Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T23:07:02.007Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 December 2021

Lorenz Ratke
Affiliation:
German Aerospace Center
Pavel Gurikov
Affiliation:
Hamburg University of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Chemistry and Physics of Aerogels
Synthesis, Processing, and Properties
, pp. 439 - 466
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gibson, L.J., Ashby, M.F. Cellular Solids. 2nd ed. Cambridge: Cambridge University Press; 1997.Google Scholar
Lunt, A.J.G., Chater, P., Korsunsky, A.M. On the origins of strain inhomogeneity in amorphous materials. Scientific Reports. 2018; 8(1):1574.CrossRefGoogle ScholarPubMed
Brinker, C.J., Scherer, G.W. Sol–Gel Science: The Physics and Chemistry of Sol-Gel Processing. HBJI, editor. San Diego: Academic Press, Inc.; 1990.Google Scholar
Wen, D., Eychmüller A. 3D assembly of preformed colloidal nanoparticles into gels and aerogels: function-led design. Chem Commun. 2017; 53:1260812621.Google Scholar
Beier, M.G., Ziegler, C., Wegner, K., et al. A fast route to obtain modified tin oxide aerogels using hydroxostannate precursors. Mater Chem Front. 2018; 2:710717.Google Scholar
Cai, B., Sayevich, V., Gaponik, N., Eychmüller A. Emerging hierarchical aerogels: self-assembly of metal and semiconductor nanocrystals. Advanced Materials. 2018; 30(33):1707518.Google Scholar
Du, R., Hu, Y., Hübner, R., et al. Specific ion effects directed noble metal aerogels: versatile manipulation for electrocatalysis and beyond. Science Advances. 2019; 5(5).Google Scholar
Pekala, R.W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of Materials Science. 1989; 24(9):32213227.Google Scholar
Pekala, R.W., Alviso, C.T., Lu, X., Gross, J., Fricke, J. New organic aerogels based upon a phenolic-furfural reaction. Journal of Non-Crystalline Solids. 1995; 188:3440.Google Scholar
Betz, M., García-González, C.A., Subrahmanyam, R.P., Smirnova, I., Kulozik, U. Preparation of novel whey protein-based aerogels as drug carriers for life science applications. Journal of Supercritical Fluids. 2012; 72:111119.CrossRefGoogle Scholar
Kistler, S.S. Coherent and expanded aerogels and jellies. Nature. 1931; 127:741.Google Scholar
Kistler, S.S. Coherent expanded aerogels. Journal of Physical Chemistry. 1932; 31: 5264.Google Scholar
Aegerter, M.A., Leventis, N., Koebel, M.M., editors. Aerogels Handbook. NewYork: Springer Verlag; 2011.Google Scholar
Nicola Hüsing U.S. Aerogels – airy materials: chemistry, structure, and properties. Angewandte Chemie International Edition. 1998; 37:2245.Google Scholar
Pierre, A.C., Pajonk, G.M. Chemistry of aerogels and their applications. Chemical Reviews. 2002; 102:42434266.Google Scholar
Teichner, S.J., Nicolaon, G.A., Vicarini, M.A., Gardes, G.E.E. Inorganic oxide aerogels. Advances in Colloid and Interface Science. 1976; 5(3):245273.Google Scholar
Fricke, J., editor. Aerogels. Heidelberg: Springer Verlag; 1988.Google Scholar
Leventis, N., Sotiriou-Leventis, C., Mohite, D.P., et al. Polyimide aerogels by ring-opening metathesis polymerization (ROMP). Chemistry of Materials. 2011; 23:22502261.Google Scholar
Chidambareswarapattar, C., McCarver, P.M., Luo, H., Lu, H., Sotiriou-Leventis, C., Leventis, N. Fractal multiscale nanoporous polyurethanes: flexible to extremely rigid aerogels from multifunctional small molecules. Chemistry of Materials. 2013; 25:32053224.Google Scholar
Malakooti, S., Rostami, S., Churu, H.G., et al. Scalable, hydrophobic and highly-stretchable poly(isocyanurate–urethane) aerogels. RSC Advances. 2018; 8:21214.Google Scholar
Tan, C., Fung, B.M., Newman, J.K., Yu, C. Organic aerogels with very high impact strength. Advanced Materials. 2001; 13(9):644646.Google Scholar
Ganesan, K., Ratke, L. Facile preparation of monolithic κ-carrageenan aerogels. Soft Matter. 2014; 10:32183224.Google Scholar
Subrahmanyam, R., Gurikov, P., Dieringer, P., Sun, M., Smirnova, I. On the road to biopolymer aerogels – dealing with the solvent. Gels. 2016; 1:291313.Google Scholar
Smirnova, I., Gurikov, P. Aerogels in chemical engineering: strategies toward tailor-made aerogels. Annual Review of Chemical and Biomolecular Engineering. 2017; 8(1): 307334.Google Scholar
Ganesan, K., Budtova, T., Ratke, L., et al. Review on the production of polysaccharide aerogel particles. Materials. 2018; 11(11):2144.Google Scholar
Aravind, P.R., Mukundan, P., P (KP), Warrier, K.G.K. Mesoporous silica-alumina aerogels with high thermal pore stability through hybrid sol-gel route followed by subcritical drying. Microporous and Mesoporous Materials. 2006; 96(1):1428.Google Scholar
Liu, S., Yu, T., Hu, N., Liu, R., Liu, X. High strength cellulose aerogels prepared by spatially confined synthesis of silica in bioscaffolds. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013; 439:159166.Google Scholar
Kong, Y., Zhong, Y., Shen, X., Gu, L., Cui, S., Yang, M. Synthesis of monolithic mesoporous siliconcarbide from resorcinol-formaldehyde/silica composites. Materials Letters. 2013; 99:108110.Google Scholar
Demilecamps, A., Reichenauer, G., Rigacci, A., Budtova, T. Cellulose-silica composite aerogels from ‘one-pot’ synthesis. Cellulose. 2014; 21:26252636.Google Scholar
Demilecamps, A., Beauger, C., Hildenbrand, C., Rigacci, A. Cellulose-silica aerogels. Carbohydrate Polymers. 2015; 122:293300.Google Scholar
Zhao, S., Malfait W.J., Jeong, E., et al. Facile one-pot synthesis of mechanically robust biopolymer-silica nanocomposite aerogel by coagulation of silicic acid with chitosan in aaqueous media. ACS Sustainable Chemical Engineering. 2016; 4(10):56745683.Google Scholar
Zhao, S., Malfait W.J., Demilecamps, A., et al. Strong, thermally superinsulating biopolymer-silica aerogel hybrids by cogelation of silicic acid with pectin. Angewandte Chemie. 2015; 48:15213757.Google Scholar
Aerogels, A. Aspen Aerogel webpage. www.aerogel.com.Google Scholar
Murillo, J.S.R., Bachlehner, M.E., Campo, F., Barbero, E.J. Structure and mechanical properties of silica aerogels and xerogels modelled by molecular dynamics simulation. Journal of Non-Crystalline Solids. 2010; 356:13251331.CrossRefGoogle Scholar
Patil, S.P., Rege, A., Sagardas, Itskov, M., Markert, B. Mechanics of nanostructured porous silica aerogel resulting from molecular dynamics simulations. Journal of Physical Chemistry B. 2017; 121:56605668.Google Scholar
Goncalves, W., Morthomas, J., Chantrenne, P., Perez, M., Foray, G., Martin, C.L. Elasticity and strength of silica aerogels: a molecular dynamics study on large volumes. Acta Materialia. 2018; 145:165174.Google Scholar
Gurav, J.L., Jung, I.K., Park, H.H., Kang, E.S., Nadargi, D.Y. Silica aerogel: synthesis and applications. Journal of Nanomaterials. 2010; 409310.Google Scholar
Koebel, M.M., Rigacci, A., Achard, P. Aerogel-based thermal superinsulation: an overview. Journal of Sol–Gel Science and Technology. 2012; 63:315339.Google Scholar
Maleki, H., Durães, L., Portugal, A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies. Journal of Non-Crystalline Solids. 2014; 385:5574.Google Scholar
Parale, V.G., Lee, K.Y., Park, H.H. Flexible and transparent silica aerogels: an overview. Journal of the Korean Ceramic Society. 2017; 54:184199.Google Scholar
Zsigmondy, R. Kolloidchemie. vol. II. Spezieller Teil. 5th ed. Verlag Otto Spamer; 1927.Google Scholar
Graham, T. Anwendung der Diffusion der Flüssigkeiten zur Analyse. Justus Liebigs Annalen der Chemie. 1862; 121:36.Google Scholar
Iler, R.K. The Chemistry of Silica. Hoboken: John Wiley & Sons, Ltd; 1979.Google Scholar
Grimaux, E. Compt rend. 1884; 98:14341437.Google Scholar
Wang, S., Wang, D.K., Smart, S., Diniz da Costa, J.C. Ternary phase-separation investigation of sol-gel derived silica from ethyl silicate 40. Scientific Reports. 2015; 5(1):14560.CrossRefGoogle ScholarPubMed
Schaefer, D.W. What factors control the structure of silica aerogels? Revue de Physique Applique, Colloque C4. 1989; 24:C4–121C4–126.Google Scholar
Viscek, T. Fractal Growth Phenomena. 2nd ed. World Scientific Publishing Co.; 1992.Google Scholar
Ratke, L., Voorhees, P.W. Growth and Coarsening: Ostwald Ripening in Material Processing. Engineering Materials and Processes. Berlin–Heidelberg–New York: Springer Science and Business Media LLC; 2002.Google Scholar
Wagner, C. Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Z Elektrochemie. 1961; 65:581591.Google Scholar
Tiller, W.A. The Science of Crystallization – Microscopic Interfacial Phenomena. Cambridge: Cambridge University Press; 1991.CrossRefGoogle Scholar
Ratke, L., Uffelmann, D., Bender, W., Voorhees, P.W. Theory of Ostwald ripening due to a second order reaction. Scripta Metall et Materialia. 1995; 33:363367.Google Scholar
Teraoka, I. Polymer Solutions. New York: John Wiley & Sons, Inc.; 2002.Google Scholar
Peitgen, H.O., Jürgens, H., Saupe, D. Fractals for the Classroom. Part 1. New York: Springer-Verlag; 1992.Google Scholar
Peitgen, H.O., Jürgens, H., Saupe, D. Fractals for the Classroom. Part 2. New York: Springer-Verlag; 1992.Google Scholar
Kaye, B.H. A Random Walk through Fractal Dimensions. Weinheim: Wiley-VCH Verlag GmbH; 1989.Google Scholar
Nichols, F.A, Mullins, W.W. Surface-(interface-) and volume-diffusion contributions to morphological changes driven by capillarity. Transactions of the Metallurgical Society of AIME. 1965; 233:1840.Google Scholar
Nichols, F.A. On the spheroidization of rod-shaped particles of finite length. Journal of Materials Science. 1976; 11(6):10771082.Google Scholar
Einarsrud, M.A. Light gels by conventional drying. Journal of Non-Crystalline Solids. 1998; 225:17.Google Scholar
Einarsrud, M.A., Nilsen, E., Rigacci, A., et al. Strengthening of silica gels and aerogels by washing and aging processes. Journal of Non-Crystalline Solids. 2001; 285:17.Google Scholar
Haerid, S., Dahle, M., Lima, S., Einarsrud, M.A. Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions. Journal of Non-Crystalline Solids. 1995; 186:96103.Google Scholar
Smitha, S., Shajesh, P., Aravind, P.R., Kumar, S.R., Pillai, P.K., Warrier, K.G.K. Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried aerogels. Microporous and Mesoporous Materials. 2006; 91:286292.Google Scholar
Reichenauer, G. Thermal aging of silica gels in water. Journal of Non-Crystalline Solids. 2004; 350:189195.Google Scholar
Iswar, S., Malfait, W.J., Balog, S., Winnefeld, F., Lattuada, M., Koebel, M.M. Effect of aging on silica aerogel properties. Microporous and Mesoporous Materials. 2017; 241:293302.CrossRefGoogle Scholar
Rao, A.V., Bhagat, S.D., Hirashima, H., Pajonk, G.M. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. Journal of Colloid and Interface Science. 2006; 300(1):279285.Google Scholar
Guo, H., Nguyen, B.N., McCorkle, L.S., Shonkwiler, B., Meador, M.A.B. Elastic low density aerogels derived from bis[3-(triethoxysilyl)propyl]disulfide, tetramethylorthosilicate and vinyltrimethoxysilane via a two-step process. Journal of Materials Chemistry. 2009; 19:90549062.Google Scholar
Aravind, P.R., Niemeyer, P., Ratke, L. Novel flexible aerogels derived from methyltri-methoxysilane/3-(2,3-epoxypropoxy)propyltrimethoxysilane co-precursor. Microporous and Mesoporous Materials. 2013; 181:111115.Google Scholar
Kanamori, K., Aizawa, M., Nakanishi, K., Hanada, T. New transparent methylsilsesquiox-ane aerogels and xerogels with improved mechanical properties. Advanced Materials. 2007; 19:15891593.Google Scholar
Hayase, G., Kanamori, K., Kazuki, K., Hanada, T. Synthesis of new flexible aerogels from MTMS/DMDMS via ambient pressure drying. In: IOP Conference Series: Materials Science and Engineering. vol. 18. Ceramic Society of Japan; 2013. p. 032013.Google Scholar
