variation, II. Representations and indices. Proc. London Math. Soc. 44 (1982), 497534. 11, 12, 239CrossRefGoogle Scholar
Bingham, N.H. and Goldie, C.M. On one-sided Tauberian conditions. Analysis 3 (1983), 159188. 15, 17CrossRefGoogle Scholar
Bingham, N.H., Goldie, C.M. and Teugels, J.L. Regular Variation, Encycl. Math. Appl. 27, Cambridge University Press, 1987 (2nd ed. 1989). 6, 19, 64, 78, 80, 81, 82, 140, 141, 144, 145, 239, 240, 282CrossRefGoogle Scholar
Bingham, N.H. and Inoue, A. The Drasin–Shea–Jordan theorem for Fourier and Hankel transforms. Quart. J. Math. 48 (1997), 279307. 5CrossRefGoogle Scholar
Bingham, N.H. and Inoue, A. Ratio Mercerian theorems with applications to Hankel and Fourier transforms. Proc. London Math. Soc. 79 (1999), 626648. 5CrossRefGoogle Scholar
Bingham, N.H. and Inoue, A. Abelian, Tauberian and Mercerian theorems for arithmetic sums. J. Math. Anal. Appl. 250 (2000), 465493. 6CrossRefGoogle Scholar
Bingham, N.H. and Inoue, A. Tauberian and Mercerian theorems for systems of kernels. J. Math. Anal. Appl. 252 (2000), 177197. 7, 8, 17CrossRefGoogle Scholar
Bingham, N.H., Jablonska, E., Jablonski, W. and Ostaszewski, A.J. On subadditive functions bounded above on a large set. Results Math. 75:58 (2020), 12p. xiiiCrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Generic subadditive functions. Proc. Am. Math. Soc. 136 (2008), 42574266. 63, 123CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Very slowly varying functions II. Colloq. Math. 116 (2009), 105117. 176CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Beyond Lebesgue and Baire: Generic regular variation. Colloq. Math. 116 (2009), 119138. 63, 73, 137, 141, 146, 163, 278CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. The index theorem of regular variation. J. Math. Anal. Appl. 358 (2009), 238248. 64, 278, 283, 289CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Infinite combinatorics and the foundations of regular variation. J. Math. Anal. Appl. 360 (2009), 518529. 145, 278CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Automatic continuity: Subadditivity, convexity, uniformity. Aequat. Math. 78 (2009), 257270. 218CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Infinite combinatorics on functions spaces: Category methods. Publ. Inst. Math. Beograd (NS) 86 (100) (2009), 5573. 117, 123CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Automatic continuity by analytic thinning. Proc. Am. Math. Soc. 138 (2010), 907919. 10, 11, 22, 145, 146CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Regular variation without limits. J. Math. Anal. Appl. 370 (2010), 322338. 53, 62, 63, 65, 236, 237, 278CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Topological regular variation. I, Slow variation. Topol. Appl. 157 (2010), 19992013. 278, 281CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Topological regular variation. II, The fundamental theorems. Topol. Appl. 157 (2010), 20142023. 278, 283CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Topological regular variation. III, Regular variation. Topol. Appl. 157 (2010), 20242037. 278, 285CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Kingman, category and combinatorics. In Bingham, N.H. and Goldie, C.M. (eds), Probability and Mathematical Genetics: Sir John Kingman Festschrift. London Math.Soc. Lecture Notes in Mathematics 378, Cambridge University Press, 2010, 135168. 71, 72, 81, 241CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Normed groups: Dichotomy and duality. Dissertationes Math. 472 (2010), 138p. 74, 86, 89, 99, 138, 139, 140, 141, 162, 185, 199, 217, 221, 236, 285, 289CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Beyond Lebesgue and Baire II: Bitopology and measure-category duality. Colloq. Math. 121 (2010), 225238. 73, 137, 145CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Dichotomy and infinite combinatorics: The theorems of Steinhaus and Ostrowski. Math. Proc. Cambridge Phil. Soc. 150 (2011), 122. 21, 62, 99, 141, 239, 255CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Homotopy and the Kestelman–Borwein–Ditor theorem. Canadian Math. Bull. 54 (2011), 1220. 162CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Steinhaus theory and regular variation: De Bruijn and after. Indag. Math. (N. G. de Bruijn Memorial Issue) 24 (2013), 679692. 278, 281CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Beurling slow and regular variation. Trans. London Math. Soc. 1 (2014), 2956. 13, 278, 287CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Cauchy’s functional equation and extensions: Goldie’s equation and inequality, the Gołąb-Schinzel equation and Beurling’s equation. Aequat. Math. 89 (2015), 12931310. 218CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Beurling moving averages and approximate homomorphisms. Indag. Math. 27 (2016), 601633. 17, 62, 63, 288CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. The Steinhaus–Weil property and its converse: Subcontinuity and amenability. arXiv:1607.00049. (See BinO2020c,d, BinO2021a, BinO2022a.) 228, 235, 240, 242, 247, 249, 253Google Scholar
Bingham, N.H. and Ostaszewski, A.J. Category–measure duality: Jensen convexity and Berz sublinearity. Aequat. Math. 91 (2017), 801836. 62, 232, 242CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Additivity, subadditivity and linearity: Automatic continuity and quantifier weakening. Indag. Math. 29 (2018), 687713. 10, 11, 232CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Beyond Lebesgue and Baire IV: Density topologies and a converse Steinhaus theorem. Topol. Appl. 239 (2018), 274292. 104, 234, 241, 242, 244, 256CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Set theory and the analyst. Eur. J. Math. 5 (2019), 248. 229, 240, 241, 268, 269, 270, 273, 274, 275, 276CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Variants on the Berz sublinearity theorem. Aequat. Math. 93 (2019), 351369. 232, 234CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Beyond Haar and Cameron–Martin: The Steinhaus support. Topol. App. 260 (2019), 2356. 240, 247, 256, 259CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. General regular variation, Popa groups and quantifier weakening. J. Math. Anal. Appl. 483 (2020), 123610. 10, 11, 17, 18, 288CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Sequential regular variation: Extensions to Kendall’s theorem. Quart. J. Math. 71 (2020), 1171— 1200. 18, 19CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. The Steinhaus–Weil property and its converse. I, Subcontinuity and amenability. Sarajevo Math. J. 16 (2020), 1332. 228, 232, 234, 235, 242, 243, 246CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. The Steinhaus–Weil property and its converse. II, The Simmons–Mospan converse. Sarajevo Math. J. 16 (2020), 179186; 235, 246, 252, 255, 256, 257Google Scholar
Bingham, N.H. and Ostaszewski, A.J. The Steinhaus–Weil property and its converse. III, Weil topologies. Sarajevo Math. J.17 (2021), 129142. 235, 240, 259, 290Google Scholar
Bingham, N.H. and Ostaszewski, A.J. Extremes and regular variation. In Chaumont, L. and Kyprianou, E.A. (eds), A Lifetime of Excursions through Random Walks and Lévy Processes (A volume in honour of Ron Doney’s 80th birthday). Progr. Prob. 78, 2021b, 121137, Birkhäuser. 3, 13CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. The Steinhaus–Weil property and its converse. IV, Other interior-point properties. Sarajevo Math. J. 18 (2022), 203210. 235CrossRefGoogle Scholar
Bingham, N.H. and Ostaszewski, A.J. Homomorphisms from functional equations: The Goldie equation II. ArXiv:1910.05816. 288Google Scholar
Bingham, N.H. and Ostaszewski, A.J. Homomorphisms from functional equations: The Goldie equation III. ArXiv:1910.05817. 288Google Scholar
Bingham, N.H. and Ostaszewski, A.J. The Gołąb–Schinzel and Goldie functional equations in Banach algebras. ArXiv:2105.07794. 288Google Scholar
Bingham, N.H. and Ostaszewski, A.J. Parthasarathy, shiftcompactness and infinite combinatorics. Indian J. Pure Appl. Math. 55 (2024), 931948. 73CrossRefGoogle Scholar
Bingham, N.H. and Stadtmüller, U. Jakimovski methods and almostsure convergence. In Grimmett, G.R. and Welsh, D.J.A. (eds), Disorder in Physical Systems (J.M. Hammersley Festschrift). Oxford University Press, 1990, 518. 16Google Scholar
Bingham, N.H. and Tenenbaum, G. Riesz and Valiron means and fractional moments. Math. Proc. Cambridge Phil. Soc. 99 (1986), 143149. 15, 17CrossRefGoogle Scholar
Birkhoff, G. A note on topological groups. Compos. Math. 3 (1936), 427430. 86Google Scholar
Birkhoff, G. and Mac Lane, S. A Survey of Modern Algebra, revised ed., Macmillan, 1953, (1st ed. 1941). 272Google Scholar
Blass, A. Existence of bases implies the Axiom of Choice. Contemp. Math. 31 (1984), 3133. 20CrossRefGoogle Scholar
Bloom, S. A characterization of B-slowly varying functions. Proc. Am. Math. Soc. 54 (1976), 243250. 13Google Scholar
Blumenthal, R.M. and Getoor, R.K. Markov Processes and Potential Theory. Academic Press, 1968. 117Google Scholar
Boboc, N., Bucur, Gh. and Cornea, A. Order and Convexity in Potential Theory: H-cones. Lecture Notes in Math. 853 (1981), Springer. 118, 120CrossRefGoogle Scholar
Bogachev, V.I. Gaussian Measures. Math. Surveys and Monographs 62, Am. Math. Soc., 1998. 240, 259, 260, 261Google Scholar
Bogachev, V.I. Measure Theory, I. Springer, 2007. xiii, 24, 25, 28, 29, 30, 31, 33, 73, 104, 126, 232, 244, 273, 274CrossRefGoogle Scholar
Bogachev, V.I. Measure Theory, II. Springer, 2007. 25, 33, 240CrossRefGoogle Scholar
Bogachev, V.I. Differentiable Measures and the Malliavin Calculus. Math. Surveys and Monographs 164, Am. Math. Soc., 2010. 243Google Scholar
Bogachev, V.I. Negligible sets in infinite-dimensional spaces. Anal. Math. 44 (2018), 299323. 240CrossRefGoogle Scholar
Bogachev, V.I. and Smolyanov, O.G. Topological Vector Spaces and Their Applications, Springer, 2017. 240CrossRefGoogle Scholar
Bojanic, R. and Karamata, J. On a class of functions of regular asymptotic behaviour. Math. Res. Center Tech. Rep. 436 (1963), Madison WI. Reprinted in Kar2009, pp. 545569. 9Google Scholar
