Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T13:56:01.978Z Has data issue: false hasContentIssue false

10 - Tungsten Isotopes and the Origin of Chondrules and Chondrites

from Part I - Observations of Chondrules

Published online by Cambridge University Press:  30 June 2018

Sara S. Russell
Affiliation:
Natural History Museum, London
Harold C. Connolly Jr.
Affiliation:
Rowan University, New Jersey
Alexander N. Krot
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Chondrules and matrix from carbonaceous chondrites exhibit complementary nucleosynthetic W isotope anomalies that result from the depletion of a metallic s-process carrier in the chondrules, and the enrichment of this carrier in the matrix. The complementarity is difficult to reconcile with an origin of chondrules in protoplanetary impacts and also with models in which chondrules and matrix formed independently of each other in distinct regions of the disk. Instead, the complementarity indicates that chondrules formed by localized melting of dust aggregates in the solar nebula. The Hf–W ages for metal-silicate fractionation in CV and CR chondrites are 2.2 ± 0.8 Ma and 3.6 ± 0.6 Ma after formation of Ca-Al-rich inclusions, and are indistinguishable from Al–Mg ages for CV and CR chondrules. The good agreement between these ages strongly suggests that 26Al was homogeneously distributed in the solar protoplanetary disk and that therefore Al–Mg ages are chronologically meaningful. The concordant Al–Mg and Hf–W ages reveal that chondrule formation (as dated by Al–Mg) was associated with metal-silicate fractionation (as dated by Hf–W), both within a given chondrite but also among the different subgroups of ordinary chondrites. These age data indicate that chondrules from a given chondrite group formed in a narrow time interval of <1 Ma, and that chondrule formation and chondrite accretion were closely linked in time and space. The rapid accretion of chondrules into a chondrite parent body is consistent with the isotopic complementarity, which requires that neither chondrules nor matrix were lost prior to chondrite accretion. Combined, these observations suggest that chondrule formation was an important step in the accretion of planetesimals.