Hayase, G., Kanamori, K., Nakanishi, K. New flexible aerogels and xerogels derived from methyltrimethoxysilane/dimethyldimethoxysilane co-precursors. Journal of Materials Chemistry. 2011; 21:1707717079.Google Scholar
Hayase, G., Kanamori, K., Hasegawa, G., Maeno, A., Kaji, H., Nakanishi, K. A super-amphiphobic macroporous silicone monolith with marshmallow-like flexibility. Angewandte Chemie International Edition. 2013; 52(41):1078810791.Google Scholar
Hayase, G., Kanamori, K., Abe, K., et al. Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobic-ity. ACS Applied Materials & Interfaces. 2014; 6:94669471.Google Scholar
Hayase, G., Nomura, S.M. Large-scale preparation of giant vesicles by squeezing a lipid-coated marshmallow-like silicone gel in a buffer. Langmuir. 2018; 34(37):1102111026.Google Scholar
Durães, L., Maia, A., Portugal, A. Effect of additives on the properties of silica based aerogels synthesized from methyltrimethoxysilane (MTMS). Journal of Supercritical Fluids. 2015; 106:8592.Google Scholar
Maleki, H., Durães, L., Portugal, A. Development of mechanically strong ambient pressure dried silica aerogels with optimized properties. Journal of Physical Chemistry C. 2015 04; 119(14):76897703.Google Scholar
Maleki, H., Durães, L., Portugal, A. Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications. Microporous and Mesoporous Materials. 2014; 197:116129.Google Scholar
Lu, X., Caps, R., Fricke, J., Alviso, C.T., Pekala, R.W. Correlation between structure and thermal conductivity of organic aerogels. Journal of Non-Crystalline Solids. 1995; 188:226234.Google Scholar
ElKhatat, A.M., Al-Muhtaseb, S.A. Advances in tailoring resorcinol-formaldehyde organic and carbon aerogels. Advanced Materials. 2011; 23:28872903.Google Scholar
Reuss, M., Ratke, L. Subcritically dried RF-aerogels catalysed by hydrochloric acid. Journal of Sol–Gel Sciences and Technology. 2008; 47:7480.Google Scholar
Job, N. Matériaux carbonés poreux de texture contrôlée synthétisés par procédé sol-gel et leur utilisation en catalyse hétérogène. University of Liege. Liege, Belgium; 2005.Google Scholar
Chatchawalsaisin, J., Kendrick, J., Tubleb, S.C., Anwar, J. An optimized force field for crystalline phases of resorcinol. CrystEngComm. 2008; 10:437445.Google Scholar
Durairaj, R.B. Resorcinol. Berlin–Heidelberg: Springer Science and Business Media LLC; 2005.Google Scholar
Job, N., Panariello, F., Crine, M., Pirard, J.P., Leonard, A. Rheological determination of the sol-gel transition during the aqueous synthesis of resorcinol-formaldehyde resins. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007; 293:224228.Google Scholar
Barbieri, O., Ehrburger-Dolle, F., Rieker, T.P., Pajonk, G.M., Pinto, N., Rao, A.V. Small-angle X-ray scattering of a new series of organic aerogels. Journal of Non-Crystalline Solids. 2001; 285:109115.Google Scholar
Li, T., Cao, M., Liang, J., Xie, X., Du, G. Mechanisms of base-catalyzed resorcinol-formaldehyde and phenol-resorcinol-formaldehyde condensation reactions: a theoretical study. Polymers. 2017; 9:426.Google Scholar
Mulik, S., Sotiriou-Leventis, C. Resorcinol-formaldehyde aerogels. In: Aegerter, M.F., Leventis, N., Koebel, M.M., editors. Aerogels Handbook. New York: Springer; 2011. pp. 215234.Google Scholar
Pekala, R.W., Kong, F.M. A synthetic route to organic aerogels – mechanisms, structure and properties. Revue de Physique Applique, Colloque C4. 1989; 24:3340.Google Scholar
Schwan, M. Synthese und Eigenschaften flexibler Resorcin-Formaldehyd- und Kohlenstoffaerogele. RWTH University: Aachen, Germany; 2018.Google Scholar
Yamamoto, T., Mukai, S.R., Endo, A., Nakaiwa, M., Tamon, H. Interpretation of structure formation during sol-gel transition of resorcinol-formaldehyde solution by population balance. Journal of Colloid and Interface Science. 2003; 264:532537.Google Scholar
Franek, J., Nowak, A., Turska, E. Kinetics of polycondensation. Acta Polymerics. 1982; 33:169174.Google Scholar
Paventi, M. Particular solution for any consecutive second-order reaction. Canadian Journal of Chemistry. 1987; 65:19871994.Google Scholar
Grenier-Loustalot, M.F., Larroque, S., Grande, D., Grenier, P., Bedel, D. Phenolic resins: 2. Influence of catalyst type on reaction mechanisms and kinetics. Polymer. 1996; 37(8):13631369.Google Scholar
Tamon, H., Ishikaza, H. SAXS study on gelation process in preparation of resorcinol-formaldehyde aerogel. Journal of Colloid and Interface Science. 1998; 206:577582.Google Scholar
Horikawa, T., Hayashi, J, Muroyama, K. Controllability of pore characteristics of resorcinol-formaldehyde carbon aerogels. Carbon. 2004; 42:16251633.Google Scholar
Pekala, R.W., Schaefer, D.W. Structure of organic aerogels: I. Morphology and scaling. Macromolecules. 1993; 26:54875493.Google Scholar
Bock, V., Emmerling, A., Fricke, J. Influence of monomer and catalyst concentration on RF and carbon aerogel structure. Journal of Non-Crystalline Solids. 1998; 225:6973.Google Scholar
Czakkel, O., Marthi, K., Geissler, E., Laszlo, K. Influence of drying on the morphology of resorcinol–formaldehyde-based carbon gels. Microporous and Mesoporous Materials. 2005; 86:124133.Google Scholar
Gommes, C.J., Roberts, A.P. Structure development of resorcinol-formaldehyde gels: microphase separation or colloid aggregation. Physical Review. 2008; E77:041409.Google Scholar
Gommes, C.J., Job, N., Pirard, J.P., Blacher, S., Goderis, B. Critical opalescence points to thermodynamic instability: relevance to small-angle X-ray scattering of resorcinol-formaldehyde gel formation at low pH. Journal of Applied Crystallography. 2008; 41:663668.Google Scholar
Gaca, K.Z., Sefcik, J. Mechanism and kinetics of nanostructure evolution during early stages of resorcinol–formaldehyde polymerisation. Journal of Colloid and Interface Science. 2013; 406:5159.Google Scholar
Brandt, R. Sauer katalysierte, unterkritisch getrocknete Resorcin-Formaldehyd-Aerogele und daraus abgeleitete Kohlenstoff-Aerogele. Bayerische Julius-Maximilian Universität Würzburg; 2004.Google Scholar
Mulik, S., Sotiriou-Leventis, C., Leventis, N. Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels. Chemistry of Materials. 2007; 19:61386144.Google Scholar
Milow, B., Ratke, L, Ludwig, S. Ctiric acid catalyzed organic aerogels. In: Smirnova, I., Perrut, M., editors. Proceedings ‘Seminar on Aerogels’. Nancy, France: ISASF Society; 2012.Google Scholar
Schwan, M., Ratke, L. Flexibilisation of resorcinol-formaldehyde aerogels. Journal of Materials Chemistry. 2013; 1:1346213468.Google Scholar
Schwan, M., Naikade, M., Raabe, D., Ratke, L. From hard to rubber-like: mechanical properties of resorcinol-formaldehyde aerogels. Journal of Material Science. 2015; 50:54825493.Google Scholar
Hillert, M. Phase Equilibria, Phase Diagrams and Phase Transformations. Cambridge: Cambridge University Press; 1998.Google Scholar
Lüdecke, D.L. Thermodynamik. Heidelberg: Springer-Verlag; 2000.Google Scholar
Atkins, P.W., De Paula, J., Keeler, J. Atkins’ Physical Chemistry. Oxford University Press; 2018.Google Scholar
Wang, F., Ratke, L., Zhang, H., Altschuh, P., Nestler, B. A phase-field study on polymerization-induced phase separation occasioned by diffusion and capillary flow – mechanism for the formation of porous microstructures in membranes. Journal of Sol–Gel Science and Technology. 2020; 94:356374.Google Scholar
Stauffer, D, Aharony, A. Introduction to Percolation Theory. 2nd ed. Boca Raton: CRC Press; 1994.Google Scholar
Zugenmaier, P. Crystalline Cellulose and Derivatives: Characterization and Structures. Springer Series in Wood Science. Berlin, Heidelberg: Springer-Verlag; 2008.Google Scholar
Marsh, J.T., Wood, F.C. An Introduction to the Chemistry of Cellulose. 2nd ed. London: Chapman & Hall Ltd.; 1942.Google Scholar
Klemm, D., Phlipp, B., Heinze, T., Heinze, U., Wagenknecht, W. Comprehensive Cellulose Chemistry: Fundamentals and Analytical Methods. vol. 1 and 2. Weinheim: Wiley-VCH Verlag GmbH; 1998.Google Scholar
Hearle, J.W.S. A fringed fibril theory of structure in crystalline polymers. Journal of Polymer Science. 1958; 28(117):432435.Google Scholar
Flory, P.J. Principles of Polymer Chemistry. Ithaca: Cornell University Press; 1953.Google Scholar
Israelachvili, J.N. Intermolecular and Surface Forces. Toronto: Academic Press; 1985.Google Scholar
Olsson, C., Westman, G. Direct dissolution of cellulose: background, means and applications. In: de Wen, TGNV, editor. Cellulose – Fundamental Aspects. INTECH; 2013. www.intechopen.com/books/howtoreference/cellulose-fundamental-aspects/direct-dissolution-of-cellulose-background-means-and-applications.Google Scholar
Medronho, B., Lindmann, B. Brief overview on cellulose dissolution/regeneration interactions. Advances in Colloid and Interface Science. 2015; 222:502508.Google Scholar
Budtova, T., Navard, P. Cellulose in NaOH-water based solvents: a review. Cellulose. 2016; 23:555.Google Scholar
Hirosi, S., Heinz, K., Kurt, H. Das System Cellulose–Natriumhydroxyd–Wasser in Abhängigkeit von der Temperatur. Zeitschrift für Physikalische Chemie. 43B(1): 309328.Google Scholar
Kihlman, M., Medronho, B., Romano, A., Germgard, U., Lindman, B. Cellulose dissolution in an alkali based solvent: influence of additives and pretreatments. Journal of the Brazilian Chemical Society. 2013; 24(2):295303.Google Scholar
Cibik, T. Untersuchungen am System NMMO/H2O/Cellulose. TU Berlin; 2003.Google Scholar
Walker, M., Zimmerman, R.L., Whitcombe, G.P., Humbert, H.H. N-Methylmorpholinoxid (NMMO) – Die Entwicklung eines Lösemittels zur industriellen Produktion von Zellulosefasern. Lenzinger Berichte. 1997; 97:7680.Google Scholar
Wilcox, R.J., Losey, B.P., Folmer, J.C.W., Martin, J.D., Zeller, M., Sommer, R. Crystalline and liquid structure of zinc chloride trihydrate: a unique ionic liquid. Inorganic Chemistry. 2015; 54:11091119.Google Scholar
Sen, S., Losey, B.P., Gordon, E.E., Argyropoulos, D.S., Martin, J.D. Ionic liquid character of zinc chloride hydrates define solvent characteristics that afford the solubility of cellulose. Journal of Physical Chemistry B. 2016; 120:11341141.Google Scholar
Sen, S., Martin, J.D., Argyropoulos, D.S. Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustainable Chemistry & Engineering. 2013 08; 1(8):858870.Google Scholar
Philip, B., Schleicher, H., Wagenknecht, W. Non-aquous solvents of cellulose Chemtech. 1977; 7:702709.Google Scholar
Fischer, S. Anorganische Salzhydratschmelzen – ein unkonventionelles Löse- und Reaktionsmedium für Cellulose. TU Bergakademie Freiberg. Freiberg, Germany; 2004.Google Scholar
Deguchi, S., Tsujii, K., Horikoshi, K. Crystalline-to-amorphous transformation of cellulose in hot and compressed water and its implications for hydrothermal conversion. Green Chemistry. 2008; 10:191196.Google Scholar
Hattori, M., Koga, T., Shimaya, Y., Saito, M. Aqueous calcium thiocyanate solutions as a cellulose solvent. structure and interactions with cellulose. Polymer Journal. 1998; 30:4348.Google Scholar
Frey, M., Theil, M.H. Calculated phase diagrams for cellulose/ammonia/ammonium thiocyanate solutions in comparison to experimental results. Cellulose. 2004; 11:5363.Google Scholar
Schestakow, M. Nanostrukturierte Cellulose-Aerogel-Polyesterverbunde. Aachen, Germany: RWTH Aachen University; 2020.Google Scholar
Gavillon, R., Budtova, T. Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules. 2008; 9:269277.Google Scholar
te Nijenhuis, K. Thermoreversible Networks. vol. 130 of Advances in Polymer Science. Berlin, Heidelberg: Springer-Verlag; 1997.Google Scholar