Bollobás, B. Modern Graph Theory, Springer, 1998. 274CrossRefGoogle Scholar
Border, K.C. Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press, 1989. 50Google Scholar
Borel, E. Les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Mat. Palermo 27 (1909), 247271. 225CrossRefGoogle Scholar
Borell, C. Gaussian Radon measures on locally convex spaces. Math. Scand. 36 (1976), 265284. 260CrossRefGoogle Scholar
Borwein, D. and Ditor, S.Z. Translates of sequences in sets of positive measure. Canadian Math. Bull. 21 (1978), 497498. 74CrossRefGoogle Scholar
Bourbaki, N. Elements of Mathematics: General Topology. Parts 1 and 2. Hermann, Paris/Addison-Wesley, 1966. 86Google Scholar
Bouziad, A. The Ellis theorem and continuity in groups. Topol. Appl. 50 (1993), 7380. 49, 176, 197CrossRefGoogle Scholar
Bouziad, A. Every Cech-analytic Baire semitopological group is a topological group. Proc. Am. Math. Soc. 124 (1996), 953959. 197, 198, 242CrossRefGoogle Scholar
Bradford, J.C. and Goffman, C. Metric spaces in which Blumberg’s theorem holds. Proc. Am. Math. Soc. 11 (1960), 667670. 40, 127Google Scholar
Brelot, M. Sur la théorie autonome des fonctions sousharmoniques. Bull. Sci. Math. 65 (1941), 7298. 116Google Scholar
Breuer, J. and Simon, B. Natural boundaries and spectral theory. Adv. Math. 226 (2011), 49024920. 229CrossRefGoogle Scholar
Brezinski, C. History of Continued Fractions and Padé Approximants. Springer, 1991. 226CrossRefGoogle Scholar
Bruckner, A.M. Differentiation of integrals. Am. Math. Monthly 78 (9) (1971), Part II, ii+51 pp. 104Google Scholar
Brzdęk, J. Subgroups of the group ℤn and a generalization of the Gołąb–Schinzel functional equation. Aequat. Math. 43 (1992), 5971. 260CrossRefGoogle Scholar
Bugeaud, Y. Distribution Modulo One and Diophantine Approximation. Cambridge Tracts in Math. 193, Cambridge University Press, 2012. 223CrossRefGoogle Scholar
Bukovský, L. The Structure of the Real Line. Monografie Matematyczne (New Series) 71, Birkhäuser, 2011. 234CrossRefGoogle Scholar
Burago, D., Burago, Y. and Ivanov, S. A Course in Metric Geometry. Graduate Studies in Mathematics 33, Am. Math. Soc., 2001. 86Google Scholar
Burgess, J.P. Classical hierarchies from a modern standpoint. I: C-sets. Fund. Math. 115 (1983), 8195. 62CrossRefGoogle Scholar
Burgess, J.P. Classical hierarchies from a modern standpoint. II: r-sets. Fund. Math. 115 (1983), 97105. 62CrossRefGoogle Scholar
Cabello Sánchez, F. and Castillo, J.M.F. Banach space techniques underpinning a theory for nearly additive mappings. Dissertationes Math. (Rozprawy Mat.) 404 (2002), 73pp.Google Scholar
Calude, C.S. and Marcus, S. A topological characterization of random sequences. Inform. Proc. Lett. 88 (2003), 245250. 234CrossRefGoogle Scholar
Cao, J., Drozdowski, R. and Piotrowski, Z. Weak continuity properties of topologized groups. Czechoslovak Math. J. 60 (2010), 133148. 197CrossRefGoogle Scholar
Cao, J. and Moors, W.B. Separate and joint continuity of homomorphisms defined on topological groups. New Zealand J. Math. 33 (2004), 4145. 197Google Scholar
Cartan, H. Théorie du potentiel newtonien: énergie, capacité, suites de potentiels. Bull. Soc. Math. France 73 (1945), 74106. 116CrossRefGoogle Scholar
Cartan, H. Théorie générale du balayage en potentiel newtonien. Ann. Inst. Fourier Grenoble 22 (1946), 221280. 117Google Scholar
Champernowne, D. G. The construction of decimals normal in the scale of ten. J. London Math. Soc. 8 (1933), 254260. 225CrossRefGoogle Scholar
Chandrasekharan, K. and Minakshisundaram, S. Typical Means. Oxford University Press, 1952. 17Google Scholar
Charatonik, J.J. and Charatonik, W.J. The Effros metric. Topol. Appl. 110 (2001), 237255. 176CrossRefGoogle Scholar
Charatonik, J.J. and Mackowiak, T. Around Effros’ theorem. Trans. Am. Math. Soc. 298 (1986), 579602. 173Google Scholar
Choquet, G. Theory of capacities. Ann. Inst. Fourier, Grenoble 5 (195354), 131295. 116Google Scholar
Choquet, G. Lectures on Analysis. Vol. I, Benjamin, 1969. 45Google Scholar
Christensen, J.P.R. On sets of Haar measure zero in abelian Polish groups. Israel J. Math. 13 (1973), 255260. 241CrossRefGoogle Scholar
Christensen, J.P.R. Topology and Borel Structure. Descriptive Topology and Set Theory with Applications to Functional Analysis and Measure Theory. North-Holland, 1974. 47, 241, 251Google Scholar
Christensen, J.P.R. Joint continuity of separately continuous functions. Proc. Am. Math. Soc. 82 (1981), 455461. 197CrossRefGoogle Scholar
Chung, K.-L. A Course in Probability Theory. Academic Press, 1968. (3rd ed., 2001.) 117Google Scholar
Chung, K.-L. Elementary Probability Theory with Stochastic Processes. Springer, 1974. (4th ed., 2003.) 117CrossRefGoogle Scholar
Chung, K.-L. Lectures from Markov Processes to Brownian Motion. Grundlehren Math. Wiss. 249, Springer, 1982. 116, 117, 118CrossRefGoogle Scholar
Chung, K.-L. Green, Brown and Probability. World Scientific, 1995. 118CrossRefGoogle Scholar
Ciesielski, K. Set-theoretic real analysis. J. Appl. Anal. 3 (1997), 143190. 234CrossRefGoogle Scholar
Ciesielski, K. and Jasinski, J. Topologies making a given ideal nowhere dense or meager. Topol. Appl. 63 (1995), 277298. 248CrossRefGoogle Scholar
Ciesielski, K. and Larson, L. The density topology is not generated. Real Anal. Exchange 16 (1990/1991), 522525. 167CrossRefGoogle Scholar
Ciesielski, K., Larson, L. and Ostaszewski, K., -Density Continuous Functions. Mem. Am. Math. Soc. 107 (1994), no. 515. 167Google Scholar
Cohen, P. The independence of the continuum hypothesis. Proc. Natl. Acad. Sci. USA 50 (1963), 105110. 268CrossRefGoogle ScholarPubMed
Cohn, P.M. Algebra, Vol. 2, 2nd ed. Wiley, 1989. (1st ed. 1977.) 273Google Scholar
Comfort, W.W. Topological Groups. In KunV1984, Chapter 24. 94, 140, 236Google Scholar
Comfort, W.W. and Negrepontis, S. The ring C(X) determines the category of X. Proc. Am. Math. Soc. 16 (1965), 10411045. 40, 41Google Scholar
Comfort, W.W. and Negrepontis, S. The Theory of Ultrafilters. Grundlehren Math. Wiss. 211, Springer, 1974. 64CrossRefGoogle Scholar
Constantinescu, C. and Cornea, A. Potential Theory on Harmonic Spaces. Grundlehren Math. Wiss. 158, Springer, 1972. 116, 118CrossRefGoogle Scholar
Conway, J.B. A Course in Functional Analysis. 2nd ed. Graduate Texts in Mathematics, 96 Springer, 1990. 182, 183Google Scholar
Croft, H.T. A question of limits. Eureka 20 (1957), 1113. 18Google Scholar
Csiszár, I. and Erdős, P. On the function g (t) = lim supx→∞ (f (x + t) – f (x)). Magyar Tud. Akad. Mat. Kutató Int. Kőzl. A 9 (1964), 603606. 145, 170Google Scholar
Dales, H.G. Automatic continuity: A survey. Bull. London Math. Soc. 10(1978), 129183. 185CrossRefGoogle Scholar
Dales, H.G. Banach Algebras and Automatic Continuity. London Math. Soc. Monog. New Series, 24, Oxford University Press, 2000. 197Google Scholar
Dales, H.G. and Woodin, W.H. An Introduction to Independence for Analysts. London Math. Soc. Lecture Note Series, 115. Cambridge University Press, 1987. 232CrossRefGoogle Scholar
Dales, H.G. and Woodin, W.H. Super-Real Fields. Totally Ordered Fields with Additional Structure. London Math. Soc. Monog., New Series, 17, Oxford University Press, 1996. 268CrossRefGoogle Scholar
Darboux, G. Sur la composition des forces en statiques. Bull. des Sci. Math. 9 (1875), 281288. 144Google Scholar
Darji, Udayan B. On Haar meager sets. Topol. Appl. 160 (2013), 23962400. 249, 261, 262CrossRefGoogle Scholar
Davies, R.O. Subsets of finite measure in analytic sets. Nederl. Akad. Wetensch. Proc. Ser. A. 14 (1952), 488489. 195CrossRefGoogle Scholar
Davies, Roy O., Jayne, J.E., Ostaszewski, A.J. and Rogers, C.A. Theorems of Novikov type. Mathematika 24 (1977), 97114. 59CrossRefGoogle Scholar
Debs, G. Points de continuité d’une fonction séparément continue. Proc. Am. Math. Soc. 97 (1986), 167176. 47Google Scholar
Debs, G. Points de continuité d’une fonction séparément continue II. Proc. Am. Math. Soc. 99 (1987), 777782. 48Google Scholar
Debs, G. and Saint Raymond, J. Ensembles d’unicité et d’unicité au sens large, Ann. Inst. Fourier, Grenoble 37(1987) 217239. 138CrossRefGoogle Scholar
Dellacherie, C. Capacités et Processus Stochastiques, Ergebnisse Math. 67, Springer, 1972. 117CrossRefGoogle Scholar
Dellacherie, C. Un cours sur les ensembles analytiques, Part II. In RogJD 1980, pp. 183–316. 51Google Scholar
Dellacherie, C. and Meyer, P.-A. Probabilités et Potentiel, Ch. I–IV (1975), Ch. V–VIII (1980), Ch. IX–XI (1983), Ch. XII–XVI (1987), Ch. XVII–XXIV (with Maisonneuve, B.) (1992). Hermann, Paris. 118Google Scholar
Denjoy, A. Sur les fonctions dérivées sommable. Bull. Soc. Math. France 43 (1915), 161248. 107CrossRefGoogle Scholar
Devlin, K.J. Aspects of Constructibility. Lecture Notes Math. 354, Springer, 1973. 53, 64CrossRefGoogle Scholar
Devlin, K.J. Constructibility. In Barw1977, p. 453–489. 270CrossRefGoogle Scholar
Devlin, K.J. Constructibility. Perspectives Math. Logic, Springer, 1984. 270, 277CrossRefGoogle Scholar
Devlin, K.J. The Joy of Sets: Fundamentals of Contemporary Set Theory, 2nd ed. Springer, 1993. (1st ed. 1979.) 272, 273CrossRefGoogle Scholar
Deza, E., Deza, M.M. and Deza, M. Dictionary of Distances, Elsevier, 2006. 86Google Scholar
Diestel, J. and Spalsbury, A. The Joys of Haar Measure, Grad. Studies in Math. 150, Am. Math Soc., 2014. 242, 285Google Scholar
Dijkstra, J.J. On homeomorphism groups and the compact-open topology. Am. Math. Monthly 112 (2005), 910912. 279CrossRefGoogle Scholar
Dodos, P. Dichotomies of the set of test measures of a Haar-null set. Israel J. Math. 144 (2004), 1528. 253CrossRefGoogle Scholar
Dodos, P. On certain regularity properties of Haar-null sets. Fund. Math. 191 (2004), 97109. 253CrossRefGoogle Scholar
Dodos, P. The Steinhaus property and Haar-null sets. Bull. Lon. Math. Soc. 41 (2009), 377384. 258CrossRefGoogle Scholar
Doob, J.L. Classical Potential Theory and its Probabilistic Counterpart. Grundl. Math. Wiss. 262, Springer, 1984. 115, 116, 117, 118, 119, 120, 123CrossRefGoogle Scholar
Dorais, F.G., Filipów, R. and Natkaniec, T. On some properties of Hamel bases and their applications to Marczewski measurable functions. Cent. Eur. J. Math. 11 (2013), 487508. 22Google Scholar