Type
Chapter
Information
Chondrules
Records of Protoplanetary Disk Processes
, pp. 276 - 299
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C. M. O’D. (2005). From supernovae to planets: The view from meteorites and interplanetary dust particles. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 9721002. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Alexander, C. M. O.’D., and Ebel, D. S. (2012). Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved? Meteoritics & Planetary Science, 47, 11571175.CrossRefGoogle Scholar
Amelin, Y., and Krot, A. N. (2007). Pb isotopic ages of the Allende chondrules. Meteoritics & Planetary Science, 42, 13211335.CrossRefGoogle Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D., and Ulyanov, A. A. (2002). Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science, 297, 16781683.CrossRefGoogle ScholarPubMed
Arlandini, C., Käppeler, F., and Wisshak, K. (1999). Neutron capture in low-mass asymptotic giant branch stars: Cross sections and abundance signatures. Astrophysical Journal, 525, 886900.CrossRefGoogle Scholar
Asphaug, E., Jutzi, M., and Movshovitz, M. (2011). Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters, 308, 369379.CrossRefGoogle Scholar
Becker, M., Hezel, D. C., Schulz, T., Elfers, B. -M., and Münker, C. (2015). Formation timescales of CV chondrites from component specific Hf–W systematics. Earth and Planetary Science Letters, 432, 472482.CrossRefGoogle Scholar
Bland, P. A., Alard, O., Benedix, G. K., et al. (2005). Volatile fractionation in the early solar system and chondrule/matrix complementarity. Proceedings of the National Academy of Sciences of the United States of America, 102, 1375513760.CrossRefGoogle ScholarPubMed
Bollard, J., Connelly, J. N., Whitehouse, M. J., et al. (2017). Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Science Advances, 3, (8), e1700407.CrossRefGoogle ScholarPubMed
Bonal, L., Bourot-Denise, M., Quirico, E., and Montagnac, G. (2006). Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochimica et Cosmochimica Acta, 70, 18491863.CrossRefGoogle Scholar
Brennecka, G. A., Budde, G., and Kleine, T., (2015). Uranium isotopic composition and absolute ages of Allende chondrules. Meteoritics & Planetary Science, 50, 19952002.CrossRefGoogle Scholar
Budde, G., Burkhardt, C., Brennecka, G. A., et al. (2016a). Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth and Planetary Science Letters, 454, 293303.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016b). Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Sciences, 113, 28862891.CrossRefGoogle ScholarPubMed
Budde, G., Kruijer, T. S., and Kleine, T. (2018). Hf–W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula. Geochimica et Cosmochimica Acta, 222, 284304.CrossRefGoogle Scholar
Burkhardt, C., Kleine, T., Dauphas, N., and Wieler, R. (2012). Nucleosynthetic tungsten isotope anomalies in acid leachates of the Murchison chondrite: Implications for Hf–W chronometry. The Astrophysical Journal Letters, 753, L6.CrossRefGoogle Scholar
Burkhardt, C., Kleine, T., Oberli, F., et al. (2011). Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth. Earth and Planetary Science Letters, 312, 390400.CrossRefGoogle Scholar
Burkhardt, C., Kleine, T., Palme, H., et al. (2008). Hf–W mineral isochron for Ca,Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals. Geochimica et Cosmochimica Acta, 72, 61776197.CrossRefGoogle Scholar
Campbell, A. J., Zanda, B., Perron, C., et al. (2005). Origin and thermal history of Fe-Ni metal in primitive chondrites. In Krot, A. N. (Ed.), Chondrites and the Protoplanetary Disk. pp. 407431. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Connelly, J. N., Amelin, Y., Krot, A. N., and Bizzarro, M. (2008). Chronology of the solar system’s oldest solids. The Astrophysical Journal Letters, 675, L121.CrossRefGoogle Scholar
Connelly, J. N., and Bizzarro, M. (2009). Pb–Pb dating of chondrules from CV chondrites by progressive dissolution. Chemical Geology, 259, 143151.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012). The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk. Science, 338, 651655.CrossRefGoogle ScholarPubMed
Connolly, H. C., and Desch, S. J. (2004). On the origin of the “kleine Kügelchen” called Chondrules. Chemie der Erde – Geochemistry, 64, 95125.CrossRefGoogle Scholar
Connolly, H. C., Huss, G. R., and Wasserburg, G. J. (2001). On the formation of Fe-Ni metal in Renazzo-like carbonaceous chondrites. Geochimica et Cosmochimica Acta, 65, 45674588.CrossRefGoogle Scholar
Doyle, P. M., Jogo, K., Nagashima, K., et al. (2015). Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Communications, 6, 7444.CrossRefGoogle ScholarPubMed
Ebel, D. S., Brunner, C., Konrad, K., et al. (2016). Abundance, major element composition and size of components and matrix in CV, CO and Acfer 094 chondrites. Geochimica et Cosmochimica Acta, 172, 322356.CrossRefGoogle Scholar
Gerber, S., Burkhardt, C., Budde, G., Metzler, K., and Kleine, T. (2017). Mixing and transport of dust in the early solar nebula as inferred from titanium isotope variations among chondrules. Astrophysical Journal Letters, 841, L17.CrossRefGoogle Scholar
Hellmann, J. L., Kruijer, T. S., and Kleine, T. (2017). Constraining the timescale of solar nebula metal-silicate fractionation using Hf–W chronometry of ordinary chondrites. 48th Lunar and Planetary Science Conference, abstract #2046.Google Scholar