Liu, W., Budtova, T., Navard, P. Influence of ZnO on the properties of dilute and semi-dilute cellulose–NaOH–water solutions. Cellulose. 2011; 18:911920.Google Scholar
Trygg, J., Fardim, P., Gericke, M., Mäkilä, E., Salonen, J. Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydrate Polymers. 2013; 93(1):291299.Google Scholar
Mohamed, S.M.K., Ganesan, K., Milow, B., Ratke, L. The effect of zinc oxide (ZnO) addition on the physical and morphological properties of cellulose aerogel beads. RSC Advances. 2015; 5:9019390201.Google Scholar
Cussler, E.L. Diffusion – Mass Transfer in Fluid Systems. 3rd ed. Cambridge: Cambridge University Press; 2009.Google Scholar
Kuttler, C. Reaction–diffusion equations with applications; 2011. Westfälische Wilhelms Universität Münster, online. www.uni-muenster.de/imperia/md/content/physik_tp/ lectures/ws2016-2017/num_methods_i/rd.pdf.Google Scholar
Kimura, Y.T. The mathematics of patterns: the modeling and analysis of reaction-diffusion equations. Princeton University; 2014.Google Scholar
Innerlohinger, J., Weber, H.K., Kraft, G. Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromolecular Symposia. 2006; 244:126135.Google Scholar
Liebner, F., Potthast, A., Rosenau, T., Haimer, E., Wendland, M. Ultralight-weight cellulose aerogels from NBnMO-stabilized lyocell dopes. Research Letters in Materials Science. 2007; 2007(ID 7324).Google Scholar
Liebner, F., Rosenau, T., Wendland, M., Potthast, A., Haimer, E. Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung. 2008; 62(2):129135.Google Scholar
Liebner, F., Haimer, E., Potthast, A., et al. Cellulosic aerogels as ultra-lightweight materials. Part 2: Synthesis and properties. Holzforschung. 2009; 63:311.Google Scholar
Liebner, F., Haimer, E., Wendland, M. et al. Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweighted cellulosic aerogels. Macromolecular Bioscience. 2010; 10:349352.Google Scholar
Perrut, M., Smirnova, I., editors. Aerogels from bacterial cellulose: a new dimension in preparing shaped cellulose aerogels. ISASF, International Society for Advancement of Supercritical Fluids; 2010.Google Scholar
Hoepfner, S., Ratke, L., Milow, B. Synthesis and characterization of nanofibrillar cellulose aerogels. Cellulose. 2008; 15:121129.Google Scholar
Karadagli, I., Schulz, B., Schestakow, M., Milow, B., Gries, T., Ratke, L. Production of porous cellulose aerogel fibers by an extrusion process. Journal of Supercritical Fluids. 2015; 106:105114.Google Scholar
Schestakow, M., Karadagli, I., Ratke, L. Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt. Carbohydrate Polymers. 2016; 137:642649.Google Scholar
Pircher, N., Carbajal, L., Schimper, C., et al. Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose. 2016; 23:19491966.Google Scholar
Schulz, B. Cellulose-Aerogelfasern. RWTH Aachen University. Aachen, Germany; 2015.Google Scholar
Pinnow, M., Fink, H.P., Fanter, C., Kunze, J. Characterization of highly porous materials from cellulose carbamate. Macromolecular Symposia. 2008; 262:129139.Google Scholar
Gan, S., Zakaria, S., Chia, C.H., Chen, R.S., Ellis, A.V., Kaco, H. Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate. PLoS One. 2017; https://doi.org/10.1371/journal.pone.0173743.Google Scholar
Gavillon, R. Preparation et caracterisation der materiaux cellulosiques ultra poreux. Ecole des Mines de Paris. Paris; 2007.Google Scholar
Jin, H., Nishiyama, Y., Wada, M., Kuga, S. Nanofibrillar cellulose aerogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004; 240:6367.Google Scholar
Innerlohinger, J., Weber, H.K., Kraft, G. Aerocell: Aerogels from cellulosic materials. Lenzinger Berichte. 2006; 86:137143.Google Scholar
Pircher, N., Fischhuber, D., Carbajal, L., et al. Preparation and reinforcement of dual-porous biocompatible cellulose scaffolds for tissue engineering. Macromolecular Materials and Engineering. 2015; 300(9):911924.Google Scholar
Donati, I., Paoletti, S. Non-aquous solvents of cellulose. In: Rehm, B.H.A., editor. Material Properties of Alginates. Berlin, Heidelberg: Springer; 2009. pp. 153.Google Scholar
Jones, R.G. Dispersity in polymer science. Polymer International. 2010; 59(1):2222.Google Scholar
Aarstad, O.A., Tøndervik, A., Sletta, H., Skjåk-Bræk, G. Alginate sequencing: an analysis of block distribution in alginates using specific alginate degrading enzymes. Biomacromolecules. 2012 01; 13(1):106116.Google Scholar
Usov, A.I. Alginic acids and alginates: analytical methods used for their estimation and characterisation of composition and primary structure. Russian Chemical Reviews. 1999; 68(11):957966.Google Scholar
Stokke, B.T., Smidsroed, O., Bruheim, P., Skjaak-Braek, G. Distribution of uronate residues in alginate chains in relation to alginate gelling properties. Macromolecules. 1991 08; 24(16):46374645.Google Scholar
Agulhon, P., Constant, S., Chiche, B., et al. Controlled synthesis from alginate gels of cobalt–manganese mixed oxide nanocrystals with peculiar magnetic properties. Catalysis Today. 2012; 189(1):4954.Google Scholar
Grasdalen, H., Larsen, B, Smisrod, O. 13C-n.m.r. studies of monomeric composition and sequence in alginate. Carbohydrate Research. 1981; 89(2):179191.Google Scholar
Pawar, S.N., Edgar, K.J. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials. 2012; 33(11):32793305.Google Scholar
Matsushima, K., Minoshima, H., Kawanami, H., et al. Decomposition reaction of alginic acid using subcritical and supercritical water. Industrial & Engineering Chemistry Research. 2005 12; 44(25):96269630.Google Scholar
Villard, P., Rezaeeyazdi, M., Colombani, T., et al. Autoclavable and injectable cryogels for biomedical applications. Advanced Healthcare Materials. 2019; 8(17):1900679.Google Scholar
Pawar, S.N. Chemical modification of alginate. In: Venkatesan, J., Anil, S., Kim, S.K., editors. Seaweed Polysaccharides. Elsevier; 2017. pp. 111155.Google Scholar
Pawar, S.N., Edgar, K.J. Chemical modification of alginates in organic solvent systems. Biomacromolecules. 2011 11; 12(11):40954103.Google Scholar
Schleeh, T., Madau, M., Roessner, D. Synthesis enhancements for generating highly soluble tetrabutylammonium alginates in organic solvents. Carbohydrate Polymers. 2014; 114:493499.Google Scholar
Budtova, T. Cellulose II aerogels: a review. Cellulose. 2019 Jan; 26(1):81121.Google Scholar
Ventura, M.G., Paninho, A.I., Nunes, A.V.M., Fonseca, I.M., Branco, L.C. Biocompatible locust bean gum mesoporous matrices prepared by ionic liquids and a scCO2 sustainable system. RSC Advances. 2015; 5:107700107706.Google Scholar
Cordeiro, T., Paninho, A.B., Bernardo, M., et al. Biocompatible locust bean gum as mesoporous carriers for naproxen delivery. Materials Chemistry and Physics. 2020; 239:121973.Google Scholar
Sun, X., Xue, Z., Mu, T. Precipitation of chitosan from ionic liquid solution by the compressed CO2 anti-solvent method. Green Chemistry. 2014; 16:21022106.Google Scholar
Aarstad, O., Strand, B.L., Klepp-Andersen, L.M., Skjåk-Bræk, G. Analysis of G-block distributions and their impact on gel properties of in vitro epimerized mannuronan. Biomacromolecules. 2013 10; 14(10):34093416.Google Scholar
Fang, Y., Al-Assaf, S., Phillips, G.O., et al. Multiple steps and critical behaviors of the binding of calcium to alginate. Journal of Physical Chemistry B. 2007 03; 111(10): 24562462.Google Scholar
Hecht, H., Srebnik, S. Structural characterization of sodium alginate and calcium alginate. Biomacromolecules. 2016 06; 17(6):21602167.Google Scholar
Robitzer, M., David, L., Rochas, C., Di Renzo, F., Quignard, F. Nanostructure of calcium alginate aerogels obtained from multistep solvent exchange route. Langmuir. 2008 11; 24(21):1254712552.Google Scholar
Robitzer, M., David, L., Rochas, C., Di Renzo, F., Quignard, F. Supercritically-dried alginate aerogels retain the fibrillar structure of the hydrogels. Macromolecular Symposia. 2008; 273(1):8084.Google Scholar
Takeshita, S., Sadeghpour, A., Malfait, W.J., Konishi, A., Otake, K., Yoda, S. Formation of nanofibrous structure in biopolymer aerogel during supercritical CO2 processing: the case of chitosan aerogel. Biomacromolecules. 2019 05; 20(5):20512057.Google Scholar
Agulhon, P., Markova, V., Robitzer, M., Quignard, F., Mineva, T. Structure of alginate gels: interaction of diuronate units with divalent cations from density functional calculations. Biomacromolecules. 2012 06; 13(6):18991907.Google Scholar
Plazinski, W., Drach, M. Binding of bivalent metal cations by α-l-guluronate: insights from the DFT-MD simulations. New Journal of Chemistry. 2015; 39:39873994.Google Scholar
Menakbi, C., Quignard, F., Mineva, T. Complexation of trivalent metal cations to mannuronate type alginate models from a density functional study. Journal of Physical Chemistry B. 2016 04; 120(15):36153623.Google Scholar
Topuz, F., Henke, A., Richtering, W., Groll, J. Magnesium ions and alginate do form hydrogels: a rheological study. Soft Matter. 2012; 8:48774881.Google Scholar
Westmann, J.O., Taherzadeh, M.J., Franzén, C.J. Proteomic analysis of the increased stress tolerance of saccharomyces cerevisiae encapsulated in liquid core alginate–chitosan capsules. PLoS One. 2012; 7(11):e49335.Google Scholar
Wang, Q., Zhang, L., Liu, Y., Zhang, G., Zhu, P. Characterization and functional assessment of alginate fibers prepared by metal–calcium ion complex coagulation bath. Carbohydrate Polymers. 2020; 232:115693.Google Scholar
Tritz, J., Rahouadj, R., de Isla, N., et al. Designing a three-dimensional alginate hydrogel by spraying method for cartilage tissue engineering. Soft Matter. 2010; 6:51655174.Google Scholar
Marpani, F., Luo, J., Mateiu, R.V., Meyer, A.S., Pinelo, M. In situ formation of a biocatalytic alginate membrane by enhanced concentration polarization. ACS Applied Materials & Interfaces. 2015 08; 7(32):1768217691.Google Scholar
Chen, D., Lewandowski, Z., Roe, F., Surapaneni, P. Diffusivity of Cu2+ in calcium alginate gel beads. Biotechnology and Bioengineering. 1993; 41(7):755760.Google Scholar
Nestle, N.F.E.I., Kimmich, R. NMR imaging of heavy metal absorption in alginate, immobilized cells, and kombu algal biosorbents. Biotechnology and Bioengineering. 1996; 51(5):538543.Google Scholar
Kuo, C.K., Ma, P.X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001; 22(6):511521.Google Scholar
Gurikov, P., Raman, S.P., Weinrich, D., Fricke, M., Smirnova, I. A novel approach to alginate aerogels: carbon dioxide induced gelation. RSC Advances. 2015; 5:78127818.Google Scholar
Subrahmanyam, R., Gurikov, P., Meissner, I., Smirnova, I. Preparation of biopolymer aerogels using green solvents. JoVE. 2016; (113):e54116.Google Scholar
Yuguchi, Y., Hasegawa, A., Padoł, A.M., Draget, K.I., Stokke, B.T. Local structure of Ca2+ induced hydrogels of alginate–oligoguluronate blends determined by small-angle-X-ray scattering. Carbohydrate Polymers. 2016; 152:532540.Google Scholar
Valentin, R., Horga, R., Bonelli, B., Garrone, E., Di Renzo, F., Quignard, F. FTIR spectroscopy of NH3 on acidic and ionotropic alginate aerogels. Biomacromolecules. 2006 03; 7(3):877882.Google Scholar
Mørch, Ý.A., Holtan, S., Donati, I., Strand, B.L., Skjåk-Bræk, G. Mechanical properties of C-5 epimerized alginates. Biomacromolecules. 2008 09; 9(9):23602368.Google Scholar
Aarstad, O, Strand, B.L., Klepp-Andersen, L.M., Skjåk-Bræk, G. Analysis of G-block distributions and their impact on gel properties of in vitro epimerized mannuronan. Biomacromolecules. 2013 10; 14(10):34093416.Google Scholar
Lozinsky, V. Cryogels on the basis of natural and synthetic polymers: preparation, properties and application. Russian Chemical Reviews. 2002; 71:489511.Google Scholar
Zhao, Y., Shen, W., Chen, Z., Wu, T. Freeze-thaw induced gelation of alginates. Carbohydrate Polymers. 2016; 148:4551.Google Scholar