Dougherty, R. and Foreman, M. Banach–Tarski decompositions using sets with the Baire property. J. Am. Math. Soc. 7 (1994), 75124. 138, 224CrossRefGoogle Scholar
van Douwen, E.K. The integers and topology. In Kunen, K. and Vaughan, J.E. (eds), Handbook of Set-Theoretic Topology. North-Holland, 1984, 111167. 234CrossRefGoogle Scholar
van Douwen, E.K. Fubini’s theorem for null sets. Am. Math. Monthly 96(8) (1989), 718721. 228CrossRefGoogle Scholar
van Douwen, E. A technique for constructing honest locally compact submetrizable examples. Topol. Appl. 47 (1992), 179201. 145CrossRefGoogle Scholar
Dowker, C.H. Mapping theorems for non-compact spaces. Am. J. Math. 69 (1947), 200242. 135CrossRefGoogle Scholar
Drake, F.R. Set Theory: An Introduction to Large Cardinals, North-Holland, 1974. 271, 274, 276, 277Google Scholar
Drasin, D. Tauberian theorems and slowly varying functions. Trans. Am. Math. Soc. 133 (1968), 333356. 4CrossRefGoogle Scholar
Drasin, D. Baernstein’s thesis and entire functions with negative zeros. Mat. Stud. 34 (2010), 160167. 5Google Scholar
Drasin, D. and Shea, D.F. Asymptotic properties of entire functions extremal for the cos πρ theorem. Bull. Am. Math. Soc. 75 (1969), 119122. 6CrossRefGoogle Scholar
Drasin, D. and Shea, D.F. Complements to some theorems of Bowen and Macintyre on the radial growth of entire functions with negative zeros. In Shankar, H. (ed), Mathematical Essays Dedicated to A.J. Macintyre. Ohio University Press, 1970, 101121. 4Google Scholar
Drasin, D. and Shea, D.F. Pólya peaks and the oscillation of positive functions. Proc. Am. Math. Soc. 34 (1972), 403411. 6Google Scholar
Drasin, D. and Shea, D.F. Convolution inequalities, regular variation and exceptional sets. J. Analyse Math. 29 (1976), 232293. 4, 10, 18CrossRefGoogle Scholar
Dudley, R.M. Real Analysis and Probability. Cambridge Studies in Advanced Mathematics 74. Cambridge University Press, 2002. (1st ed. 1989.) 29, 30, 253CrossRefGoogle Scholar
Dugundji, J. Topology. Allyn and Bacon, 1966. 35, 85, 176, 197Google Scholar
Edgar, G.A. Measure, Topology and Fractal Geometry. Undergrad. Texts in Math., Springer, 1990. 226CrossRefGoogle Scholar
Edrei, A., Locally Tauberian theorems for meromorphic functions of lower order less than one. Trans. Am. Math. Soc. 140 (1969), 309332. 5CrossRefGoogle Scholar
Edrei, A. and Fuchs, W.H.J. Tauberian theorems for a class of mero-morphic functions with negative zeros and positive poles. In Contemporary Problems in Anal. Functions (Proc. Internat. Conf. Erevan, 1965, Russian), 339358. Nauka, 1966. 4, 5Google Scholar
Effros, E.G. Transformation groups and C*-algebras. Ann. Math. 81 (1965), 3855. 172CrossRefGoogle Scholar
Elekes, M. and Nagy, D. Haar null and Haar meagre sets: A survey and new results. Bull. Lon. Math. Soc. 52 (2020), 561619 (arXiv:1606.06607v2) 249CrossRefGoogle Scholar
Elekes, M. and Vidyánsky, Z. Naively Haar null sets in Polish groups. J. Math. Anal. Appl. 446 (2017), 193200. 249CrossRefGoogle Scholar
Ellentuck, E. A new proof that analytic sets are Ramsey. J. Symbolic Logic 39, 163165. 121CrossRefGoogle Scholar
Ellis, R. Continuity and homeomorphism groups. Proc. Am. Math. Soc. 4 (1953). 969973. 183, 197, 219CrossRefGoogle Scholar
Ellis, R. A note on the continuity of the inverse, Proc. Am. Math. Soc. 8 (1957). 372373. 197CrossRefGoogle Scholar
Ellis, R. Lectures on Topological Dynamics, Benjamin, 1969. 288Google Scholar
Emeryk, A., Frankiewicz, R. and Kulpa, W. On functions having the Baire property. Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 489491. 185Google Scholar
Engelking, R. On closed images of the space of irrationals. Proc. Am. Math. Soc. 21 (1969), 583586. 211CrossRefGoogle Scholar
Engelking, R. General Topology. Heldermann, 1989. xiii, 25, 26, 27, 28, 35, 36, 41, 44, 56, 58, 85, 86, 120, 136, 153, 157, 162, 165, 193, 194, 208, 214, 215, 279, 282Google Scholar
Erdos, P., Kestelman, H. and Rogers, C.A. An intersection property of sets with positive measure, Coll. Math. 11 (1963), 7580. 168CrossRefGoogle Scholar
Essén, R.R. The cos πλ Theorem. Lecture Notes in Math. 467, Springer, 1975. 6CrossRefGoogle Scholar
Falconer, K.J. The Geometry of Fractal Sets. Cambridge Tracts in Math. 85, Cambridge University Press, 1985. 226CrossRefGoogle Scholar
Falconer, K., Gruber, Peter M., Ostaszewski, A.J. and Stuart, Trevor. Claude Ambrose Rogers: 1 November 1920–5 December 2005. R. Soc. Biogr. Mem. 61 (2015), 403435. xiiiCrossRefGoogle Scholar
Federer, H. Geometric Measure Theory. Grundl. Math. Wiss. 153, Springer, 1969. 228Google Scholar
Feller, W. An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, 1966. (2nd ed. 1971.) 2Google Scholar
Fenstad, J.E. and Normann, D. On absolutely measurable sets. Fund. Math. 81 (1973/74), 9198. 62, 241CrossRefGoogle Scholar
Filipczak, M. and Wilczynski, W. Strict density topology on the plane. Measure case. Rend. Circ. Mat. Palermo(2) 60 (2011), 113124. 256CrossRefGoogle Scholar
Fischer, V., Friedman, S.S. and Khomskii, Y. Cichon diagram, regularity properties and sets of reals. Arch. Math. Logic 53 (2014), 695729. 231CrossRefGoogle Scholar
Foreman, M. and Kanamori, A. (eds). Handbook of Set Theory. Springer, 2010. 231, 271, 312, 315, 316CrossRefGoogle Scholar
Foreman, M. and Woodin, W.H. The generalized continuum hypothesis can fail everywhere. Ann. Math. 133 (1991), 135. 269CrossRefGoogle Scholar
Fort, M.K. Jr. A unified theory of semi-continuity. Duke Math. J. 16 (1949), 237246. 242Google Scholar
Fosgerau, M. When are Borel functions Baire functions? Fund. Math. 143 (1993), 137152. 191CrossRefGoogle Scholar
Frankiewicz, R. On functions having the Baire property, II. Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 (1982), 559560. 185Google Scholar
Frankiewicz, R. and Kunen, K. Solution of Kuratowski’s problem on function having the Baire property, I. Fund. Math. 128 (1987), 171180. 185CrossRefGoogle Scholar
Fréchet, M., Pri la funkcia ekvacio f(x+y) = f(x) + f(y) (in Esperanto). Enseignement Math. 15 (1913), 390393 21Google Scholar
Fréchet, M. Sur la notion de différentielle d’une fonction de ligne. Trans. Am. Math. Soc. 15 (1914), 135161. 21Google Scholar
Fremlin, D.H. Cech-Analytic Spaces, (1980). Available from www1.essex.ac.uk/maths/people/fremlin/n80l08.pdf. 57Google Scholar
Fremlin, D.H. Consequences of Martin’s Axiom. Cambridge Tracts in Mathematics 84, Cambridge University Press, 1984. 272CrossRefGoogle Scholar
Fremlin, D.H. Measure-additive coverings and measurable selectors. Dissertationes Math. (Rozprawy Mat.) 260 (1987), 116pp. 185Google Scholar
Fremlin, D.H. Universally Kuratowski–Ulam spaces, (2000a). Available from www1.essex.ac.uk/maths/people/fremlin/preprints.htm. 149, 158Google Scholar
Fremlin, D.H. Measure Theory, 1. The Irreducible Minimum. Torres Fremlin, 2000. Available from www1.essex.ac.uk/maths/people/fremlin/mt1.2011/index.htm. 25Google Scholar
Fremlin, D.H. Measure Theory, 2. Broad Foundations. Torres Fremlin, 2001. Available from www1.essex.ac.uk/maths/people/fremlin/mt2.2016/index.htm. 25, 207Google Scholar
Fremlin, D.H. Measure Theory, 3. Measure Algebras. Torres Fremlin, 2002. Available from www1.essex.ac.uk/maths/people/fremlin/mt3.2012/index.htm. 25, 148, 149, 241Google Scholar
Fremlin, D.H. Measure Theory, 4. Topological Measure Spaces. Part I, II. Torres Fremlin, 2003. Available from www1.essex.ac.uk/maths/people/fremlin/mt4.2013/index.htm. 25, 207, 272Google Scholar
Fremlin, D.H. Measure Theory, 5. Set-Theoretic Measure Theory. Part I, II. Torres Fremlin, 2008. Available from www1.essex.ac.uk/maths/people/fremlin/mt5.2015/index.htm. 25, 33, 138, 222, 232Google Scholar
Fremlin, D.H. and Grekas, S. Products of completion regular measures. Fund. Math. 147 (1995), 2737. 154CrossRefGoogle Scholar
Fremlin, D., Natkaniec, T. and Recław, I. Universally Kuratowski–Ulam spaces. Fund. Math. 165 (2000), 239247. 139, 148, 149, 159, 175, 228CrossRefGoogle Scholar
Friedman, S.D. and Schrittesser, D. Projective measure without projective Baire. Memoirs Am. Math. Soc. 267 No. 1298, 2020. 231CrossRefGoogle Scholar
Frolík, Z. Generalizations of the Gδ-property of complete metric spaces. Czechoslovak Math. J. 10 (1960), 359379. 56, 58, 195CrossRefGoogle Scholar
Frolík, Z. Absolute Borel and Souslin sets. Pacific J. Math. 32 (1970), 663683. 56CrossRefGoogle Scholar
Frolík, Z. and Holický, P. Decomposability of completely Suslin-additive families. Proc. Am. Math. Soc. 82 (1981), 359365. 209, 218CrossRefGoogle Scholar
Frolík, Z. and Netuka, I. Čech completeness and fine topologies in potential theory and real analysis. Expos. Math. 8 (1990), 8189. 111Google Scholar
Fuchs, L. Infinite Abelian Groups, I. Pure and Applied Mathematics 36, Academic Press, 1970. 142Google Scholar
Fuglede, B. The quasi topology associated with a countably subadditive set function. Ann. Inst. Fourier (Grenoble) 21 (1971), 123169. 116, 123CrossRefGoogle Scholar
Fukushima, M., Oshima, Y. and Takeda, M. Dirichlet Forms and Markov Processes. Walter de Gruyter, 1994. (1st ed., Fukushima, M., North-Holland, 1980.) 120CrossRefGoogle Scholar
Fuller, R.V. Relations among continuous and various non-continuous functions. Pacific J. Math. 25 (1968), 495509. 242, 243CrossRefGoogle Scholar
Gao, S. Invariant Descriptive Theory, CRC Press, 2009. 62Google Scholar
Ger, R. and Kuczma, M. On the boundedness and continuity of convex functions and additive functions. Aequat. Math. 4 (1970), 157162. 123CrossRefGoogle Scholar
Ghoussoub, N. and Maurey, B. Gδ-embeddings in Hilbert space. J. Funct. Anal. 61 (1985), 7297. 219CrossRefGoogle Scholar
Gillman, L. and Jerison, M. Rings of Continuous Functions. Van Nostrand, 1960. (Reprinted in Graduate Texts in Mathematics 43, Springer, 1976.) 41CrossRefGoogle Scholar
Glimm, J. Locally compact transformation groups. Trans. Am. Math. Soc. 101 (1961), 124138. 172CrossRefGoogle Scholar
Gnedenko, B.V. and Kolmogorov, A.N. Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, 1954. 2Google Scholar
Gödel, K. The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis. Ann. Math. Studies 3, Princeton University Press, 1940. 269, 270Google Scholar