Zhang, H., Zhang, F., Wu, J. Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique. Reactive and Functional Polymers. 2013; 73(7): 923928.Google Scholar
Giannouli, P., Morris, E. Cryogelation of xanthan. Food Hydrocolloids. 2003 July; 17(4):495501.Google Scholar
Shan, L., Gao, Y., Zhang, Y., et al. Fabrication and use of alginate-based cryogel delivery beads loaded with urea and phosphates as potential carriers for bioremediation. Industrial & Engineering Chemistry Research. 2016 07; 55(28):76557660.Google Scholar
Ho, M.H., Kuo, P.Y., Hsieh, H.J., et al. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials. 2004 January; 25(1):129138.Google Scholar
Tkalec, G., Knez, Ž, Novak, Z. Formation of polysaccharide aerogels in ethanol. RSC Advances. 2015; 5:7736277371.Google Scholar
Pérez-Madrigal, M.M., Torras, J., Casanovas, J., Häring, M., Alemán, C., Díaz, D.D. Paradigm shift for preparing versatile M2+-free gels from unmodified sodium alginate. Biomacromolecules. 2017 09; 18(9):29672979.Google Scholar
Gurikov, P., Smirnova, I. Non-conventional methods for gelation of alginate. Gels. 2018; 4:14.Google Scholar
Groot, S.R.D., Mazur, P. Non-Equilibrium Thermodynamics. Amsterdam: North-Holland Publishing Company; 1962.Google Scholar
de Groot, S. Thermodynamics of Irrversible Processes. Amsterdam: North-Holland Publishing Company; 1952.Google Scholar
Landau, L.D., Lifshitz, E.M. Lehrbuch der theoretischen Physik. vol. X. Berlin: Akademie Verlag; 1983.Google Scholar
Jäckle, J. Einführung in die Transporttheorie. Braunschweig: Vieweg Verlag; 1987.Google Scholar
Huang, K. Statistical Mechanics. New York: John Wiley and Sons, Inc.; 1963.Google Scholar
Born, M., Green, H. A general kinetic theory of liquids. III. Dynamical properties. Proceedings of the Royal Society A. 1947; 190:455474.Google Scholar
Yokoyama, I., Tsuchiya, S. Excess entropy, diffusion coefficient, viscosity coefficient and surface tension of liquid simple metals from diffraction data. Materials Transactions. 2002; 43:6772.Google Scholar
Christensen, R.M. Theory of Viscoelasticity. 2nd ed. Mineola: Dover Civil and Mechanical Engineering. Dover Publications; 2013.Google Scholar
Thiel, J. Kinetik des Sol/Gel Übergangs in wässrigen Resorcin/Formaldehyd-Lösungen. Fachhochschule Aachen and DLR; 2001.Google Scholar
Vogelsberger, W., Opfermann, J., Wank, U., Schulze, H., Rudakoff, G. A model for viscosity in the early stages of the sol–gel transformation. Journal of Non-Crystalline Solids. 1991; 145:2024.Google Scholar
Buchtová, N, Budtova, T. Cellulose aero-, cryo- and xerogels: towards understanding of morphology control. Cellulose. 2016; 23(4):25852595.Google Scholar
Krause, J., Lisinski, S., Ratke, L., et al. Observation of gelation process and particle distribution during sol–gel synthesis by particle image velocimetry. Journal of Sol–Gel Science and Technology 2008; 45:7377.Google Scholar
Raffel, M., Willert, C., Kompenhans, J. Particle Image Velocimetry. Berlin, Heidelberg, New York: Springer Verlag; 1997.Google Scholar
Ratke, L., Hajduk, A. On the size effect of gelation kinetics in RF aerogels. Gels. 2015; 1:276290.Google Scholar
Mandelbrot, B. The Fractal Geometry of Nature. 3rd ed. New York: W.H. Freeman and Company; 1977.Google Scholar
Smoluchowski, M. Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Physik Zeitschrift. 1916; 17:586599.Google Scholar
Fuchs, N. Aerosol Mechanics. Oxford: Pergamon Press Ltd.; 1964.Google Scholar
Rogers, R.R., Yau, M.K. A Short Course in Cloud Physics. 3rd ed. Oxford: Pergamon Press Ltd.; 1989.Google Scholar
Ratke, L., Diefenbach, S. Liquid immiscible allyos. Materials Science and Engineering Reports. 1995; R15:263347.Google Scholar
Christensen, K., Moloney, N.R. Complexity and Criticality. London: Imperial College Press; 2005.Google Scholar
Lorenz, C.D., Ziff, R.M. Precise determination of the critical percolation threshold for the three-dimensional ‘Swiss cheese’ model using a growth algorithm. Journal of Chemical Physics. 2001; 114(8):36593661.Google Scholar
Stauffer, D., Coniglio, A., Adam, M. Gelation and critical phenomena. Advances in Polymer Science. 1982; 44:104158.Google Scholar
Christensen, K. Percolation Theory; 2002. London: Imperial College London.Google Scholar
Witten,, T.A., Sander, L.M. Diffusion-limited aggregation, a kinetic critical phenomenon. Physical Review of Letters. 1981; 47:14001403.Google Scholar
Meakin, P. Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Physical Review of Letters. 1983; 51:11191122.Google Scholar
Kolb, M., Botet, R., Jullien, R. Scaling of Kinetically Growing Clusters. Physical Review of Letters. 1983; 51:11231126.Google Scholar
Halperin, W.P. Low Temperature Physics Group. http://spindry.phys.northwestern.edu/ agel.htm.Google Scholar
Haard, T.M., Gervais, G., Nomura, R., Halperin, W.P. The pathlength distribution of simulated aerogels. Physica B: Condensed Matter. 2000; 284-288:289290.Google Scholar
Toxiclibs. Simutils-0001: Diffusion limited aggregation http://toxiclibs.org/2010/02/new-package-simutils/.Google Scholar
Sayama, H. Diffusion-limited aggregation: a real-time agent-based simulation. Wolfram Demonstration Projects. https://demonstrations.wolfram.com/DiffusionLimited AggregationARealTimeAgentBasedSimulation/.Google Scholar
Drake, R.L.A. A General Mathematical Survey of the Coagulation Equation. edited by Hidy, G.M., Brock, J.R. Topics in Current Aerosol Research. Oxford, UK: Pergamon Press Ltd.; 1970.Google Scholar
Golovin, A.M. The solution of the coagulation equation for cloud droplets in a rising air current. Bulletin of the Academy of Sciences of the USSR. 1963; 5:482487.Google Scholar
Stauffer,, D. Percolation and cluster size distribution. In: Stanley, H.E. and Ostrowsky, N., editors, On Growth and Form. Dordrecht: Martinus Nijhoff Publishers, Dordrecht; 1986. pp 79100.Google Scholar
Lushnikov, A.A. Critical behavior of the particle mass spectra in a family of gelling systems. Physical Review E. 2007; 76:011120.Google Scholar
Lushnikov, A.A. Postcritical behavior of a gelling system. Physical Review E. 2013; 88:052120.Google Scholar
Barenblatt, G.I. Scaling, Self-Similarity, and Intermediate Asymptotics. Cambridge: Cambridge University Press; 1996.Google Scholar
Friedlander, S.K., Wang, C.S. The self-preserving particle size distribution for coagulation by brownian motion. Journal of Colloid and Interface Science. 1966; 22:126132.Google Scholar
Pulvermacher, B., Ruckenstein, E. Similarity solutions of populations balances. Journal of Colloid and Interface Science. 1974; 46:428436.Google Scholar
Family, F., Vicsek, T. Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. Journal of Physics A: Mathematical and General. 1985; 18:L75L81.Google Scholar
Meakin, P., Viscek, T., Family, F. Dynamic cluster-size distribution in cluster–cluster aggregation: effects of cluster diffusivity. Physical Review B. 1985; 31:564569.Google Scholar
Ball, R.C., Connaughton, C., Stein, T.H.M., Zaboronski, O. Instantaneous gelation in Smoluchowski’s coagulation equation revisited. Physical Review E. 2011; 84:011111.Google Scholar
Rezakhanlou, F. Gelation for Marcus–Lushnikov process. Annals of Probability. 2013; 41:18061830.Google Scholar
Fournier, N., Laurencot, P. Marcus–Lushnikov processes, Smoluchowski’s and Flory’s models. Stochastic Processes and Their Applications. 2009; 119:167189.Google Scholar
Schaefer, D.W., Pekala, R., Beaucage, G. Origin of porosity in resorcinol-formaldehyde aerogels. Journal of Non-Crystallline Solids. 1995; 186:159167.Google Scholar
Berthon, S., Barbieri, O., Ehrburger-Dolle, F., et al. DLS and SAXS investigations of organic gels and aerogels. Journal of Non-Crystalline Solids. 2001; 285:154161.Google Scholar
Tanaka, H. New mechanisms of droplet coarsening in phase-separating fluid mixtures. Journal of Chemical Physics. 1997; 107(9):37343737.Google Scholar
Tanaka, H. Viscoelastic model of phase separation. Physical Review E. 1997 Oct; 56:44514462.Google Scholar
Tanaka, F., Okamura, K. Characterization of cellulose molecules in bio-system studied by modeling methods. Cellulose. 2005; 12:243252.Google Scholar
Taniguchi, T., Onuki, A. Network domain structure in viscoelastic phase separation. Physical Review of Letters. 1996; 77:49104913.Google Scholar
Glotzer, S.C., Marzio, E.A.D., Mthukumur, M. Reaction-controlled morphology of phase-separating mixtures. Physical Review of Letters. 1995; 74:20342039.Google Scholar
Glotzer, S. Computer simulations of spinodal decompositions in polymer blends. In: Stauffer, D, editor. Annual Reviews of Computational Physics II. Singapore: World Scientific Publishing Co.; 1995. pp. 147.Google Scholar
Oh, J., Rey, A.D. Theory and simulation of polymerization-induced phase separation in polymeric media. Macromolecular Theory and Simulations. 2000; 9(8):641660.Google Scholar
Zha, L., Hu, W. Homogeneous crystal nucleation triggered by spinodal decomposition in polymer solutions. Journal of Physical Chemistry B. 2007; 111:1137311378.Google Scholar
Lee, K.W.D., Chan, P.K., Feng, X. A computational study of the polymerization-induced phase separation phenomenon in polymer solutions under a temperature gradient. Macromolecular Theory and Simulations. 2003; 12:413424.Google Scholar
Hara, A., Inoue, R., Takahashi, N., Nishida, K., Kanaya, T. Trajectory of critical point in polymerization-induced phase separation of epoxy/oligoethylene glycol solutions. Macromolecules. 2014; 47:44534459.Google Scholar
Luo, K. The morphology and dynamics of polymerization-induced phase separation. European Polymer Journal. 2006; 42:14991505.Google Scholar
Kyu, T., Lee, J.H. Nucleation initiated spinodal decomposition in an polymerizing system. Physical Review of Letters. 1996; 76:37463749.Google Scholar
Koyama, T., Araki, T., Tanaka, H. Fracture phase separation. Physical Review of Letters. 2009; 102:065701.Google Scholar
Sciortino, F., Bansil, R., Stanley, H.E. Interference of phase separation and gelation: zeroth-order kinetic model. Physical Review E. 1993; 47(6):46154618.Google Scholar
Muratov, C.B. Unusual coarsening during phase separation in polymer systems. Physical Review of Letters. 1998 Oct; 81:36993702.Google Scholar
Lee, D., Huh, J.Y., Jeong, D., Shin, J., Yun, A., Kim, J. Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation. Computational Materials Science. 2014; 81:216225.Google Scholar
Kontogeorgis, G.M., von Solms, N. Thermodynamics of polymer solutions. In: Birdi, K.S., editor, Handbook of Surface and Colloid Chemistry. 3rd ed. Boca Raton, New York: Taylor and Francis Group, 2009. pp. 499537.Google Scholar
Yamakawa, H. Modern Theory of Polymer Solutions. Electronic edition ed. Kyoto University, original New York: Harper and Row, 1971; 2002.Google Scholar
Courant, R., Hilbert, D. Methoden der mathematischen Physik. Berlin–Heidelberg–New York: Springer-Verlag; 1968.Google Scholar
Morse, P.M, Feshbach, H. Methods of Theoretical Physics. New York: McGraw-Hill Inc.; 1953.Google Scholar
Churchill, S.W. Viscous Flows. Butterworths Series in Chemical Engineering. Stoneham: Butterworths Publishers; 1988.Google Scholar
Subramanian, R.S., Balasubramaniam, R. The Motion of Bubbles and Drops in Reduced Gravity. Cambridge: Cambridge University Press; 2001.Google Scholar
Levich, V. Physicochemical Hydrodynamics. Englewood Cliffs: Prentice Hall; 1962.Google Scholar
Wan, F., Altschuh, P., Ratke, L., Zhang, H., Selzer, M., Nestler, B. Progress report on phase separation in polymer solutions. Advanced Materials. 2019; pp. 1806733.Google Scholar
Chan, P.K., Rey, A.D. Polymerization-induced phase separation. 1. Droplet size selection mechanism. Macromolecules. 1996; 29:89348941.Google Scholar
Anglaret, E., Hasmy, A., Jullien, R. Effect of container size on gelation time: experiments and simulations. Physical Review of Letters. 1995; 75:40594062.Google Scholar
Vafai, K., editor. Handbook of Porous Media. 2nd ed. Boca Raton: CRC Press Taylor and Francis Group; 2005.Google Scholar
Metzger, T., Kwapinski, M., Peglow, M., Saage, G., Tsotsas, E. Modern modelling methods in drying. Transport in Porous Media. 2007; 66:103120.Google Scholar
Prat, M. Recent advances in pore-scale models for drying of porous media. Chemical Engineering Journal. 2002; 86:153164.Google Scholar
Prat, M. On the influence of pore shape, contact angle and film flows on drying of capillary porous media. International Journal of Heat and Mass Transfer. 2007; 50:14551468.Google Scholar
Nusselt, W. Heat Transfer, Diffusion and Evaporation. Washington: National Advisory Committee for Aeronautics; 1954.Google Scholar
Bisson, A., Rodier, E., Rigacci, A., Lecomte, D, Achard, P. Study of evaporative drying of treated silica gels. Journal of Non-Crystalline Solids. 2004; 350:230237.Google Scholar
Smith, D.M., Stein, D., Anderson, J.M., Ackerman, W. Preparation of low-density xerogels at ambient pressure. Journal of Non-Crystalline Solids. 1995; 186:104112.Google Scholar
Reuss, M., Ratke, L. Drying of aerogel-bonded sands. Journal of Materials Science. 2010; 45:39743980.Google Scholar
Reuss, M., Ratke, L. RF-aerogels catalysed by ammonioum carbonate. Journal of Sol–Gel Sciences and Technology. 2010; 53:8592.Google Scholar
Schwerdtfeger, F., Frank, D., Schmidt, M. Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. Journal of Non-Crystalline Solids. 1998; 225:2429.Google Scholar
Crank, J. The Mathematics of Diffusion. 2nd ed. Oxford: Clarendon Press; 1975.Google Scholar
Mahadik, D.B., Rao, A.V., Rao, A.P., Waghb, P.B., Ingale, S.V., Gupta, S.C. Effect of concentration of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents on surface free energy of silica aerogels. Journal of Colloid and Interface Science. 2011; 356:298302.Google Scholar
Zgura, I., Moldovsn, R., Negrila, C.C., Frunza, S., Cotorobai, V.F., Frunza, L. Surface free energy of smooth and dehydroxylated fused quartz from contact angel measuremmets using some particular organics as probe liquids. Journal of Optoelectronics and Advanced Materials. 2013; 15:627634.Google Scholar
Zenkiewicz, M. Methods for the calculation of surface free energies of solids. Journal of Achievements in Materials and Manufacturing Engineering. 2007; 24:137145.Google Scholar
Zdziennicka, A., Janczuk, B. Adhesion of aqueous solution of TX-100 and TX-165 mixture with propanol to quartz. Journal of Materials Science and Nanotechnology. 2018; 6. http://www.annexpublishers.co/articles/JMSN/6206-Adhesion-of-Aqueous-Solution-of-TX-100-and-TX-165-Mixture-with-Propanol-to-Quartz.pdf.Google Scholar
Yiotis, A.G., Tsimpanogiannis, I.N., Stubos, A.K., Yortsos, Y.C. Pore-network study of the characteristic periods in the drying of porous materials. Journal of Colloid and Interface Science. 2006; 297:738748.Google Scholar
Kohout, M., Grof, Z., Stepanek, F. Pore-scale modelling and tomographic visualisation of drying in granular media. Journal of Colloid and Interface Science. 2006; 299:342351.Google Scholar
Deville, S. Freeze-casting of porous biomaterials: structure, properties and opportunities. Materials. 2010; 3:19131927.Google Scholar
Deville, S., Meille, S., Seuba, J. A meta-analysis of the mechanical properties of ice-templated ceramics and metals. Science and Technology of Advanced Materials. 2015; 16:043501.Google Scholar
Glicksman, M.E. Principles of Solidification. New York: Springer Science and Business Media LLC; 2011.Google Scholar
Dantzig, J., Rappaz, M. Solidification. 2nd ed. EPFL Press; 2018.Google Scholar
Kurz, W., Fisher, D.J. Fundamentals of Solidification. 4th ed. Aedermannsdorf: Trans. Tech. Publisher; 1998.Google Scholar
Rosenberger, F. Fundamentals of Crystal Growth. Berlin–Heidelberg–New York: Springer; 1979.Google Scholar
Grant, P.S., Cantor, B. Modelling of droplet dynamic and thermal histories during spray forming – III. Analysis of spray solid fraction. Acta Metallurgica et Materialia. 1995; 43(3):913921.Google Scholar
Grant, P.S., Cantor, B., Katgerman, L. Modelling of droplet dynamic and thermal histories during spray forming – I. individual droplet behaviour. Acta Metallurgica et Materialia. 1993; 41(11):30973108.Google Scholar
Grant, P.S., Cantor, B., Katgerman, L. Modelling of droplet dynamic and thermal histories during spray forming – II. Effect of process parameters. Acta Metallurgica et Materialia. 1993; 41(11):31093118.Google Scholar
Kauerauf, B., Zimmermann, G., Rex, S., Mathes, M., Grote, F. Directional cellular growth of succinonitrile-0.075wt samples Part 1: results of space experiments. Journal of Crystal Growth. 2001; 223:265276.Google Scholar
Kauerauf, B., Zimmermann, G., Rex, S., Billia, B., Jamgotchian, H., Hunt, J.D. Directional cellular growth of succinonitrile-0.075wt samples Part 2: Analysis of cellular pattern. Journal of Crystal Growth. 2001; 223:277284.Google Scholar
Mullins, W.W., Sekerka, R.F. Stability of a planar interface during solidification of a dilute binary alloy. Journal of Applied Physics. 1964; 35(2):444451.Google Scholar
Grosse, K., Ratke, L., Feuerbacher, B. Solidification and melting of succinonitrle within the porous structure of an aerogel. Physical Review B. 1997; 55:28942902.Google Scholar
Stefanescu, D.M. Science and Engineering of Casting Solidification. New York: Springer Science and Business Media LLC; 2009.Google Scholar
Jiménez-Saelices, C., Cathala, B.S., Grohens, Y. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydrate Polymers. 2017; 157:105113.Google Scholar
Ghafar, A., Parikka, K., Haberthür, D., Tenkanen, M., Mikkonen, K.S., Suuronen, J.P. Synchroton microtomography reveals the fine three-dimensional porosity of composite polysaccharide aerogels. Materials. 2017; 10:871.Google Scholar
Alkemper, J., Sous, S., Stöcker, C., Ratke, L. Directional solidification in an aerogel furnace with high resolution optical temperature measurement. Journal of Crystal Growth. 1998; 191:252260.Google Scholar
Blum, J., Wurm, G., Kempf, S., et al. Growth and form of planetary seedlings: results from a microgravity aggregation experiment. Physical Review of Letters. 2000; 85:24262429.Google Scholar
Ratke, L., Kochan, H. Fracture Mechanical Aspects of Dust Emission Processes from a Model Comet Surface. In: Proceedings of the International Workshop on Physics and Mechanics of Cometary Materials. ESA SP-302. European Space Agency. Noordwijk: ESA; 1989. pp. 121128.Google Scholar
Thiel, K., Kölzer, G., Kochan, H., Ratke, L., Grün, E., Kohl, H. Dynamics of crust formation and dust emission of comet nucleus analogues under insolation. In: Proceedings of the International Workshop on Physics and Mechanics of Cometary Materials. ESA SP-302. European Space Agency. Noordwijk: ESA; 1989. pp. 221225.Google Scholar
Newborn, R.L., Neugebauer, M., Rahe, J., editors. Comets in the Post-Halley Era. vols. 1 and 2. Dordrecht: Kluwer Academic Publishers; 1991.Google Scholar
Meyer, E.F., Meyer, T.P. Supercritical fluid: liquid, gas, both, or neither? A different approach. Journal of Chemical Education. 1986; 63(6):463.Google Scholar
Tarafder, A., Guiochon, G. Use of isopycnic plots in designing operations of supercritical fluid chromatography: II. The isopycnic plots and the selection of the operating pressure-temperature zone in supercritical fluid chromatography. Journal of Chromatography A. 2011 July; 1218(28):45764585.Google Scholar
Pilar, F.L. The critical temperature: a necessary consequence of gas non-ideality. Journal of Chemical Education. 1967; 44(5):284.Google Scholar
Westwell, M.S., Searle, M.S., Wales, D.J., Williams, D.H. Empirical correlations between thermodynamic properties and intermolecular forces. Journal of the American Chemical Society. 1995; 117(18):50135015.Google Scholar
Moldover, M.R. Interfacial tension of fluids near critical points and two-scale-factor universality. Physical Review A. 1985; 31:10221033.Google Scholar
Domb, C. The Critical Point. London: CRC Press; 1996.Google Scholar
Liu, Y., Lipowsky, R., Dimova, R. Concentration dependence of the interfacial tension for aqueous two-phase polymer solutions of dextran and polyethylene glycol. Langmuir. 2012; 28:38313839.Google Scholar
Pierre, A.C., Pajonk, G.M. Chemistry of aerogels and their applications. Chemical Reviews. 2002; 102(11):42434266.Google Scholar
Schott, J., Dandurand, J.L. Prediction of the thermodynamic behavior of aqueous silica in aqueous complex solutions at various temperatures. In: Helgeson, H.C., editor. Prediction of the Thermodynamic Behavior of Aqueous Silica in Aqueous Complex Solutions at Various Temperatures. Dordrecht: Springer Netherlands; 1987. pp. 733754.Google Scholar
Kocon, L., Despetis, F., Phalippou, J. Ultralow density silica aerogels by alcohol supercritical drying. Journal of Non-Crystalline Solids. 1998; 225:96100.Google Scholar
Estella, J., Echeverría, J.C., Laguna, M., Garrido, J.J. Effect of supercritical drying conditions in ethanol on the structural and textural properties of silica aerogels. Journal of Porous Materials. 2008; 15(6):705713.Google Scholar
Pajonk, G.M. A short history of the preparation of aerogels and carbogels. In: Attia, Y.A., editor. Sol-Gel Processing and Applications. Boston: Springer US, pp. 201219.Google Scholar
Woignier, T., Phalippou, J., Quinson, J.F., Pauthe, M., Laveissiere, F. Physicochemical transformation of silica gels during hypercritical drying. Journal of Non-Crystalline Solids. 1992; 145:2532.Google Scholar
Yoda, S., Ohshima, S. Supercritical drying media modification for silica aerogel preparation. Journal of Non-Crystalline Solids. 1999; 248(2):224234.Google Scholar
Yoda, S., Ohshima, S., Ikazaki, F. Supercritical drying with zeolite for the preparation of silica aerogels. Journal of Non-Crystalline Solids. 1998; 231(1):4148.Google Scholar
Popovici, M., Gich, M., Roig, A., et al. Ultraporous single phase iron oxide – silica nanostructured aerogels from ferrous precursors. Langmuir. 2004; 20(4):14251429.Google Scholar
Zu, G., Shen, J., Zou, L., et al. Nanoengineering super heat-resistant, strong alumina aerogels. Chemistry of Materials. 2013; 25(23):47574764.Google Scholar
Ren, H., Zhu, J., Bi, Y., Xu, Y., Zhang, L. One-step fabrication of transparent hydrophobic silica aerogels via in situ surface modification in drying process. Journal of Sol–Gel Science and Technology. 2016; 80(3):635641.Google Scholar
Lermontov, S.A., Malkova, A.N., Yurkova, L.L., et al. Diethyl and methyl-tert-buthyl ethers as new solvents for aerogels preparation. Materials Letters. 2014; 116:116119.Google Scholar
Lermontov, S.A., Straumal, E.A., Mazilkin, A.A., et al. How to tune the alumina aerogels structure by the variation of a supercritical solvent. Evolution of the structure during heat treatment. Journal of Physical Chemistry C. 2016; 120(6):33193325.Google Scholar
Wang, J., Angnes, L., Tobias, H., et al. Carbon aerogel composite electrodes. Analytical Chemistry. 1993; 65(17):23002303.Google Scholar
Szczurek, A., Amaral-Labata, G., Fierro, V., Pizzi, A., Masson, E., Celzarda, A. Porosity of resorcinol-formaldehyde organic and carbon aerogels exchanged and dried with supercritical organic solvents. Materials Chemistry and Physics. 2011; 129:12211232.Google Scholar
Amaral-Labat, G., Szczurek, A., Fierro, V., Masson, E., Pizzi, A., Celzard, A. Impact of depressurizing rate on the porosity of aerogels. Microporous and Mesoporous Materials. 2012; 152:240245.Google Scholar