Goffman, C. On Lebesgue’s density theorem. Proc. Am. Math. Soc. 1 (1950), 384388. 112Google Scholar
Goffman, C. On the approximate limits of a real function. Acta Sci. Math. (Szeged) 23 (1962), 7678. 107Google Scholar
Goffman, C. Everywhere differentiable functions and the density topology. Proc. Am. Math. Soc. 51 (1975), 250. 112Google Scholar
Goffman, C., Neugebauer, C.J. and Nishiura, T. Density topology and approximate continuity. Duke Math. J. 28 (1961), 497505. 107, 109, 110, 113, 167, 256CrossRefGoogle Scholar
Goffman, C. and Waterman, D. Approximately continuous transformations. Proc. Am. Math. Soc. 12 (1961), 116121. 107, 110, 167, 256CrossRefGoogle Scholar
Goldstern, M., Schmeling, J. and Winkler, R. Metric, fractal dimensional and Baire results on the distribution of subsequences. Math. Nachr. 219 (2000), 97108. 2263.0.CO;2-6>CrossRefGoogle Scholar
Goswami, K.C. Density topology on ℝ is not a Borel subset of its Stone–Čech compactification. Indian J. Pure Appl. Math. 16 (1985), 4548. 111Google Scholar
Gowisankaran, C. Radon measures on groups. Proc. Am. Math. Soc. 25 (1970), 381384. 243, 244CrossRefGoogle Scholar
Gowisankaran, C. Quasi-invariant Radon measures on groups. Proc. Am. Math. Soc. 35 (1972), 503506. 243, 244CrossRefGoogle Scholar
Graham, R.L., Rothschild, B.L. and Spencer, J.H. Ramsey Theory, 2nd ed. Wiley, 1990. (1st ed. 1980.) 141Google Scholar
Green, G. An Essay on the application of mathematical analysis to the theories of electricity and magnetism. T. Wheelhouse, Nottingham, 1828. (Facsimile edition, Wazäta-Melins Aktiebolag, Göteberg, 1958.) 114Google Scholar
de Groot, J. Subcompactness and the Baire category theorem. Nederl. Akad. Wetensch. Proc. Ser. A 66 (1963), 761767. 135CrossRefGoogle Scholar
Grosse-Erdmann, K.-G. Holomorphe Monster und Universelle Funktionen. Mitt. Math. Sem. Giessen 176 (1987). 228Google Scholar
Grosse-Erdmann, K.-G. An extension of the Steinhaus–Weil theorem. Colloq. Math. 57 (1989), 307317. 239CrossRefGoogle Scholar
Grosse-Erdmann, K.-G. Universal families and hypercyclic operators. Bull. Am. Math. Soc. 36 (1999), 345381. 228CrossRefGoogle Scholar
Gruenhage, G. Generalized metric spaces. In KunV 1984, Chapter 10. 44, 45, 49Google Scholar
Gruenhage, G. Irreducible restrictions of closed mappings. Topol. Appl. 85 (1998), 127Ű135.CrossRefGoogle Scholar
de Haan, L. On regular variation and its applications to the weak convergence of sample extremes. Math. Centre Tracts 32, Amsterdam, 1970. 3, 9Google Scholar
Halmos, P.R. Measure Theory, Van Nostrand, 1950. (Reprinted as Graduate Texts in Math. 18, Springer, 1974.) 24, 25, 75, 148, 251, 253, 257CrossRefGoogle Scholar
Hamel, G. Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung f (x + y) = f (x) + f (y). Math. Ann. 60 (1905), 459462. 20CrossRefGoogle Scholar
Hand, D. J. Measurement Theory and Practice: The World through Quantification. Arnold. 22Google Scholar
Hansel, G. and Troallic, J.-P. Quasicontinuity and Namioka’s theorem. Topol. Appl. 46 (1992), 135149. 197CrossRefGoogle Scholar
Hansell, R.W. Borel measurable mappings for nonseparable metric spaces. Trans. Am. Math. Soc. 161 (1971), 145169. 39, 185, 208, 209, 217, 218CrossRefGoogle Scholar
Hansell, R.W. On the nonseparable theory of Borel and Souslin sets. Bull. Am. Math. Soc. 78 (1972), 236241. 205CrossRefGoogle Scholar
Hansell, R.W. On the representation of nonseparable analytic sets. Proc. Am. Math. Soc. 39 (1973), 402408. 203, 205CrossRefGoogle Scholar
Hansell, R.W. On the non-separable theory of k-Borel and k-Souslin sets. General Topol. Appl. 3 (1973), 161195. 205, 208CrossRefGoogle Scholar
Hansell, R.W. On characterizing non-separable analytic and extended Borel sets as types of continuous images. Proc. London Math. Soc. 28 (1974), 683699. 193, 208, 209, 210, 211, 218CrossRefGoogle Scholar
Hansell, R.W. Descriptive topology. In HuŽek, H. and van Mill, J. (eds).. Elsevier, 1992, 275–315. 56, 58, 204, 209, 213, 215, 218Google Scholar
Hansell, R.W. Nonseparable analytic metric spaces and quotient maps. Topol. Appl. 85 (1998), 143152. 209, 219CrossRefGoogle Scholar
Hansell, R.W., Jayne, J.E. and Rogers, C.A. K-analytic sets. Mathematica 30(2) (1983), 189221. 57, 207Google Scholar
Hardy, G.H. Researches in the theory of divergent series and divergent integrals. Quart. J. Math. 35 (1904), 2266. (Reprinted in Collected Papers of G. H. Hardy, Volume VI, Oxford University Press, 1974, 37–84.) 17Google Scholar
Hardy, G.H. A new proof of the functional equation for the zetafunction. Matematisk Tidsskrift B (1922), 7173. Reprinted in Collected Papers of G. H. Hardy, Volume II.1, Oxford University Press. 227Google Scholar
Hardy, G.H. Divergent Series. Oxford University Press, 1949. 13, 14, 15, 17Google Scholar
Hardy, G.H. and Littlewood, J.E. Theorems concerning the summability of series by Borel’s exponential method. Rend. Circ. Mat. Palermo 41 (1916), 3653. (Reprinted in Collected Papers of G.H. Hardy, Volume VI, Oxford University Press, 1974, 609–628.) 16Google Scholar
Hardy, G.H. and Littlewood, J.E. The equivalence of certain integral means. Proc. London Math. Soc. 22 (1924), 6063. (Reprinted in Collected Papers of G.H. Hardy, Volume VI, Oxford University Press, 1974, 677–680.) 12Google Scholar
Hardy, G.H. and Riesz, M. The General Theory of Dirichlet’s Series. Cambridge Tracts in Math. 18, Cambridge University Press, 1915. 17Google Scholar
Hardy, G.H. and Wright, E.M. An Introduction to the Theory of Numbers, 6th ed. (revised Heath-Brown, D.R. and Silverman, J.H.), Oxford University Press, 2008. 8, 10, 140CrossRefGoogle Scholar
Harman, G. Metric Number Theory. LMS Monographs 18, Oxford University Press, 1988. 225Google Scholar
Harrington, L.A., Kechris, A.S. and Louveau, A. A Glimm–Effros dichotomy for Borel equivalence relations. J. Amer. Math. Soc. 3 (1990), 903928. 173CrossRefGoogle Scholar
Hartman, S. Travaux de W. Sierpinski sur la théorie des ensembles et ses applications IV. Mesure et catégorie. Congruence des ensembles. In Sie 1975, 2025. 137Google Scholar
Hartman, S. and Mycielski, J. On the imbedding of topological groups into connected topological groups. Colloq. Math. 5 (1958), 167169. 185CrossRefGoogle Scholar
Haupt, O. and Pauc, C. La topologie approximative de Denjoy envisagée comme vraie topologie. C. R. Acad. Sci. Paris 234 (1952), 390392. 107, 167, 256Google Scholar
Hawkes, J. On the potential theory of subordinators. Z. Wahrschein. 33 (1975), 113132. 118CrossRefGoogle Scholar
Haworth, R.C. and McCoy, R.C. Baire spaces. Dissertationes Math. 141 (1977). 37, 156Google Scholar
Hayes, C.A. and Pauc, C.Y. Derivation and Martingales. Ergebnisse Math. 49, Springer, 1970. 105CrossRefGoogle Scholar
Hayman, W.K. Meromorphic Functions. Oxford University Press, 1964. 5, 6Google Scholar
Hayman, W.K. Some examples related to the cos πρ theorem. In Shankar, H. (ed), Mathematical Essays Dedicated to A.J. Macintyre. Ohio University Press, 1970, 149170. 6Google Scholar
Heiberg, C. A proof of a conjecture by Karamata. Publ. Inst. Math. Beograd (NS) 12 (26), 4144. 10Google Scholar
Helms, L.L. Introduction to Potential Theory. Wiley, 1969. 115, 116Google Scholar
Hewitt, E. and Ross, K.A. Abstract Harmonic Analysis, I. Structure of Topological Groups, Integration Theory, Group Representations, 2nd ed. Grundl. Math. Wiss. 115, Springer, 1979. 173, 191, 253, 257Google Scholar
Heyer, H. Probability Measures on Locally Compact Groups. Ergebnisse Math. 94, Springer, 1977. 186CrossRefGoogle Scholar
Hildenbrandt, W. Core and Equilibria of a Large Economy. Princeton University Press, 1974. 54Google Scholar
Hille, W. and Phillips, R.S. Functional Analysis and Semi-Groups. Am. Math. Soc. Colloq. Publ. 31, Am. Math. Soc., 1957. 239Google Scholar
Hindman, N. and Strauss, D. Algebra in the Stone-Cech Compactification. Theory and Applications. De Gruyter Expos. Math. 27, Gruyter, Walter de, 1998 (2nd revised and extended ed., de Gruyter, 2012). 64, 274Google Scholar
Hoffmann-Jørgensen, J. Automatic continuity. In RogJD 1980, Part 3.2, 337–398. 175, 177, 185, 187, 197Google Scholar
Holá, L. and Novotný, B. Subcontinuity. Math. Slov. 62 (2012), 345362. 242CrossRefGoogle Scholar
Holický, P. Preservation of completeness by some continuous maps. Topol. Appl. 157 (2010), 19261930. 220CrossRefGoogle Scholar
Holický, P. and Pol, R. On a question by Alexey Ostrovsky concerning preservation of completeness. Topol. Appl. 157 (2010), 594596. 196, 216, 219CrossRefGoogle Scholar
Hrušák, M. and Zamora Avilés, B. Countable dense homogeneity of definable spaces. Proc. Am. Math. Soc. 133 (2005), 34293435. 56CrossRefGoogle Scholar
Hult, H., Lindskog, F., Mikosch, T. and Samorodnitsky, G. Functional large deviations for multivariate regularly varying random walks. Ann. Appl. Probab. 15(4) (2005), 26512680. 278CrossRefGoogle Scholar
Hurewicz, W. and Wallman, H. Dimension Theory. Princeton University Press, 1941. 226Google Scholar
Hyde, J., Laschos, V., Olsen, L., Petrykiewicz, I. and Shaw, A. Iterated Cesàro averages, convergence, frequencies of digits and Baire category. Acta Arith. 144 (2010), 287293. 225CrossRefGoogle Scholar
Ihoda, J.I. (Judah, H.I.) and Shelah, S. -ets of reals. Ann. Pure Appl. Logic 42 (1989), 207223. 230CrossRefGoogle Scholar
Ionescu Tulcea, A. and Ionescu Tulcea, C. On the lifting property, I. J. Math. Anal. Appl. 3 (1961), 537546. 104CrossRefGoogle Scholar
Ionescu Tulcea, A. and Ionescu Tulcea, C. Topics in the Theory of Lifting. Ergebnisse Math. 48, Springer, 1969. 104CrossRefGoogle Scholar
Itzkowitz, G.L. A characterization of a class of uniform spaces that admit an invariant integral. Pacific J. Math. 41 (1972), 123141. 196CrossRefGoogle Scholar
Jablonska, E. Some analogies between Haar meager sets and Haar null sets in abelian Polish groups. J. Math. Anal. Appl. 421 (2015), 14791486. 249, 263, 264CrossRefGoogle Scholar
Jablonska, E. A theorem of Piccard’s type in abelian Polish groups. Anal. Math. 42 (2016), 159164. 255CrossRefGoogle Scholar
Jakimovski, A. A generalization of the Lototsky method of summation. Michigan Math. J. 6, 277290. 16Google Scholar
James, R.C. Linearly arc-wise connected topological Abelian groups. Ann. Math. 44, (1943), 93102. 86CrossRefGoogle Scholar