Amaral-Labat, G., Szczurek, A., Fierro, V., Pizzi, A., Masson, E., Celzard, A. ‘Blue glue’: a new precursor of carbon aerogels. Microporous and Mesoporous Materials. 2012; 158:272280.Google Scholar
Feng, J., Feng, J, Zhang, C. Shrinkage and pore structure in preparation of carbon aerogels. Journal of Sol–Gel Science and Technology. 2011; 59(2):371380.Google Scholar
Liang, C., Sha, G, Guo, S. Resorcinol-formaldehyde aerogels prepared by supercritical acetone drying. Journal of Non-Crystalline Solids. 2000; 271(1):167170.Google Scholar
Albert, D.F., Andrews, G.R., Mendenhall, R.S., Bruno, J.W. Supercritical methanol drying as a convenient route to phenolic–furfural aerogels. Journal of Non-Crystalline Solids. 2001; 296(1):19.Google Scholar
Poco, J.F., Coronado, P.R., Pekala, R.W., Hrubesh, L.W. A rapid supercritical extraction process for the production of silica aerogels. MRS Proceedings. 1996; 431:297.Google Scholar
Gauthier, B.M., Bakrania, S.D., Anderson, A.M., Carroll, M.K. A fast supercritical extraction technique for aerogel fabrication. Journal of Non-Crystalline Solids. 2004; 350:238243.Google Scholar
Brown, L.B., Anderson, A.M., Carroll, M.K. Fabrication of titania and titania–silica aerogels using rapid supercritical extraction. Journal of Sol–Gel Science and Technology. 2012; 62(3):404413.Google Scholar
Bono, M.S., Anderson, A.M., Carroll, M.K. Alumina aerogels prepared via rapid supercritical extraction. Journal of Sol–Gel Science and Technology. 2010; 53(2):216226.Google Scholar
Tewari, P.H., Hunt, A.J., Lofftus, K.D. Ambient-temperature supercritical drying of transparent silica aerogels. Materials Letters. 1985; 3(9):363367.Google Scholar
Zhang, Z., Scherer, G.W. Supercritical drying of cementitious materials. Cement and Concrete Research. 2017; 99:137154.Google Scholar
van Bommel, M.J., de Haan, A.B. Drying of silica aerogel with supercritical carbon dioxide. Journal of Non-Crystallline Solids. 1995; 186:7882.Google Scholar
Bouledjouidja, A., Masmoudi, Y., Speybroeck, M.V., Schueller, L., Badens, E. Impregnation of fenofibrate on mesoporous silica using supercritical carbon dioxide. International Journal of Pharmaceutics. 2016; 499(1):19.Google Scholar
Takenouchi, S., Kennedy, GC. The binary system H2 O–CO2 at high temperatures and pressures. American Journal of Science. 1964; 262(9):10551074.Google Scholar
Sanz-Moral, L.M., Rueda, M., Mato, R., Martín, Á. View cell investigation of silica aerogels during supercritical drying: analysis of size variation and mass transfer mechanisms. Journal of Supercritical Fluids. 2014; 92:2430.Google Scholar
Özbakır, Y., Erkey, C. Experimental and theoretical investigation of supercritical drying of silica alcogels. Journal of Supercritical Fluids. 2015; 98:153166.Google Scholar
Sahin, I., Özbakir, Y., Inönu, Z., Ulker, Z., Erkey, C. Kinetics of supercritical drying of gels. Gels. 2017; p. gels4010003.Google Scholar
García-González, C.A., Camino-Rey, M.C., Alnaief, M., Zetzl, C., Smirnova, I. Supercritical drying of aerogels using CO2 : effect of extraction time on the end material textural properties. Journal of Supercritical Fluids. 2012; 66:297306.Google Scholar
Griffin, J.S., Mills, D.H., Cleary, M., Nelson, R., Manno, V.P., Hodes, M. Continuous extraction rate measurements during supercritical CO 2 drying of silica alcogel. Journal of Supercritical Fluids. 2014; 94:3847.Google Scholar
Lebedev, A.E., Katalevich, A.M., Menshutina, N.V. Modeling and scale-up of supercritical fluid processes. Part I: supercritical drying. Journal of Supercritical Fluids. 2015; 106:122132.Google Scholar
Selmer, I., Behnecke, A.S., Quiño, J., Braeuer, A.S., Gurikov, P., Smirnova, I. Model development for sc-drying kinetics of aerogels: Part 1. Monoliths and single particles. Journal of Supercritical Fluids. 2018; 140:415430.Google Scholar
Quiño, J., Ruehl, M., Klima, T., Ruiz, F., Will, S., Braeuer, A. Supercritical drying of aerogel: in situ analysis of concentration profiles inside the gel and derivation of the effective binary diffusion coefficient using Raman spectroscopy. Journal of Supercritical Fluids. 2016; 108:112.Google Scholar
Bueno, A., Selmer, I., et al. First evidence of solvent spillage under subcritical conditions in aerogel production. Industrial and Engineering Chemistry Research. 2018; 57(26):86988707.Google Scholar
Jessop, P.G., Jessop, D.A., Fu, D., Phan, L. Solvatochromic parameters for solvents of interest in green chemistry. Green Chemistry. 2012; 14:12451259.Google Scholar
Silva, S.S., Duarte, A.R.C., Carvalho, A.P., Mano, J.F., Reis, R.L. Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta Biomaterialia. 2011; 7(3):11661172.Google Scholar
Plappert, S.F., Nedelec, J.M., Rennhofer, H., Lichtenegger, H.C., Bernstorff, S., Liebner, F.W. Self-assembly of cellulose in super-cooled ionic liquid under the impact of decelerated antisolvent infusion: an approach toward anisotropic gels and aerogels. Biomacromolecules. 2018; 19(11):44114422.Google Scholar
Paraskevopoulou, P., Smirnova, I., Athamneh, T., et al. Mechanically strong polyurea/polyurethane-cross-linked alginate aerogels. ACS Applied Polymer Materials. 2020 05; 2(5):19741988.Google Scholar
Smidsrød, O. Molecular basis for some physical properties of alginates in the gel state. Faraday Discussions of the Chemical Society. 1974; 57:263274.Google Scholar
Di Renzo, F., Valentin, R., Boissière, M., et al. Hierarchical macroporosity induced by constrained syneresis in core-shell polysaccharide composites. Chemistry of Materials. 2005; 17(18):46934699.Google Scholar
Molvinger, K., Quignard, F., Brunel, D., Boissière, M., Devoisselle, J.M. Porous chitosan-silica hybrid microspheres as a potential catalyst. Chemistry of Materials. 2004; 16(17):33673372.Google Scholar
Gurikov, P., Raman, S.P., Griffin, J.S., Steiner, S.A., Smirnova, I. 110th anniversary: solvent exchange in the processing of biopolymer aerogels: current status and open questions. Industrial & Engineering Chemistry Research. 2019 10; 58(40):1859018600.Google Scholar
Lindvig, T., Michelsen, M.L., Kontogeorgis, G.M. A Flory–Huggins model based on the Hansen solubility parameters. Fluid Phase Equilibria. 2002; 203(1):247260.Google Scholar
Constantinescu, D., Gmehling, J. Further development of modified UNIFAC (Dortmund): revision and extension 6. Journal of Chemical & Engineering Data. 2016; 61(8): 27382748.Google Scholar
Hansen, C.M. Hansen Solubility Parameters: A User’s Handbook. 2nd ed. Boca Raton: CRC Press Taylor and Francis Group; 2007.Google Scholar
Weerachanchai, P., Wong, Y., Lim, K.H., Tan, T.T.Y., Lee, J.M. Determination of solubility parameters of ionic liquids and ionic liquid/solvent mixtures from intrinsic viscosity. ChemPhysChem. 2014; 15(16):35803591.Google Scholar
Ravindra, R., Krovvidi, K.R., Khan, A.A. Solubility parameter of chitin and chitosan. Carbohydrate Polymers. 1998; 36(2):121127.Google Scholar
Lehnert, R.J., Kandelbauer, A. Comments on ‘solubility parameter of chitin and chitosan’. Carbohydrate Polymers. 2017; 175:601602.Google Scholar
Rowe, R.C. Interaction of lubricants with microcrystalline cellulose and anhydrous lactose – a solubility parameter approach. International Journal of Pharmaceutics. 1988; 41(3):223226.Google Scholar
Pena, M.A., Daali, Y., Barra, J., Bustamente, P. Partial solubility parametes of lactose, mannitol and saccharose using the modified extended hansen method and evaporation light scattering detection. Chemical & Pharmaceutical Bulletin. 2000; 48(2):179183.Google Scholar
Pircher, N., Veigel, S., Aigner, N., Nedelec, J.M., Rosenau, T., Liebner, F. Reinforcement of bacterial cellulose aerogels with biocompatible polymers. Carbohydrate Polymers. 2014; 111:505513.Google Scholar
Heath, L., Thielemans, W. Cellulose nanowhisker aerogels. Green Chemistry. 2010; 12:14481453.Google Scholar
Heath, L., Zhu, L, Thielemans, W. Chitin nanowhisker aerogels. ChemSusChem. 2013; 6(3):537544.Google Scholar
Watt, I.M. The Principles and Practice of Electron Microscopy. 2nd ed. New York: Cambridge University Press; 1997.Google Scholar
Reimer, L., Pfefferkorn, G. Rasterelektronenmikroskopie. 2nd ed. Berlin–Heidelberg– New York: Springer-Verlag; 1977.Google Scholar
Stroud, R.M., Long, J.W., Pietron, J.J., Rolison, D.R. A practical guide to transmission electron microscopy of aerogels. Journal of Non-Crystalline Solids. 2004; 350:277284.Google Scholar
Liu, G., Zhou, B., Du, A., Shen, J., Wu, G. Greatly strengthened silica aerogels via co-gelation of binary sols with different concentrations: a method to control the microstructure of the colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013; 436:763774.Google Scholar
Despetis, F., Bengoura, N., Lartigue, B., Spagnol, S., Olivi-Tan, N. Three dimensional reconstruction of aerogels from TEM images. Journal of Non-Crystalline Solids. 2012; 358:11801184.Google Scholar
Hedge, N.D., Rao, A.V. Physical properties of methyltrimethoxysilane based elastic silica aerogels prepared by the two-stage sol–gel process. Journal of Materials Science. 2007; 42:69656971.Google Scholar
Gurav, J.L., Rao, A.V., Rao, A.P., Nadargi, D.Y., Bhagat, S.D. Physical properties of sodium silicate based silica aerogels prepared by single step sol-gel process dreid at ambient pressure. Journal of Alloys and Compounds. 2009; 476:397402.Google Scholar
Micromeritics Instruments Corporation. Envelope density analyzer. www.micromeritics.com/Product-Showcase/GeoPyc-1365.aspxGoogle Scholar
Woignier, T., Phalippou, J. Skeletal density of silica aerogels. Journal of Non-Crystalline Solids. 1987; 93:1721.Google Scholar
Ayral, A., Phalipou, J., Woignier, T. Skeletal density of silica aerogels determined by helium pycnometry. Journal of Materials Science. 1992; 27:11661170.Google Scholar
Stumpf, C., von Gässler, K., Reichenauer, G., Fricke, J. Dynamic gas flow measurements on aerogels. Journal of Non-Crystalline Solids. 1992; 145:180184. Aerogele.Google Scholar
Reichenauer, G., Stumpf, C., Fricke, J. Characterization of SiO2, RF and carbon aerogels by dynamic gas expansion. Journal of Non-Crystalline Solids. 1995; 186:334341.Google Scholar
Hosticka, B., Norris, P.M., Brenizer, J.S., Daitch, C.E. Gas flow through aerogels. Journal of Non-Crystalline Solids. 1998; 225:293297.Google Scholar
Beurroies, J., Bourret, D., Sempéré, R., Duffours, L., Phalippou, J. Gas permeability of partially densified aerogels. Journal of Non-Crystalline Solids. 1995; 186:328333.Google Scholar
Job, N., Théry, A., Pirard, R., et al. Carbon aerogels, crygels and xerogels: Influence of the drying method on the textural properties of porous cabron materials. Carbon. 2005; 43:24812494.Google Scholar
Torquato, S. Random heterogeneous materials. New York: Springer-Verlag; 2002.Google Scholar
Wong, J.C.H., Kaymak, H., Brunner, S., Koebel, M.M. Mechanical properties of monolithic silica aerogels made from polyethoxydisiloxanes. Microporous and Mesoporous Materials. 2014; 183:2329.Google Scholar
Ludwig, S. Untersuchungen zur Gelation von RF-Aerogelen mit Zitronensäure und Bestimmung der Eigenschaften der erzeugten Aerogele. Hochschule Bonn-Rhein-Sieg; 2011.Google Scholar
Cai, J., Kimura, S., Wada, M., Kuga, S., Zhang, L. Cellulose aerogels from aqueous alkali hydroxide-urea solution. ChemSusChem. 2008; 1:149154.Google Scholar
Thommes, M., Kaneko, K., Neimark, A.V., et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry. 2015; 87:10511069.Google Scholar
Underwood, E.E. Quantitative Stereology. Reading: Addison-Wesley; 1970.Google Scholar
Cahn, J.W. The Significance of average mean curvature and its determination by quantitative metallography. Transactions of the Metallurgical Society of AIME. 1967; 239:610616.Google Scholar
Limodin, N., Salvo, L., Boller, E., et al. In situ and real time 3-D microtomography investigation of dendritic solidification in an Al-10 wt% Cu alloy. Acta Materialia. 2009; 57:23002310.Google Scholar
Ratke, L., Genau, A. Evolution of specific surface area with solid fraction during solidification. Acta Materialia. 2010; 58:42074211.Google Scholar
Neumann-Heyme, H., Eckert, K., Beckermann, C. General evolution equation for the specific interface area of dendrites during alloy solidification. Acta Materialia. 2017; 140:8796.Google Scholar
Heyden, S. Network Modelling for the Evaluation of Mechanical Properties of Cellulose Fibre Fluff. Sweden: Lund University LTH; 2000.Google Scholar
Karadagli, I., Milow, B., Ratke, L., Schulz, B., Seide, G., Gries, T. Synthesis and characterization of highly porous cellulose aerogels for textile applications. In: Cellular Materials Conference – Cellmat 2012, Conventus Congressmanagement, editor. Jena: Marketing GmbH. https://elib.dlr.de/78416/.Google Scholar
Laskowski, J., Milow, B., Ratke, L. The effect of embedding highly insulating granular aerogel in cellulosic aerogel. Journal of Supercritical Fluids. 2015; 106:9399.Google Scholar
Ratke, L., Milow, B., Lisinski, S., Hoepfner, S. On an effect of fine ceramic particles on the structure of aerogels. Microgravity Science and Technology. 2014; 26:103110.Google Scholar
Sing, K.S.W., Everett, D.H., Haul, R.A.W., et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry. 1985; 57(4):603619. IUPAC Recommendations 1984.Google Scholar
Gregg, S.J., Sing, K.S.W. Adsorption, Surface Area and Porosity. London: Academic Press; 1982.Google Scholar
Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P., Maurin, G. Adsorption by Powders and Porous Solids. Oxford: Academic Press; 2014.Google Scholar
Santori, G., Luberti, M., Ahn, H. Ideal adsorbed solution theory solved with direct search minimisation. Computers and Chemical Engineering. 2014; 71:235240.Google Scholar
Langmuir, I. Surface Chemistry; 1932. www.nobelprize.org/nobel_prizes/chemistry.Google Scholar
Brunauer, S., Emmett, P.H., Teller, E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society. 1938; 60:309319.Google Scholar
Porod, G. Die Röntgenkleinwinkelstreuung von dichtgepackten kolloidalen Systemen. Kolloidzeitschrift. 1951; 124:83114.Google Scholar
Porod, G. Die Röntgenkleinwinkelstreuung von dichtgepackten kolloidalen Systemen II. Teil. Kolloidzeitschrift. 1951; 125:108122.Google Scholar
Guinier, A., Fournet, G. Small-Angle Scattering of X-Rays. New York and London: John Wiley & Sons, Inc. and Chapman & Hall Ltd.; 1955.Google Scholar
Debye, P., Anderson, H.R., Brumberger, H. Scattering by an inhomogeneous solid. II. The correlation function and its application. Journal of Applied Physics. 1957; 28:679683.Google Scholar
Weigold, L. Ermittlung des Zusammenhangs zwischen mechanischer Steifigkeit und Wärmetransport über das Festkörpergerüst bei hochporösen Materialien. Bayerische Julius-Maximilian Universität; 2015.Google Scholar
Beaumont, M., Rennhofer, H., Opietnik, M., Lichtenegger, H.C., Potthast, A, Rosenau, T. Nanostructured cellulose II gel consisting of spherical particles. ACS Sustainable Chemistry & Engineering. 2016; 4(8):44244432.Google Scholar
Brandt, R., Petricevic, R., Pröbstle, H., Fricke, J. Acetic acid catalyzed carbon aerogels. Journal of Porous Materials. 2003; 10:171178.Google Scholar
Pekala, R.W., Alviso, C.T., LeMay, J.D. Organic aerogels: microstructural dependence of mechanical properties in compression. Journal of Non-Crystalline Solids. 1990; 125: 6775.Google Scholar
Petricevic, R., Reichenauer, G., Bock, V, Emmerling, A., Fricke, J. Structure of carbon aerogels near the gelation limit of the resorcinol-formaldehyde precursor. Journal of Non-Crystalline Solids. 1998; 225:4145.Google Scholar
Lu, B., Torquato, S. Chord-length and free path distribution functions for many-body systems. Journal of Chemical Physics. 1993; 98(8):64726482.Google Scholar
Abramowitz, M., Stegun, I.A. Handbook of Mathematical Functions. 10th ed. Mineola: Dover Publications; 1972.Google Scholar
Chandrasekhar, S. Stoachstic problems in physics and astronomy. Review of Modern Physics. 1943; 15:189.Google Scholar
Steele, J.H. Metallurgical Transactions. 1976; 7A:1325.Google Scholar
Barrett, E.P., Joyner, L.G., Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society. 1938; 60:309319.Google Scholar
Zhang, Y., Lam, F.L.Y., Yan, Z.F., Hu, X. Review of Kelvin’s equation and its modification in characterization of mesoporous materials. Chinese Journal of Chemical Physics. 2006; 19:102108.Google Scholar
Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M. Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. Soft Matter. 2016; 12:70797088.Google Scholar
Boettinger, W.J., Kattner, U.R., Moon, K.W., Perepezko, J.H. DTA and Heat-Flux DSC Measurements of Alloy Melting and Freezing. Washington: National Institute of Standards and Technology; 2006.Google Scholar
Nedelec, J.M., Grolier, J.P.E., Baba, M. Thermoporosimetry – a powerful tool to study the cross-linking in gels networks. Journal of Sol–Gel Science and Technology. 2006; 40:191200.Google Scholar
Woignier, T., Quinson, J.F., Pauthe, M., Repellin-Lacroix, M., Phalippou, J. Evolution of the porous volume during the aerogel–glass transformation. Journal de Physique IV France. 1992; 02:C2–123,–C2–126.Google Scholar
Reichenauer, G., Scherer, G.W. Nitrogen adsorption in compliant materials. Journal of Non-Crystalline Solids. 2000; 277:162172.Google Scholar
Reichenauer, G., Scherer, G.W. Extracting the pore size distribution of compliant materials from nitrogen adsoprtion. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2001; 187188:41–50.Google Scholar
Reichenauer, G., Scherer, G.W. Effects upon nitrogen sorption analysis in aerogels. Journal of Colloid and Interface Science. 2001; 236:385386.Google Scholar
Carslaw, H., Jaeger, J. Conduction of Heat in Solids. 2nd ed. Oxford: Clarendon Press; 1959.Google Scholar
Dhont, J.K.G., Briels, W.J. Rod-like Brownian particles in shear flow: Sections 3.1–3.9. In: Soft Matter: Complex Colloidal Suspensions, Gompper, G., Schick, M., eds. Berlin: Wiley-VCH Verlag GmbH & Co. KGaA, 2007; pp. 147216.Google Scholar
Dhont, J.K.G., Briels, W.J. Rod-like Brownian particles in shear flow: Sections 3.10– 3.16. In: Gompper, G., Schick, M., editors. Soft Matter: Complex Colloidal Suspensions, Berlin: Wiley-VCH Verlag GmbH & Co. KGaA, 2007; pp. 216283.Google Scholar
Hittmair, O., Adam, G. Ringvorlesungen zur Theoretischen Physik, Wämetheorie. Braunschweig: Vieweg Verlag; 1971.Google Scholar
Carrigy, N.B., Pant, L.M., Mitra, S., Secanella, M. Knudsen diffusivity and permeability of PEMFC microporous coated gas diffusion layers for different polytetrafluorethylene loadings. Journal of the Electrochemical Society. 2013; 160:F81F89.Google Scholar
Russ, S., Zschiegner, S., Bunde, A., Kärger, J. In: Kramer, B, editor. Lambert Diffusion in Porous Media in the Knudsen Regime. vol. 45 of Adv. in Solid State Phys. Switzerland: Springer-Verlag; 2005. pp. 5969.Google Scholar
Dammers, A.J., Coppens, M.O. Anomalous Knudsen diffusion in simple pore models. Diffusion Fundamentals. 2005; 2:14.114.2.Google Scholar
Zschiegner, S., Russ, S., Valiullin, R., et al. Normal and anomalous diffusion of non-interacting particles in linear nanopores. The European Physical Journal Special Topics. 2008; 161:109120.Google Scholar
Kärger, J., Ruthven, D.M., Theodoru, D.N., editors. Diffusion in Nanoporous Materials. John Wiley and Sons, Ltd; 2012.Google Scholar
Scheidegger, A.E. The Physics of Flow through Porous Media. 3rd ed. Toronto: University of Toronto Press; 1974.Google Scholar
Torrent, R.J. A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site. Materials and Structures. 1992; 25:358365.Google Scholar
Tanikawa, W., Shimamoto, T. Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks. Hydrology and Earth System Sciences Discussions. 2006; 3:13151338.Google Scholar
Vazquez, J.L. The Porous Medium Equation. Oxford: Oxford University Press; 2006.Google Scholar
Cunningham, R.E., Williams, R.J.J. Diffusion in Gases and Porous Media. New York: Springer Science and Business Media LLC; 1980.Google Scholar
Kaviany, M. Principles of Heat Transfer in Porous Media. 2nd ed. New York: Springer-Verlag; 1995.Google Scholar
Gupta, N.K., Gianchandani, Y.B. Thermal transpiration if zeolites: a mechanisms for motionless gas pumps. Applied Physics Letters. 2008; 93:193511.Google Scholar
Woignier, T., Primera, J., Lamy, M., et al. The use of silica aerogels as host matrices for chemical species: different ways to control the permeability and mechanical properties. Journal of Non-Crystalline Solids. 2004; 350:299307.Google Scholar
Woignier, T., Anez, L., Calas-Etienne, S., Primera, J. Gas and liquid permeability in nano composites gels: comparison of Knudsen and Klinkenberg correction factors. Microporous and Mesoporous Materials. 2014; 200:7985.Google Scholar
Ganesan, K., Barowski, A., Ratke, L. Gas Permeability of Cellulose Aerogels with a Designed Dual Pore Space System. Molecules. 2019; 24:2688.Google Scholar
Ebert, H.P. Thermophysical properties of aeorgels. In: Aegerter, M.A., Leventis, N., Koebel, M.M., editors. Aerogels Handbook. New York; Springer; 2011. pp. 537564.Google Scholar
Cherkaev, A. Bounds for effective properties of multi-material two-dimensional conducting composites. Mechanics of Materials. 2009; 41:411433.Google Scholar
Brovelli, A., Cassiani, G. A combination of the Hashin–Shtrikman bounds aimed at modelling electrical conductivity and permittivity of variably saturated porous media. Geophysical Journal International. 2010; 180:225237.Google Scholar
Hrubesh, L.W., Pekala, R.W. Thermal properties of organic and inorganic aerogels. Journal of Materials Research. 1994; 9:731738.Google Scholar
Wei, G., Liu, Y., Zhang, X., Yu, F., Du, X. Thermal conductivities study on silica aerogel and its composite insulation materials. International Journal of Heat and Mass Transfer. 2011; 54:23552366.Google Scholar
Kittel, C. Introduction to Solid State Physics. 4th ed. John Wiley and Sons, Inc.; 1971.Google Scholar
Peierls, R. Ann Physik. 1929; 3:10551101.Google Scholar
Gross, J., Fricke, J., Hrubesh, L.W. Sound propagation in SiO2 aerogels. Journal of the Acoustical Society of America. 1992; 91:20042006.Google Scholar
Nakayama, T., Yakubo, K., Orbach, R.L. Dynamical properties of fractal networks: scaling, numerical simulations, and physical realizations. Review of Modern Physics. 1994; 66:381443.Google Scholar
Kaganer, M.G. Thermal Insulation in Cryogenic Engineering; 1969. Jerusalem: Israel Programm for Scientific Translations.Google Scholar
Schwab, H. Vakuumisolationspaneele – Gas und Feuchteeintrag sowie Feuchte- und Wärmetransport. Würzburg, Germany: Bayerische Julius-Maximilian Universität; 2004.Google Scholar
Dorfmann, J.R., van Beijeren, H. 3. In: Berne, B.J., editor. Statistical Mechanics. vol. Part B. New York: Plenum Press; 1977. pp. 65177.Google Scholar
Zeng, S.Q., Hunt, A., Greif, R. Transport properties of gas in silica aerogel. Journal of Non-Crystalline Solids. 1995; 186:264270.Google Scholar
Swimm, K., Reichenauer, G., Vidi, S., Ebert, H.P. Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 μm. International Journal of Thermophysics. 2009; 30:13291342.Google Scholar
Comings, E.W., Nathan, M.F. Thermal conductivity of gases at high pressures. Industrial and Engineering Chemistry. 1947; 39:964970.Google Scholar