James, R.C., Michal, A.D. and Wyman, M. Topological Abelian groups with ordered norms. Bull. Am. Math. Soc. 53 (1947), 770774. 86CrossRefGoogle Scholar
Janson, S. Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics 129. Cambridge University Press, 1997. 260CrossRefGoogle Scholar
Javor, P. On the general solution of the functional equation f (x + y f (x)) = f (x) f (y), Aequat. Math. 1 (1968), 235238. 288CrossRefGoogle Scholar
Jech, Th.J. The Axiom of Choice. North-Holland, 1973. 20, 270Google Scholar
Jech, Th.J. Set Theory. Springer, 1977. 277Google Scholar
Jensen, R.B. The fine structure of the constructible hierarchy. Ann. Math. Logic 4 (1972), 229308. 145CrossRefGoogle Scholar
Jiménez-Garrido, J., Sanz, J. and Schindl, G. Indices of O-regular variation for weight functions and weight sequences. Rev. R. Acad. Cienc. Ex. Fac. Nat. Ser. A (RACSAM) 113 (2019), 36593697. 7Google Scholar
Johnstone, P.J. Stone Spaces. Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, 1982. 149Google Scholar
Jones, F.B. Connected and disconnected plane sets and the functional equation f (x + y) = f (x) + f (y). Bull. Am. Math. Soc. 48 (1942), 115120. 145CrossRefGoogle Scholar
Jones, F.B. Measure and other properties of a Hamel basis. Bull. Am. Math. Soc. 48 (1942), 472481. 21CrossRefGoogle Scholar
Jones, F.B. Use of a new technique in homogeneous continua. Houston J. Math. 1 (1975), 5761. 173Google Scholar
Jordan, G.S. Regularly varying functions and convolutions with real kernels. Trans. Am. Math. Soc. 194 (1974), 177194. 5CrossRefGoogle Scholar
Judah, H. and Roslanowski, A. On Shelah’s amalgamation. In Set Theory of the Reals (Ramat Gan, 1991), 385414, Israel Math. Conf. Proc., 6, Univ, Bar-Ilan., Gan, Ramat, 1993. 233Google Scholar
Judah, H.I. (Ihoda, J.I.) and Shelah, S. -sets of reals. J. Symbolic Logic 58 (1993), 7280. 231CrossRefGoogle Scholar
Judah, H.I. and Shelah, S. Baire property and axiom of choice. Israel J. Math. 84 (1993), 435450. 232, 233CrossRefGoogle Scholar
Judah, H.I. (Ihoda, J.I.) and Spinas, O. Large cardinals and projective sets. Arch. Math. Logic 36 (1997), 137155. 229, 233, 269CrossRefGoogle Scholar
Kahane, J.-P. Some Random Series of Functions, 2nd ed. Cambridge Studies in Advanced Mathematics 5, Cambridge University Press. (1st ed. 1968, Heath, MA.) 224, 227, 229, 234Google Scholar
Kahane, J.-P. A century of interplay between Taylor series, Fourier series and Brownian motion. Bull. London Math. Soc. 29 (1997), 257279. 223, 224, 227CrossRefGoogle Scholar
Kahane, J.-P. Baire’s category theorem and trigonometric series. J. Anal. Math. 80 (2000), 143182. 138, 224, 227, 229CrossRefGoogle Scholar
Kahane, J.-P. Probabilities and Baire’s theory in harmonic analysis. In Byrnes, J. S. (ed), Twentieth Century Harmonic Analysis, A Celebration. Kluwer, 2001, 5772. 138, 223, 224, 227, 229, 234CrossRefGoogle Scholar
Kahane, J.-P. and Queffélec, H. Ordre, convergence et sommabilités des séries de Dirichlet. Ann. Inst. Fourier 47 (1997), 485529. 227CrossRefGoogle Scholar
Kakutani, K. Über die Metrisation der topologischen Gruppen. Proc. Imp. Acad. Tokyo 12 (1936), 8284. (Reprinted in Selected Papers, 1, Kallman, R.R. (ed), 6062. Birkhäuser, 1986.) 86, 91Google Scholar
Kalemba, P. and Kucharski, A. Universally Kuratowski–Ulam spaces and open–open games. Ann. Math. Siles. 29 (2015), 421427. 149Google Scholar
Kallenberg, O. Foundations of Modern Probability, 2nd ed., Springer, 2002. (1st ed. 1997.) 240CrossRefGoogle Scholar
Kalton, N.J., Peck, N.T. and Roberts, J.R. An F-space Sampler, London Math. Soc. Lect. Notes Ser. 89, Cambridge University Press, 1984. 174CrossRefGoogle Scholar
Kanamori, A. The Higher Infinity. Large Cardinals in Set Theory from their Beginnings, 2nd ed. Springer, 2003. (1st ed. 1994.) 62, 232, 277Google Scholar
Kanamori, A. Set theory from Cantor to Cohen. In Irvine, A. (ed), Handbook of the Philosophy of Scienc. Philosophy of Mathematics, Chapter 10. North-Holland, 2009. 36Google Scholar
Kanamori, A. and Magidor, M. The evolution of large cardinal axioms in set theory. Higher Set Theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977), pp. 99275, Lecture Notes in Math. 669, Springer, 1978. 232CrossRefGoogle Scholar
Kaniewski, J. and Pol, R. Borel-measurable selectors for compactvalued mappings in the non-separable case. Bull. Acad. Polon. Sci. Sér. Sci. Math. 23 (1975), 10431050. 209, 218Google Scholar
Kanovei, B.G. and Lyubetskii, V.A. On some classical problems of descriptive set theory. Russian Math. Surveys 58 (2003), 839927. 230CrossRefGoogle Scholar
Karamata, J. Selected Papers, Marić, V. (ed). Zavod za Udz̆benike, Beograd, 2009. 8, 298Google Scholar
Katznelson, Y. and Stromberg, K. Everywhere differentiable, nowhere monotone, functions. Am. Math. Monthly 81 (1974), 349354. 113CrossRefGoogle Scholar
Kaufman, R. A functional method for linear sets. Israel J. Math. 5 (1967), 185187. 223CrossRefGoogle Scholar
Kaufman, R. Thin sets, differentiable functions and the category method. In J. Fourier Anal. Appl., Special Issue in honour of J.-P. Kahane, 311316. CRC Press, 1995. 223Google Scholar
Kechris, A.S. Topology and descriptive set theory. Topol. Appl. 58 (1994), 195222. 175CrossRefGoogle Scholar
Kechris, A.S. Classical Descriptive Set Theory. Graduate Texts in Mathematics 156, Springer, 1995. xiii, 36, 38, 46, 47, 48, 61, 62, 79, 117, 121, 123, 154, 162, 167, 196, 203, 231, 232, 240, 241, 268, 274CrossRefGoogle Scholar
Kechris, A.S. and Louveau, A. Descriptive Set Theory and the Structure of Sets of Uniqueness. London Math. Soc. Lecture Note Series 128, Cambridge University Press, 1987. 138, 228CrossRefGoogle Scholar
Kechris, A.S. and Solovay, R.M. On the relative consistency strength of determinacy hypotheses. Trans. Am. Math. Soc. 290(1) (1985), 179211. 232Google Scholar
Kelley, J.L. General Topology. Van Nostrand, 1955. (2nd ed. Springer, 1975.) 36, 42, 59, 86, 136, 201, 219, 282Google Scholar
Kellogg, O.D. Foundations of Potential Theory. Dover, 1953. (Originally published in Grundlehren Math. Wiss. 31 (1929), reprinted 1967, Springer.) 114, 115Google Scholar
Kemperman, J.H.B. A general functional equation. Trans. Am. Math. Soc. 86 (1957), 2856. 74, 241CrossRefGoogle Scholar
Kendall, D.G. Delphic semigroups, infinitely divisible regenerative phenomena and the arithmetic of p-functions. Z. Wahrschein vew. Geb. 9 (1968), 163195. (Reprinted in Stochastic Analysis, Harding, E.F. and Kendall, D.G. (eds), 73–114. Wiley, 1973.) 18CrossRefGoogle Scholar
Kestelman, H. The convergent sequences belonging to a set. J. London Math. Soc. 22 (1947), 130136. 73, 162CrossRefGoogle Scholar
Kestelman, H. On the functional equation f (x + y) = f (x) + f (y). Fund. Math. 34 (1947), 144147. 145CrossRefGoogle Scholar
Kharazishvili, A.B. Transformation Groups and Invariant Measures. Set-Theoretic Aspects. World Scientific, 1998. 240CrossRefGoogle Scholar
Kharazishvili, Alexander. Nonmeasurable Sets and Functions. Elsevier, 2004. 22, 172Google Scholar
Kharazishvili, A.B. Strange Functions in Real Analysis, 3rd ed. Chapman and Hall, 2018. (2nd ed. 2006, 1st ed. 2000.) 113Google Scholar
Kharazishvili, A. Some remarks on the Steinhaus property for invariant extensions of the Lebesgue measure. Eur. J. Math. 5 (2019), 8190. 256CrossRefGoogle Scholar
Khintchin, A.Y. and Kolmogorov, A.N. Über Konvergenz von Reihen, deren Glieder durch den Zufall bestimmt werden. Mat. Sbornik 32 (1925), 668677. 224Google Scholar
Khrushchev, S. Orthogonal Polynomials and Continued Fractions, from Euler’s Point of View. Encycl. Math. Appl. 122, Cambridge University Press, 2008. 225CrossRefGoogle Scholar
Kingman, J.F.C. Ergodic properties of continuous-time Markov processes and their discrete skeletons. Proc. London Math. Soc. 13 (1963), 593604. 78, 82, 134CrossRefGoogle Scholar
Kingman, J.F.C. A note on limits of continuous functions. Quart. J. Math. 15 (1964), 279282. 18, 78, 82CrossRefGoogle Scholar
Klee, V.L. Invariant metrics in groups (solution of a problem of Banach). Proc. Am. Math. Soc. 3 (1952), 484487. 86, 89, 285CrossRefGoogle Scholar
Kleinberg, E.M. Infinitary Combinatorics and the Axiom of Determinateness. Lecture Notes in Math. 612, Springer, 1977. 231CrossRefGoogle Scholar
Kneebone, G.T. Mathematical Logic and the Foundations of Mathematics. An Introductory Survey. Nostrand, Van 1963. (Reprinted, Dover, 2001). 269Google Scholar
Kodaira, K. Über die Beziehung zwischen den Massen und den Topologien in einer Gruppe. Proc. Phys.-Math. Soc. Japan 23 (1941), 67119. 138Google Scholar
Koellner, P. and Woodin, W.H. Large Cardinals from Determinacy. In ForK 2010. 232Google Scholar
Kolmogorov, A.N. Zur Normierbarkeit eines allgemeinen topologischen linearen Raumes. Studia Math. 5 (1934), 2933. 86CrossRefGoogle Scholar
Kominek, Z. On the sum and difference of two sets in topological vector spaces. Fund. Math. 71 (1971), 165169. 239CrossRefGoogle Scholar
Kominek, Z. On the continuity of Q-convex and additive functions. Aequationes Math. 23 (1981), 146150. 22CrossRefGoogle Scholar
Kominek, Z. On an equivalent form of a Steinhaus theorem, Math. (Cluj) 30 (53)(1988), 2527. 255, 259Google Scholar
Komjáth, P. Large small sets. Colloq. Math. 56 (1988), 231233. 74CrossRefGoogle Scholar
Komjáth, P. and Totik, V. Ultrafilters. Am. Math. Month. 115 (2008), 3344.CrossRefGoogle Scholar
Korevaar, J. Tauberian Theory: A Century of Developments. Grundl. Math. Wiss. 329, 2004, Springer. 7, 13, 14, 15, 16CrossRefGoogle Scholar
Körner, T.W. curve, Kahane’s Helson. In J. Fourier Anal. Appl., Special Issue in honour of J.-P. Kahane, 325346. CRC Press, 1995. 223, 227Google Scholar
Krom, M.R. Cartesian products of metric Baire spaces. Proc. Am. Math. Soc. 42 (1974), 588594. 160CrossRefGoogle Scholar
Kucharski, A. and Plewik, S. Game approach to universally Kuratowski–Ulam spaces. Topol. Appl. 154 (2007), 8592. 149CrossRefGoogle Scholar
Kuczma, M. An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Functional Equation and Jensen’s Inequality. PWN, 1985. 20, 21, 123, 144, 146, 241, 260Google Scholar