Guildner, L.A. Thermal conductivity of gases. III. Some values of the thermal conductivities of argon, helium, and nitrogen from 0 C to 75 C at pressures of 105 to 2.5 107 Pascals. Journal of Research at the National Bureau of Standards. 1975; 79A:407413.Google Scholar
Kennard, E.H. Kinetic Theory of Gases. New York, London: McGraw-Hill Inc.; 1938.Google Scholar
Kleeman, R.D. A Kinetic Theory of Gases and Liquids. New York: John Wiley and Sons, Inc.; 1920.Google Scholar
Loeb, L.B. Kinetic Theory of Gases. New York and London: McGraw-Hill Company; 1927.Google Scholar
Ganta, D., Dale, E.B., Rezac, J.R., Rosenberger, A.T. Optical method for measuring thermal accomodation coefficients using a whispering-gallery microresonator. Journal of Chemical Physics. 2011; 135:084313.Google Scholar
Caps, R., Fricke, J. Radiative Heat Transfer in Silica Aerogels. In: Fricke, J., editor. Aerogels. vol. 6 of Springer Proceedings in Physics. Berlin–Heidelberg–New York: Springer-Verlag; 1986. pp. 110115.Google Scholar
Kubascheweski, O., Alcock, C.B., Spencer, P.J. Materials Thermo-Chemistry. Oxford: Pergamon Press Ltd.; 1993.Google Scholar
ASTM. Standard test method for steady state heat flux measurements and thermal transmission properties by mean of the guarded hot plate apparatus. West Conshohocken: ASTM; 1997. ASTM C177.Google Scholar
ISO. Determination of Steady-state Thermal Resistance and Related Properties Guarded Hot Plate Apparatus. Geneva: International Organization for Standardization; 1991. ISO 8302.Google Scholar
Dubois, S., Lebeau, S. Design, construction and validation of a guarded hot plate apparatus for thermal conductivity measurement of high thickness crop-based specimens. Materials and Structures. 2013; 46.Google Scholar
Jannot, Y., Felix, V., Degiovanni, A. A centered hot plate method for measurement of thermal properties of thin insulating materials. Measurement Science and Technology. 2010; 21:035106.Google Scholar
Eithun, C.F. Development of a Thermal Conductivity Apparatus: Analysis and Design. Trondheim: NTNU Department of Energy and Process Engineering; 2012.Google Scholar
Gustafsson, S.E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Review of Scientific Instruments. 1991; 62(3):797804.Google Scholar
Gustafsson, M., Karawacki, E., Gustafsson, S.E. Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors. Review of Scientific Instruments. 1994; 65:38563859.Google Scholar
He, Y. Rapid thermal conductivity measurement with a hot disk sensor: Part 1. theoretical considerations. Thermochimica Acta. 2005; 436:122129.Google Scholar
He, Y. Rapid thermal conductivity measurement with a hot disk sensor: Part 2. characterization of thermal greases. Thermochimica Acta. 2005; 436:130134.Google Scholar
Hammerschmidt, U., Meier, V. New transient hot-bridge sensor to measure thermal conductivity, thermal diffusivity, and volumetric specific heat. International Journal of Thermophysics. 2006; 27:840865.Google Scholar
Dalton, M., Nadalini, R., Celotti, L., et al. The 3 omega transient line method for thermal characterization of superinsulator materials developed for spacecraft thermal control. In: 65th International Astronautical Congress Toronto 2014. IAC-14.C2.7.4. International Astronautical Federation; 2014.Google Scholar
Corbino, O. Periodic variation of resistance of metallic filaments on alternating current. Atti della Reale Accademia Nazionale dei Lincei. 1911; 20:222228.Google Scholar
Cahill, D.G., Pohl, R.O. Thermal conductivity of amorphous solids above the plateau. Physical Review B. 1987; 35:40674073.Google Scholar
Hemberger, F., Ebert, H.P., Reichenauer, G. International Journal of Thermophysics. 2009; 30:13571371.Google Scholar
Wiener, M., Hemberger, F., Reichenauer, G., Ebert, H.P. International Journal of Thermophysics. 2006; 27:18261843.Google Scholar
Guo, K., Hu, Z., Song, H., Liang Zhong, X.D., Chen, X. Low-density graphene/carbon composite aerogels prepared at ambient pressure with high mechancial strength and low thermal conductivity. RSC Advances. 2015; 5:51975204.Google Scholar
Reichenauer, G., Heinemann, U., Ebert, H.P. Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007; 300:204210.Google Scholar
Oliver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. NIST Handbook of Mathematical Functions. Cambridge: Cambridge University Press; 2010.Google Scholar
Dieter, G.E. Mechanical Metallurgy. 3rd ed. New York: McGraw Hill; 1986.Google Scholar
Bisshopp, K.E., Drucker, D.C. Large deflection of cantilever beams. Quarterly of Applied Mathematics. 1945; 3:272275.Google Scholar
Rege, A., Schwan, M., Chernova, L., Hillgärtner, M., Itskov, M., Milow, B. Microstructural and mechanical characterization of carbon aerogels: an in-situ and digital image correlation-based study. Journal of Non-Crystalline Solids. 2020; 529:119568.Google Scholar
Pokluda, J., Cerny, M., Sandra, P., Sob, M. Calculations of theoretical strength: state of the art and history. Journal of Computer-Aided Materials Design. 2004; 11:128.Google Scholar
Li, D., Wong, L.N.Y. The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mechanics and Rock Engineering. 2013; 46:269287.Google Scholar
Landau, L.D., Lifshitz, E.M. Lehbrbuch der theoretischen Physik. vol. VII. Berlin: Akademie Verlag; 1965.Google Scholar
Rege, A., Itskov, M. A microcell-based constitutive modeling of cellulose aerogels under tension. Acta Mechanica. 2018; 229:585593.Google Scholar
Gross, J., Fricke, J. Scaling of elastic properties in highly porous nanostructured aerogels. Nanostructured Materials. 1995; 6:905908.Google Scholar
Ma, H.S., Roberts, A.P., Prevost, J.H., Jullien, R., Scherer, G.W. Mechanical structure– property relationship of aerogels. Journal of Non-Crystalline Solids. 2000; 277:127141.Google Scholar
Gross, J., Scherer, G.W., Alviso, C.T., Pekala, R.W. Elastic properties of crosslinked resorcinol-formaldehyde gels and aerogels. Journal of Non-Crystalline Solids. 1997; 211:132142.Google Scholar
Ganesan, K., Dennstedt, A., Barowski, A., Ratke, L. Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structure. Materials and Design. 2016; 92:345355.Google Scholar
Rudaz, C., Courson, R., Bonnet, L., Calas-Etienne, S., Sallee, H., Budtova, T. Aeropectin: Fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromolecules. 2014; 15:21882195.Google Scholar
Zhao, S., Malfait, W.J., Guerrero-Alburquerque, N., Koebel, M.M., Nyström, G. Biopolymer aerogels and foams: chemistry, properties and applications. Angewandte Chemie. 2018; 57:75807608.Google Scholar
Woignier, T., Primera, J., Alaoui, A., Etienne, P., Despetis, F., Calas-Etienne S. Mechanical properties and brittle behavior of silica aerogels. Gels. 2015; 1:256275.Google Scholar
Scherer, G.W., Smith, D.M., Wiu, X., Anderson, J.M. Compression of aerogels. Journal of Non-Crystallline Solids. 1995; 186:316320.Google Scholar
Fereiro-Rangel, C.A., Gelb, L.D. Computational study of uniaxial deformations in silica aerogel using a coarse-grained model. Journal of Physical Chemistry C. 2007; 111:15,79215,802.Google Scholar
Rege, A., Ratke, L., Itskov, M. Modelling and simulations of polysaccharide and protein based aerogels. In: Sabu Thomas, LAP, Mavelil-Sam, R, editors. Biobased Aerogels: Polysaccharide and Protein-Based Materials. Green Chemistry Series No. 58. London: Royal Society of Chemistry; 2018. pp. 129150.Google Scholar
Rege, A., Hillgärtner, M., Itskov, M. Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids. 2019; 151:2429.Google Scholar
Haasen, P. Physical Metallurgy. 3rd ed. Cambridge: Cambridge University Press; 1996.Google Scholar
Hillert, M. Lectures on the Theory of Phase Transformations. Aaronson, H.I., editor. New York: American Institute of Mining, Metallurgy and Petroleum Engineering; 1975.Google Scholar
Kelton, K.F., Greer, A.L. Nucleation in Condensed Matter. 2nd ed. Oxford: Pergamon Press Ltd.; 2010.Google Scholar
Binder, K., Stauffer, D. Statistical theory of nucleation, condensation and coagulation. Advances in Physics. 1976; 25:343396.Google Scholar
Gránásy, L., Tóth, G.I., Warren, J.A., et al. Phase-field modeling of crystal nucleation in undercooled liquids – a review. Progress in Materials Science. 2019; 106:100569.Google Scholar
Merkwitz, M. Oberflächen- und Grenzflächenspannung in binären metallischen Entmischungssystemen. TU Chemnitz; 1997.Google Scholar
Kaban, I., Köhler, M., Ratke, L., et al. Interfacial tension, wetting and nucleation in Al-Bi, Al-In and Al-Pb monotectic alloys. Acta Materialia. 2011; 59:68806889.Google Scholar
Cahn, J.W., Hilliard, J.E. Free energy of a nonuniform system. I. Interfacial free energy. Journal of Chemical Physics. 1958; 28(2):258267.Google Scholar
Cahn, J.W., Hilliard, J.E. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. Journal of Chemical Physics. 1959; 31(3):688699.Google Scholar
Cahn, J.W. Phase separation by spinodal decomposition in isotropic systems. Journal of Chemical Physics. 1965; 42(1):9399.Google Scholar
Chandra, M. Introduction to Polymer Science and Chemistry: A Problem-Solving Approach. Boca Raton: CRC Press Taylor and Francis Group; 2013.Google Scholar
Cowie, J.M.G., Arrighi, V. Polymers: Chemistry and Physics of Modern Materials. CRC Press Taylor and Francis Group; 2007.Google Scholar
Nestler, B., Wheeler, A.A., Ratke, L., Stöcker, C. Phase-field model for solidification of a monotectic alloy with convection. Physica D. 2000; 141:133154.Google Scholar
Koningsveld, R., Kleintjens, L.A., Nies, E. Polymers and thermodynamics. Croatica Chemica Acta. 1987; 60:5389.Google Scholar
der Haegen, R.V., Kleintjens, L.A. Thermodynamics of polymer solutions. Pure and Applied Chemistry. 1981; 61:159170.Google Scholar
Mousavi-Dehghani, S.A., Mirzayi, B., Vafaie-Sefti, M. Polymer solution and lattice theory applications for modeling of asphaltene precipitation in petroleum mixtures. Brazilian Journal of Chemical Engineering. 2008; 25:523534.Google Scholar
van Dijk, M., Wakker, A. Concepts of Polymer Thermodynamics. Lancaster: Technomic Publishing Company Inc.; 1997.Google Scholar
Glatter, O., Kratky, O. Small Angle X-Ray Scattering. New York: Academic Press, Inc.; 1982.Google Scholar
Sorensen, C.M. Light scattering by fractal aggregates: a review. Aerosol Science and Technology. 2001; 35:648667.Google Scholar
Gommes, C.J., Jiao, Y., Torquato, S. Microstructural degeneracy associated with a two-point correlation function and ist information content. Physical Review E. 2012; 85:051140.Google Scholar
Gommes, C.J., Jiao, Y., Torquato, S. Density of states for a specified correlation function and the energy landscape. Physical Review of Letters. 2012; 108:080601.Google Scholar
Gommes, C.J., Roberts, A.P. Structure development of resorcinol-formaldehyde gels: Microphase separation or colloid aggregation. Physical Review E. 2008; 77:041409.Google Scholar
Li, M., Lai, A.C.K. Analytic solution to heat conduction in finite hollow composite cylinders with a general boundary condition. International Journal of Heat and Mass Transfer. 2013; 60:549556.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Lorenz Ratke, Pavel Gurikov
  • Book: The Chemistry and Physics of Aerogels
  • Online publication: 03 December 2021
  • Chapter DOI: https://doi.org/10.1017/9781108778336.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Lorenz Ratke, Pavel Gurikov
  • Book: The Chemistry and Physics of Aerogels
  • Online publication: 03 December 2021
  • Chapter DOI: https://doi.org/10.1017/9781108778336.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Lorenz Ratke, Pavel Gurikov
  • Book: The Chemistry and Physics of Aerogels
  • Online publication: 03 December 2021
  • Chapter DOI: https://doi.org/10.1017/9781108778336.021
Available formats
×