Kuczma, M. and Smítal, J. On measures connected with the Cauchy equation. Aequationes Math. 14(3) (1976), 421428. 259CrossRefGoogle Scholar
Kunen, K. Some applications of iterated ultrapowers in set theory. Ann. Math. Logic 1 (1970), 179227. 277CrossRefGoogle Scholar
Kunen, K. Set Theory. An Introduction to Independence Proofs. Studies in Logic and Foundations of Mathematics 102, North-Holland, 1983. 268Google Scholar
Kunen, K. Set Theory. Studies in Logic (London) 34. College Publications, London, 2011. 268Google Scholar
Kunen, K. and Vaughan, J.E. Handbook of Set-Theoretic Topology. North-Holland, 1984. 25, 300, 306, 322Google Scholar
Kuratowski, C. Sur les fonctions représentables analytiquement et les ensembles de première catégorie. Fund. Math. 5 (1924), 7586. 184CrossRefGoogle Scholar
Kuratowski, K. Topology, I. PWN, 1966. 38, 42, 122, 184, 195, 224CrossRefGoogle Scholar
Kuratowski, K. Topology, II. PWN, 1968. 186, 279Google Scholar
Kuratowski, K. and Mostowski, A. Set Theory. North Holland, 1968. 199Google Scholar
Kuratowski, C. and Ulam, S. Quelques propriétés topologiques du produit combinatoire. Fund. Math. 19 (1932), 247251. 148CrossRefGoogle Scholar
Łabedzki, G. and Repický, M. Hechler reals. J. Symbolic Logic 60 (1995), 444458. 122CrossRefGoogle Scholar
Laczkovich, M. Analytic subgroups of the reals. Proc. Am. Math. Soc. 126 (1998), 17831790. 140, 141CrossRefGoogle Scholar
Larson, P.B. A brief history of determinacy. In Kechris, A.S., Löwe, B., Steel, J.R. (eds), The Cabal Seminar Vol. 4. Lecture Notes in Logic, 49, Cambridge University Press, 2010, 360. 232Google Scholar
LePage, R.D. Subgroups of paths and reproducing kernels. Ann. Prob. 1 (1973), 345347. 260Google Scholar
Levi, S. On Baire cosmic spaces. In General Topology and Its Relations to Modern Analysis and Algebra, V, (Prague, 1981), pp. 450454. Sigma Ser. Pure Math. 3, Heldermann, 1983. 56, 192, 193, 196, 198Google Scholar
Lévy, A. and Solovay, R.M. Measurable cardinals and the Continuum Hypothesis. Israel J. Math. 5 (1967), 234248. 274CrossRefGoogle Scholar
Li, R. and Zsilinszky, L. More on products of Baire spaces. Topol. Appl. 230 (2017), 3544. 160CrossRefGoogle Scholar
Liouville, J. Sur les classes très-étendues des quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationelles algébriques. J. Math. Pures et Appliquées 16 (1851), 133142. 223Google Scholar
Liu, T.S. and van Rooij, A. Transformation groups and absolutely continuous measures. Indag. Math. 71 (1968), 225231. 243CrossRefGoogle Scholar
Liu, T.S., van Rooij, A. and Wang, J.-K. Transformation groups and absolutely continuous measures II. Indag. Math. 73 (1970), 5761. 243CrossRefGoogle Scholar
Littlewood, J.E. Lectures on the Theory of Functions. Oxford University Press, 1944. 24Google Scholar
Loewen, P.D. and Wang, Xianfu. Typical properties of Lipschitz functions. Real Anal. Exchange 26 (2000), 717726. 228CrossRefGoogle Scholar
Louveau, A. Une méthode topologique pour l’étude de la propriété de Ramsey. Israel J. Math. 23 (1976), 97116. 121CrossRefGoogle Scholar
Louveau, A. A separation theorem for sets. Trans. Am. Math. Soc. 260 (1980), 363378. 121Google Scholar
Lowen, R. Approach Spaces. The Missing Link in the Topology–Uniformity–Metric Triad. Oxford University Press, 1997. 87Google Scholar
Lukeš, J. Malý, M., and Zajíček, L. Fine Topology Methods in Real Analysis and Potential Theory. Lecture Notes Math. 1189, Springer, 1986. 72, 101, 105, 109, 110, 111, 117, 123, 124, 126, 127, 130, 256CrossRefGoogle Scholar
(Luzin), Lusin, N.N. Sur la classification de M. Baire. Comptes Rendus 161 (1917), 9194. 51Google Scholar
Lusin (Luzin), N.N. Leςons sur les Ensembles Analytiques. Gauthier-Villars, 1930. 51Google Scholar
Lusin (Luzin), N.N. and Sierpinski, W. Sur un ensemble non measurable B. J. Math. (NS) 2 (1923), 5372. 51Google Scholar
Mackey, G.W. Borel structure in groups and their duals. Trans. Am. Math. Soc. 85 (1957), 134165. 253CrossRefGoogle Scholar
Maharam, D. On a theorem of von Neumann. Proc. Am. Math. Soc. 9 (1958), 987994. 104CrossRefGoogle Scholar
Szpilrajn, E. (Marczewski, E.) Sur une classe de fonctions de M. Sierpinski et la classe correspondante d’ensembles. Fund. Math. 24 (1935), 1734. 22CrossRefGoogle Scholar
Marczewski, E. and Sikorski, R. Remarks on measure and category. Colloq. Math. 2 (1949), 1319. 33CrossRefGoogle Scholar
Martin, D.A. and Kechris, A.S. Infinite games and effective descriptive set theory. In RogJD 1980, Part 4. 61, 121Google Scholar
Martin, D.A. and Solovay, R.M. Internal Cohen extensions. Ann. Math. Logic 2 (1970), 143178. 272CrossRefGoogle Scholar
Martin, N.F.G. Generalized condensation points. Duke Math. J. 28 (1961), 507514. 127, 130, 256CrossRefGoogle Scholar
Martin, N.F.G. A topology for certain measure spaces. Trans. Am. Math. Soc. 112 (1964), 118. 105, 106, 107, 256CrossRefGoogle Scholar
Mathias, A.R.D. Surrealist landscape with figures (a survey of recent results in set theory). Period. Math. Hung. 10 (1979), 109175. 234CrossRefGoogle Scholar
Matoŭsková, E. and Zelený, M. A note on intersections of non–Haar null sets. Colloq. Math. 96 (2003), 14. 255, 257CrossRefGoogle Scholar
Mauldin, D. The Scottish Book. Birkhäuser, 1981. 46Google Scholar
Medini, A. On the scope of the Effros theorem. Fund. Math. 258 (2022), 211223. 173CrossRefGoogle Scholar
Meerschaert, M.S. and Scheffler, H.-P. Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. Wiley, 2001. 278Google Scholar
Mehdi, M.R. On convex functions. J. London Math. Soc. 39 (1964), 321326. 19, 21, 186, 283CrossRefGoogle Scholar
Meyer, P.-A. Probability and Potentials. Blaisdell, 1988. 117Google Scholar
Meyer-König, W. Untersuchungen über einige verwandte Limitierungsverfahren. Math. Z. 52 (1949), 257304. 14CrossRefGoogle Scholar
Michal, A.D. Differentials of functions with arguments and values in topological abelian groups. Proc. Nat. Acad. Sci. USA 26 (1940), 356359. 86CrossRefGoogle ScholarPubMed
Michal, A.D. Functional analysis in topological group spaces. Math. Mag. 21 (1947), 8090. 86CrossRefGoogle Scholar
Michael, E. On maps related to σ-locally finite and σ-discrete collections of sets. Pacific J. Math. 98 (1982) 139152. 208CrossRefGoogle Scholar
Michael, E. A note on completely metrizable spaces. Proc. Am. Math. Soc. 96 (1986), 513522. 195, 219CrossRefGoogle Scholar
Michael, E. Almost complete spaces, hypercomplete spaces and related mapping theorems. Topol. Appl. 41 (1991), 113130. 182, 195, 213CrossRefGoogle Scholar
van Mill, J. A note on the Effros Theorem. Am. Math. Monthly 111 (2004), 801806. 59, 173, 175, 176, 177, 178CrossRefGoogle Scholar
van Mill, J. Homogeneous spaces and transitive actions by Polish groups. Israel J. Math. 165 (2008), 133159. 173, 179CrossRefGoogle Scholar
van Mill, J. Analytic groups and pushing small sets apart. Trans. Am. Math. Soc. 361 (2009), 54175434. 175CrossRefGoogle Scholar
van Mill, J. and Pol, R. The Baire category theorem in products of linear spaces and topological groups. Topol. Appl. 22 (1986), 267282. 139, 148, 175, 228CrossRefGoogle Scholar
Miller, A.W. Infinite combinatorics and definability. Ann. Pure Appl Math. Logic 41(1989), 179203. (See also updated web version at: www.math.wisc.edu/\char126\relaxmiller/res/.) 145CrossRefGoogle Scholar
Miller, A.W. Descriptive Set Theory and Forcing. Springer, 1995. 122, 145CrossRefGoogle Scholar
Miller, A.W. and Popvassilev, S.G. Vitali sets and Hamel bases that are Marczewski measurable. Fund. Math. 166 (2000), 269279. 22CrossRefGoogle Scholar
Miller, H.I. Generalization of a result of Borwein and Ditor. Proc. Am. Math. Soc. 105 (1989), 889893. 74, 162CrossRefGoogle Scholar
Miller, H.I. and Ostaszewski, A.J. Group action and shiftcompactness. J. Math. Anal. Appl. 392 (2012), 2339. 177, 248, 279CrossRefGoogle Scholar
Miller, H.I., Miller-Van Wieren, L. and Ostaszewski, A.J. Beyond Erdős–Kunen–Mauldin: Singular sets with shift-compactness properties. Topol. Appl. 291 (2021), 107605. 73CrossRefGoogle Scholar
Mitchell, W.J. Beginning inner model theory. In ForK 2010, pp. 1487–1594. 275, 276Google Scholar
Montgomery, D. Non-separable metric spaces. Fund. Math. 25 (1935), 527533. 96CrossRefGoogle Scholar
Montgomery, D. Continuity in topological groups. Bull. Am. Math. Soc. 42 (1936), 879882. 197CrossRefGoogle Scholar
Montgomery, D. Locally homogeneous spaces. Ann. Math. 52 (1950), 261271. 173CrossRefGoogle Scholar
Moschovakis, Y.N. Descriptive Set Theory, 2nd ed. Math. Surveys Monog. 155, Am. Math. Soc., 2009. (1st ed. 1980). 61CrossRefGoogle Scholar
Mospan, Y.V. A converse to a theorem of Steinhaus–Weil. Real An. Exch. 31 (2005), 291294. 250, 251, 254CrossRefGoogle Scholar
Mueller, B.J. Three results for locally compact groups connected with the Haar measure density theorem. Proc. Am. Math. Soc. 16 (1965), 14141416. 256Google Scholar
Munkres, J.R. Topology, A First Course. Prentice-Hall, 1975. 35Google Scholar
Muthuvel, K. Application of covering sets. Colloq. Math. 80 (1999), 115122. 117CrossRefGoogle Scholar
Mycielski, J. Finitely additive measures. Coll. Math. 42 (1979), 309318. 240CrossRefGoogle Scholar
Mycielski, J. and Steinhaus, H. A mathematical axiom contradicting the Axiom of Choice. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 13. 231Google Scholar
Mycielski, J. and Swierczkowski, S. On the Lebesgue measurability and the axiom of determinateness. Fund. Math. 54 (1964), 6771. 61, 231CrossRefGoogle Scholar
Namioka, I. Separate and joint continuity. Pacific J. Math. 51 (1974), 515531. 197CrossRefGoogle Scholar
Namioka, I. and Pol, R. σ-fragmentability and analyticity. Mathematika 43 (1969), 172181. 203CrossRefGoogle Scholar
Neeb, K.-H. On a theorem of S. Banach. J. Lie Theory 7 (1997), 293300. 184, 189, 190, 191, 318Google Scholar
Neeman, I. Determinacy in L(ℝ). In ForK 2010, Chapter 21. 231Google Scholar
Neumann, B.H. Groups covered by finitely many cosets. Publ. Math. Debrecen 3 (1954/5), 227242. 142CrossRefGoogle Scholar
Neumann, B.H. Groups covered by permutable subsets. J. London Math. Soc. 29 (1954), 236248. 142CrossRefGoogle Scholar
Nikodym, O. Sur une propriété de l’opération A. Fund. Math. 7 (1925), 149154. 54CrossRefGoogle Scholar
Noll, D. A topological completeness concept with applications to the open mapping theorem and the separation of convex sets. Topol. Appl. 35 (1990), 5369. 182CrossRefGoogle Scholar
Noll, D. Souslin measurable homomorphisms of topological groups. Arch. Math. (Basel) 59 (1992), 294301. 217CrossRefGoogle Scholar
Olsen, L. Extremely non-normal numbers. Math. Proc. Cambridge Phil. Soc. 137 (2004), 4353. 225CrossRefGoogle Scholar
O’Malley, R.J. Approximately differentiable functions: The r topology. Pacific J. Math. 72 (1977), 207222. 122, 124CrossRefGoogle Scholar
Ostaszewski, A.J. On countably compact perfectly normal spaces. J. London Math. Soc. 14 (1976), 505516. 145CrossRefGoogle Scholar
Ostaszewski, A.J. Monotone normality and Gδ -diagonals in the class of inductively generated spaces. In Topology II, p. 905930. Colloq. Math. Soc. János Bolyai 23, North-Holland, 1980. 44Google Scholar
Ostaszewski, A.J. On how to trap a gap: “An Introduction to Independence for Analysts by Dales, H.G. and Woodin, W.H.”. Bull. London Math. Soc. 21 (1989), 197208. 232CrossRefGoogle Scholar
Ostaszewski, A.J. Regular variation, topological dynamics, and the uniform boundedness theorem. Topol. Proc. 36 (2010), 305336. 278, 279Google Scholar
Ostaszewski, A.J. Analytically heavy spaces: Analytic Cantor and analytic Baire theorems. Topol. Appl. 158 (2011), 253275. 56, 57, 60, 174, 207CrossRefGoogle Scholar
Ostaszewski, A.J. Analytic Baire spaces. Fund. Math. 217 (2012), 189210. 176, 183, 205CrossRefGoogle Scholar
Ostaszewski, A.J. Almost completeness and the Effros open mapping principle in normed groups. Topol. Proc. 41 (2013), 99110. 174, 178Google Scholar
Ostaszewski, A.J. Shift-compactness in almost analytic submetrizable Baire groups and spaces. Topol. Proc. 41 (2013), 123151. 174, 175, 192, 195Google Scholar
Ostaszewski, A.J. Beyond Lebesgue and Baire III: Steinhaus’ theorem and its descendants. Topol. Appl. 160 (2013), 11441154. 177, 197, 207, 213CrossRefGoogle Scholar
Ostaszewski, A.J. The Semi-Polish Theorem: One-sided vs joint continuity in groups. Topol. Appl. 160 (2013), 11551163. 183, 213, 219CrossRefGoogle Scholar
Ostaszewski, A.J. Beurling regular variation, Bloom dichotomy, and the Gołąb–Schinzel functional equation. Aequationes Math. 89 (2015), 725744. 13, 21, 288CrossRefGoogle Scholar
Ostaszewski, A.J. Effros, Baire, Steinhaus and non-separability. Topol. Appl. 195 (2015), 265274. 173CrossRefGoogle Scholar
Ostaszewski, A.J. Stable laws and Beurling kernels. Advances in Applied Probability 48 (A) (Bingham Festschrift, N. H., Goldie, C.M. and Mijatovic, A., eds), (2016), 239248. 3CrossRefGoogle Scholar
Ostaszewski, A.J. Homomorphisms from functional equations: The Goldie equation. Aequationes Math. 90 (2016), 427448. 288CrossRefGoogle Scholar
Ostaszewski, A.J. Homomorphisms from functional equations in probability. In Developments in Functional Equations and Related Topics, pp. 171213. Springer Optim. Appl. 124, Springer, 2017. 283CrossRefGoogle Scholar
Ostrowski, A. Mathematische Miszellen XIV: Über die Funktionalgleichung der Exponentialfunktion und verwandte Funktionalgleichungen, Jahresb. Deutsch. Math. Ver. 38 (1929), 5462. (Reprinted in Collected Papers of Alexander Ostrowski, 4, 49–57, Birkhäuser, 1984.) 19, 21Google Scholar
Ostrowski, A.M. On Cauchy–Frullani integrals. Comment. Math. Helvet. 51 (1976), 5791. 11CrossRefGoogle Scholar
Oxtoby, J.C. Invariant measures in groups which are not locally compact. Trans. Am. Math. Soc. 60 (1946), 215237. 242CrossRefGoogle Scholar
Oxtoby, J.C. Cartesian products of Baire spaces. Fund. Math. 49 (1960/1961), 157166. 39, 40, 160CrossRefGoogle Scholar
Oxtoby, J.C. Measure and Category, 2nd ed. Grad. Texts Math. 2, Springer 1980. (1st ed. 1971.) 1, 33, 35, 37, 42, 43, 46, 104, 109, 110, 117, 137, 138, 139, 148, 156, 222, 223, 224, 228, 234CrossRefGoogle Scholar
Paley, R.E.A.C. and Wiener, N. Fourier Transforms in the Complex Domain. AMS Colloq. Publ. XIX, Am. Math. Soc., 1934. 5Google Scholar
Parthasarathy, K.R. Probability Measures on Metric Spaces. Academic Press, 1967. (Reprinted Am. Math. Soc., 2005.) 73, 161, 240CrossRefGoogle Scholar
Paterson, A.L.T. Amenability, Math. Surveys Monog. 29, Am. Math. Soc., 1988. 246, 282Google Scholar
Pawlikowski, J. Lebesgue measurability implies Baire property. Bull. Sci. Math. (2) 109 (1985), 321324. 232Google Scholar
Perron, O. Irrationalzahlen. Walter de Gruyter, 1960. 223Google Scholar
Pestov, V. Review of Nee 1997, MathSciNet MR1473172 (98i:22003). 184Google Scholar
Pettis, B.J. On continuity and openness of homomorphisms in topological groups. Ann. Math. 52 (1950), 293308. 87, 99, 139, 173, 174, 236, 239, 240CrossRefGoogle Scholar
Pettis, B.J. Remarks on a theorem of E.J. McShane. Proc. Am. Math. Soc. 2 (1951), 166171. 236, 239CrossRefGoogle Scholar
Pettis, B.J. Closed graph and open mapping theorems in certain topologically complete spaces. Bull. London Math. Soc. 6 (1974), 3741. 188CrossRefGoogle Scholar
Piccard, S. Sur les Ensembles de Distances des Ensembles de Points d’un Espace Euclidien. Mém. Univ. Neuchâtel 13 (1939). 139, 173, 236, 240Google Scholar
Piccard, S. Sur des Ensembles Parfaites, Mém. Univ. Neuchâtel 16 (1942). 139, 173, 236, 240Google Scholar
Pitman, E.J.G. and Pitman, J.W. A direct approach to the stable distributions. In Bingham Festschrift, N. H., Goldie, C.M. and Mijatovic, A. (eds), Advances in Applied Probability 48(A) 2016, 261282. 3CrossRefGoogle Scholar
Plotka, K. On functions whose graph is a Hamel basis. Proc. Am. Math. Soc. 131 (2003), 10311041. 22CrossRefGoogle Scholar
Pol, R. Remark on the restricted Baire property in compact spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. 24 (1976), 599603. 39, 185Google Scholar
Pol, R. Note on category in Cartesian products of metrizable spaces. Fund. Math. 102 (1979), 5559. 139, 148, 159, 175, 228CrossRefGoogle Scholar
Pólya, G. Bemerkungen über unendliche Folgen und ganze Funktionen. Math. Ann. 88 (1923), 169183. (Reprinted in Collected Papers Vol. 1, Boas, R.P. (ed). MIT Press, 1974.) 6CrossRefGoogle Scholar
Popa, C. Gh. Sur l’equation fonctionnelle f [x + y f (x)] = f (x) f (y), Ann. Polon. Mathe. 17 (1965), 193198 288CrossRefGoogle Scholar
W. Poreda, W., Wagner-Bojakowska, E. and Wilczyński, W. A category analogue of the density topology. Fund. Math. 125 (1985), 167173. 133CrossRefGoogle Scholar
Port, S.C. and Stone, C.J. Brownian Motion and Classical Potential Theory. Academic Press, 1978. 118Google Scholar
Queféllec, H. Propriétés presque sûres et quasi-sûres des séries de Dirichlet et des produits d’Euler. Canad. J. Math. 32 (1980), 531558. 227CrossRefGoogle Scholar
Rademacher, H. Über partielle und totale Differenzierbarkeit I. Math. Ann. 79 (1919), 340359. 228CrossRefGoogle Scholar
Rademacher, H. Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen. Math. Ann. 87 (1922), 112138. 224CrossRefGoogle Scholar
Raisonnier, J. A mathematical proof of S. Shelah’s theorem on the measure problem and related results. Israel J. Math. 48 (1984), 4956. 230, 233CrossRefGoogle Scholar
Raisonnier, J. and Stern, J. Mesurabilité et propriété de Baire. Comptes Rendus Acad. Sci. I. (Math.) 296 (1983), 323326. 232, 233Google Scholar
Raisonnier, J. and Stern, J. The strength of measurability hypotheses. Israel J. Math. 50 (1985), 337349. 230CrossRefGoogle Scholar
Ramsey, A.S. Dynamics, Part I. Cambridge University Press, 1951. 114Google Scholar
Ramsey, F.P. On a problem of formal logic. Proc. London Math. Soc. 30 (1930), 338384. 274Google Scholar
Rao, K.P.S. Bhaksara and Rao, M. Bhaskara. A category analogue of the Hewitt–Savage zero–one law. Proc. Am. Math. Soc. 44 (1974), 497499. 222CrossRefGoogle Scholar
Rao, K.P.S. Bhaksara and Rao, M. Bhaskara. On the difference of two second category Baire sets in a topological group. Proc. Am. Math. Soc. 47 (1975), 257258. 112Google Scholar
Reardon, P. Ramsey, Lebesgue, and Marczewski sets and the Baire property. Fund. Math. 149 (1996), 191203. 121CrossRefGoogle Scholar
Rogers, C.A. Hausdorff Measures. Cambridge University Press, 1970. 226Google Scholar
Rogers, C.A. and Jayne, J. K-Analytic sets. In RogJD1980, Part 1. xiii, 31, 42, 51, 52, 54, 56, 61, 65, 66, 123, 178, 181, 187, 188, 203, 204, 205, 212, 218, 236Google Scholar
Rogers, C.A., Jayne, J., Dellacherie, C., Topsøe, F., Hoffmann-Jørgensen, J., Martin, D.A., Kechris, A.S. and Stone, A.S. Analytic Sets. Academic Press, 1980. 62, 203, 241, 301, 308, 314, 319, 321, 322Google Scholar
Rogers, C.A. and Willmott, R.C. On the projection of Souslin sets. Mathematika 13 (1966), 147150. 52CrossRefGoogle Scholar
Royden, H.L. Real Analysis, 2nd ed. Prentice-Hall, 1988 (1st ed. 1963.) 24, 25Google Scholar
Rudin, W. Real and Complex Analysis. McGraw-Hill, 1966. (3rd. ed. 1987, 2nd ed. 1974.) 269, 283Google Scholar
Rudin, W. Functional Analysis. McGraw-Hill, 1973. (2nd ed. 1991.) 86, 90, 172, 182, 183Google Scholar
Saint Raymond, J. Jeux topologiques et espaces de Namioka. Proc. Am. Math. Soc. 87 (1983), 499504. 45, 47CrossRefGoogle Scholar
Sakovich, G.N. A single form for the conditions for attraction to stable laws. Th. Prob. Appl. 1 (1956), 322325. 2CrossRefGoogle Scholar
Saks, S. Theory of the Integral, 2nd ed. Dover, 1964. (1st ed. 1937, Monografie Mat. VII, Instytut Matematyczny Polskiej Akademii Nauk.) 73, 104, 254Google Scholar
S̆alát, T. A remark on normal numbers. Rev. Roum. Math. Pures Appl. 11 (1966), 5356. 225, 226Google Scholar
Scheinberg, S. Topologies which generate a complete measure algebra. Adv. Math. 7 (1971), 231239. 109, 130CrossRefGoogle Scholar
Schwartz, L. Sur le théorème du graphe fermé. C. R. Acad. Sci. Paris Sér. A-B 263 (1966), 602605. 188Google Scholar
Schwartz, L. Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures. Tata Institute of Fundamental Research Studies in Mathematics 6, Oxford University Press, 1973. 240Google Scholar
Scott, D. Measurable cardinals and constructible sets. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 9 (1961), 521524. 274Google Scholar
Semadeni, Z. Banach Spaces of Continuous Functions. Monografie Matematyczne 55, PWN. Polish Scientific Publishers, 1971. 584pp.Google Scholar
Seneta, E. An interpretation of some aspects of Karamata’s theory of regular variation. Publ. Inst. Math. Beograd (NS) 15 (29) (1973), 111119. 10Google Scholar
Shea, D.F. On a complement to Valiron’s Tauberian theorem for the Stieltjes transform. Proc. Am. Math. Soc. 21 (1969), 19. 4, 5Google Scholar
Shelah, S. Can you take Solovay’s inaccessible away? Israel J. Math. 48 (1984), 147. 230, 232, 233CrossRefGoogle Scholar
Shelah, S. On measure and category. Israel J. Math. 52 (1985), 110114. 233CrossRefGoogle Scholar
Shelah, S. and Woodin, H. Large cardinals imply that every reasonably definable set of reals is Lebesgue measurable. Israel J. Math. 70(3) (1990), 381394. 233CrossRefGoogle Scholar
Shi, H. and Thomson, B.S. Haar null sets in the space of automorphisms on [0,1]. Real Anal. Exchange 24 (1998/99), 337350. 241, 258CrossRefGoogle Scholar
Shortt, R.M. Universally measurable spaces: An invariance theorem and diverse characterizations. Fund. Math. 121 (1984), 169176. 241CrossRefGoogle Scholar
Sierpinski, W. Sur l’equation fonctionelle f (x + y) = f (x) + f (y). Fund. Math. 1 (1920), 116122. (Reprinted in Oeuvres Choisis II, 331–336, PWN, 1975.) 21, 81Google Scholar
Sierpinski, W. Sur deux ensembles linéaires singuliers. Ann. Scuola Norm. Super. Pisa Cl. Sci 4 (1935), 4346. 21Google Scholar
Sierpinski, W. Oeuvres Choisies II: Théorie des Ensembles et ses Applications, Travaux des Années 1908–1929, PWN, 1975. 137, 307Google Scholar
Sierpinski, W. Oeuvres Choisies III: Théorie des Ensembles et ses Applications, Travaux des Années 1930–1966, PWN, 1976. 137Google Scholar
Silver, J. Every analytic set is Ramsey. J. Symbolic Logic 35 (1971), 6064. 121CrossRefGoogle Scholar
Silverstein, M.L. Symmetric Markov Processes. Lecture Notes in Math. 426, Springer, 1974. 119CrossRefGoogle Scholar
Silverstein, M.L. Boundary Theory for Symmetric Markov Processes. Lecture Notes in Math. 516, Springer, 1976. 119CrossRefGoogle Scholar
Simmons, S.M. A converse Steinhaus–Weil theorem for locally compact groups. Proc. Am. Math. Soc. 49 (1975), 383386. 251, 254CrossRefGoogle Scholar
Simon, B. Basic Complex Analysis. A Comprehensive Course in Analysis, Part 2A, Am. Math. Soc., 2015. 229CrossRefGoogle Scholar
Solecki, S. Size of subsets of groups and Haar null sets. Geom. Funct. Anal. 15 (2005), 246273. 241, 258CrossRefGoogle Scholar
Solecki, S. Amenability, free subgroups, and Haar null sets in non-locally compact groups. Proc. London Math. Soc. (3) 93 (2006), 693722. 240, 241, 242, 245, 246, 248, 251, 259CrossRefGoogle Scholar
Solecki, S. A Fubini theorem. Topol. Appl. 154 (2007), 24622464. 241CrossRefGoogle Scholar
Solecki, S. and Srivastava, S.M. Automatic continuity of group operations. Topol. Appl. 77 (1997), 6575. 197CrossRefGoogle Scholar
Solovay, R.M. 20 can be anything it ought to be. In Addison, J.W., Henkin, L. and Tarski, A. (eds), The Theory of Models, (Proc. 1963 Int. Symp. Berkeley). Studies in Logic and the Foundations of Mathematics, North-Holland, 1965, 435. 268Google Scholar
Solovay, R.M. On the cardinality of sets of reals. In Foundations of Mathematics (Symposium Commemorating Kurt Gödel, Columbus, Ohio, 1966), pp. 5873. Springer, 1969. 233CrossRefGoogle Scholar
Solovay, R.M. A model of set theory in which every set of reals is Lebesgue measurable. Ann. Math. 92 (1970), 156. 229, 230, 231, 232CrossRefGoogle Scholar
Solovay, R.M. The independence of DC from AD. In The Cabal Seminar 76–77 (Proc. Caltech–UCLA Logic Sem., 1976–77), pp. 171183. Lecture Notes in Math. 689, Springer, 1978. 232Google Scholar
Spencer, J. Ten Lectures on the Probabilistic Method, 2nd ed. CBMS-NSF Reg. Conf. Ser. Appl Math. 64, SIAM, 1994 (1st ed. 1987.) 37CrossRefGoogle Scholar
Stein, E.M. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970. 104Google Scholar
Stein, E.M. and Shakarchi, R. Real Analysis: Measure Theory, Integration, and Hilbert Spaces. Princeton University Press, 2005. 25, 269CrossRefGoogle Scholar
Steinhaus, H. Sur les distances des points de mesure positive. Fund. Math. 1 (1920), 93104. 139, 236, 239CrossRefGoogle Scholar
Steinhaus, H. Über die Wahrscheinlichleit dafür, daß der Konvergenzkreis einer Potenzreihen ihre natürliche Grenze ist. Math. Z. 31 (1930), 408416. 228CrossRefGoogle Scholar
Stern, J. Regularity properties of definable sets of reals. Ann. Pure Appl. Logic 29 (1985), 289324. 232, 233CrossRefGoogle Scholar
Stone, A.H. Kernel constructions and Borel sets. Trans. Am. Math. Soc. 107 (1963), 5870; errata, ibid. 107 (1963), 558. 37, 122, 128, 159CrossRefGoogle Scholar
Stone, A.H. Analytic sets in non-separable spaces. In RogJD1980, Part 5. 204Google Scholar
Szenes, A. Exceptional points for Lebesgue’s density theorem on the real line. Adv. Math. 226 (2011), 764778. 167CrossRefGoogle Scholar
Tall, F.D. The density topology. Pacific J. Math. 62 (1976), 275284. 110, 156CrossRefGoogle Scholar
Tall, F.D. Normal subspaces of the density topology. Pacific J. Math. 75 (1978), 579588. 110CrossRefGoogle Scholar
Tao, T. and Vu, V.N. Additive Combinatorics. Cambridge Studies in Adv. Math., 105. Cambridge University Press, 2006. 141CrossRefGoogle Scholar
Tarski, A. Une contribution à la théorie de la mesure. Fund. Math. 15 (1930), 4250. 232CrossRefGoogle Scholar
Taylor, S.J. Hawkes, John (1944–2001). Bull. Lond. Math. Soc. 36 (2004), 695710. 226CrossRefGoogle Scholar
Tenenbaum, G. Introduction to Analytic and Probabilistic Number Theory, 3rd ed. Grad. Studies Math. 193, American Mathematical Society, 2015. (2nd ed. Cambridge Studies Adv. Math. 46, Cambridge University Press, 1995.) 7, 8CrossRefGoogle Scholar
Titchmarsh, E.C. The Theory of the Riemann Zeta-Function, Second ed. (revised by Heath-Brown, D. R.), Oxford University Press, 1986. (1st ed. 1951.) 227Google Scholar
Tomkowicz, G. and Wagon, S. The Banach–Tarski Paradox, 2nd ed. Encycl. Math. Appl. 163, Cambridge University Press, 2016. (1st ed., Encycl. Math. Appl. 24, Cambridge University Press, 1985.) 223, 257CrossRefGoogle Scholar
Topsøe, F. and Hoffmann-Jørgensen, J. Analytic spaces and their applications. In RogJD1980, Part 3. 95, 197Google Scholar
Törnquist, A. and mad families. J. Symbolic Logic 78 (2013), 11811182. 234CrossRefGoogle Scholar
Trautner, R. A covering principle in real analysis. Quart. J. Math. 38 (1987), 127130. 162CrossRefGoogle Scholar
Ulam, S. Zur Maßtheorie in der allgemeinen Mengenlehre. Fund. Math. 16 (1930), 140150. 200, 232, 273CrossRefGoogle Scholar
Ulam, S.M. A Collection of Mathematical Poblems. Wiley, 1960.Google Scholar
Ungar, G.S. On all kinds of homogeneous spaces. Trans. Am. Math. Soc. 212 (1975), 393400. 173CrossRefGoogle Scholar
Wagner-Bojakowska, E. and Wilczyński, W, Cauchy condition for the convergence in category. Proc. Am. Math. Soc. 128 (2000), 413418. 30CrossRefGoogle Scholar
Weil, A. L–intégration dans les Groupes Topologiques et ses Applications, Actual. Sci. Ind. 869, Hermann, Paris, 1940. (Republished, Princeton University Press, 1941.) 239Google Scholar
Weiss, W. Versions of Martin’s axiom. In KunV1984, Ch. 19, pp. 827–886. 272CrossRefGoogle Scholar
White, H.E. Topological spaces in which Blumberg’s Theorem holds. Proc. Am. Math. Soc. 44 (1974), 454462. 40, 111Google Scholar
White, H.E. Topological spaces that are α-favorable for a player with perfect information. Proc. Am. Math. Soc. 50 (1975), 477482. 56Google Scholar
Wiener, N. The Fourier Integral and Certain of Its Applications. Cambridge University Press, 1933. (Reprinted, Cambridge Mathematical Library, 1988.) 17Google Scholar
Wilczynski, W. Density topologies. In Handbook of Measure Theory, Vol. I, 675702, North-Holland, 2002. 256CrossRefGoogle Scholar
Wilczynski, W. and Wojdowski, W. Complete density topology. Indag. Math. (NS) 18 (2007), 295303. 133CrossRefGoogle Scholar
Williamson, J. Meromorphic functions with negative zeros and positive poles and a theorem of Teichmüller. Pacific J. Math. 42 (1972), 795810. 5CrossRefGoogle Scholar
Woodin, W.H. Supercompact cardinals, sets of reals, and weakly homogeneous trees. Proc. Nat. Acad. Sci. USA 85 (1988), 65876591. 271CrossRefGoogle ScholarPubMed
Woodin, W.H. The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, de Gruyter, 1999. 275CrossRefGoogle Scholar
Xia, D.X. Measure and Integration Theory on Infinite Dimensional Spaces. Abstract Harmonic Analysis. Pure and App. Math. 48 Academic Press, 1972. 240, 253Google Scholar
Zahorski, Z. Sur la première dérivée. Trans. Am. Math. Soc. 69 (1950), 154. 113Google Scholar
Zapletal, J. Terminal notions. Bull. Symbolic Logic 5 (1999), 470478. 64CrossRefGoogle Scholar
Zapletal, J. Terminal notions in set theory. Ann. Pure Appl. Logic 109 (2001), 89116. 64CrossRefGoogle Scholar
Żelazko, B. A theorem on B0 division algebras. Bull. Acad. Plon. Sci. 8 (1960), 373375. 94Google Scholar
Zeller, K. and Beekmann, W. Theorie der Limitierungsverfahren, 2nd ed. Springer, 1970. 16CrossRefGoogle Scholar
Zeman, M. Inner Models and Large Cardinals. De Gruyter Series in Logic and its Applications, 5 de Gruyter, 2002. 271CrossRefGoogle Scholar
Zsilinszky, L. Products of Baire spaces revisited. Fund. Math. 183 (2004) 11512. 160CrossRefGoogle Scholar
Zygmund, A. Trigonometric Series, Vols. I, II, 2nd ed. Cambridge University Press, 1988. (3rd ed., 2002, with foreword by Fefferman, R., 2002.) 138Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • N. H. Bingham, Imperial College London, Adam J. Ostaszewski, London School of Economics and Political Science
  • Book: Category and Measure
  • Online publication: 14 January 2025
  • Chapter DOI: https://doi.org/10.1017/9781139048057.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • N. H. Bingham, Imperial College London, Adam J. Ostaszewski, London School of Economics and Political Science
  • Book: Category and Measure
  • Online publication: 14 January 2025
  • Chapter DOI: https://doi.org/10.1017/9781139048057.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • N. H. Bingham, Imperial College London, Adam J. Ostaszewski, London School of Economics and Political Science
  • Book: Category and Measure
  • Online publication: 14 January 2025
  • Chapter DOI: https://doi.org/10.1017/9781139048057.020
Available formats
×