Henke, S., Gail, H. P., Trieloff, M., Schwarz, W. H., and Kleine, T. (2012). Thermal history modelling of the H chondrite parent body. Astronomy & Astrophysics, 545, A45.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2010). The chemical relationship between chondrules and matrix and the chondrule matrix complementarity. Earth and Planetary Science Letters, 294, 8593.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2008). Constraints for chondrule formation from Ca–Al distribution in carbonaceous chondrites. Earth and Planetary Science Letters, 265, 716725.CrossRefGoogle Scholar
Hubbard, A. (2016a). Partitioning tungsten between matrix precursors and chondrule precursors through relative settling. The Astrophysical Journal, 826, 151.CrossRefGoogle Scholar
Hubbard, A. (2016b). Ferromagnetism and particle collisions: Applications to protoplanetary disks and the meteoritical record. The Astrophysical Journal, 826, 152.CrossRefGoogle Scholar
Huss, G. R., Meshik, A. P., Smith, J. B., and Hohenberg, C. M. (2003). Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula. Geochimica et Cosmochimica Acta, 67, 48234848.CrossRefGoogle Scholar
Huss, G. R., Rubin, A. E., and Grossman, J. N. (2006). Thermal metamorphism in chondrites. In Lauretta, D. S., and McSween, H. Y. (Eds.), Meteorites and the Early Solar System II, 567586. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Jacobsen, B., Yin, Q. -Z., Moynier, F., et al. (2008). 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth and Planetary Science Letters, 272, 353364.CrossRefGoogle Scholar
Jacquet, E. (2014). Transport of solids in protoplanetary disks: Comparing meteorites and astrophysical models. Comptes Rendus – Geoscience, 346, 312.CrossRefGoogle Scholar
Jacquet, E., Paulhiac-Pison, M., Alard, O., et al. (2013). Trace element geochemistry of CR chondrite metal. Meteoritics & Planetary Science, 48, 19811999.CrossRefGoogle Scholar
Jacquet, E., Gounelle, M., and Fromang, S. (2012). On the aerodynamic redistribution of chondrite components in protoplanetary disks. Icarus, 220, 162173.CrossRefGoogle Scholar
Jogo, K., Nakamura, T., Ito, M., et al. (2017). Mn–Cr ages and formation conditions of fayalite in CV3 carbonaceous chondrites: Constraints on the accretion ages of chondritic asteroids. Geochimica et Cosmochimica Acta, 199, 5874.CrossRefGoogle Scholar
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. (2015). Impact jetting as the origin of chondrules. Nature, 517, 339341.CrossRefGoogle ScholarPubMed
Kita, N. T., Nagahara, H., Togashi, S., and Morishita, Y. (2000). A short duration of chondrule formation in the solar nebula: Evidence from 26Al in Semarkona ferromagnesian chondrules. Geochimica et Cosmochimica Acta, 64, 39133922.CrossRefGoogle Scholar
Kita, N. T., and Ushikubo, T. (2012). Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteoritics & Planetary Science, 47, 11081119.CrossRefGoogle Scholar
Kleine, T., Mezger, K., Palme, H., Scherer, E., and Münker, C. (2005). Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites and iron meteorites. Geochimica et Cosmochimica Acta, 69, 58055818.CrossRefGoogle Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. (2009). Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.CrossRefGoogle Scholar
Kleine, T., Touboul, M., Van Orman, J. A., et al. (2008). Hf–W thermochronometry: Closure temperature and constraints on the accretion and cooling history of the H chondrite parent body. Earth and Planetary Science Letters, 270, 106118.CrossRefGoogle Scholar
Kleine, T., and Walker, R. J. (2017). Tungsten isotopes in planets. Annual Review of Earth and Planetary Sciences, 45, 389417.CrossRefGoogle ScholarPubMed
Kong, P., Ebihara, M. and Palme, H. (1999). Distribution of siderophile elements in CR chondrites: Evidence for evaporation and recondensation during chondrule formation. Geochimica et Cosmochimica Acta, 63, 26372652.CrossRefGoogle Scholar
Krot, A. N., Hutcheon, I. D., Brearley, A. J., Pravdivtseva, O., and Petaev, M. I. (2006). Timescales and settings for alteration of chondritic meteorites. In Lauretta, D. S. and McSween, H. Y. (Eds.), Meteorites and the Early Solar System II, 525554. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Kruijer, T. S., Kleine, T., Fischer-Godde, M., Burkhardt, C., and Wieler, R. (2014a). Nucleosynthetic W isotope anomalies and the Hf–W chronometry of Ca-Al-rich inclusions. Earth and Planetary Science Letters, 403, 317327.CrossRefGoogle Scholar
Kruijer, T. S., Touboul, M., Fischer-Godde, M., et al. (2014b). Protracted core formation and rapid accretion of protoplanets. Science, 344, 11501154.CrossRefGoogle ScholarPubMed
Kruijer, T. S., Burkhardt, C., Budde, G., and Kleine, T. (2017). Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences, 114, 67126716.CrossRefGoogle ScholarPubMed
Kurahashi, E., Kita, N. T., Nagahara, H., and Morishita, Y. (2008). 26Al-26Mg systematics of chondrules in a primitive CO chondrite. Geochimica et Cosmochimica Acta, 72, 38653882.CrossRefGoogle Scholar
Larsen, K. K., Trinquier, A., Paton, C., et al. (2011). Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. The Astrophysical Journal Letters, L37, L37.CrossRefGoogle Scholar
Nagashima, K., Krot, A. N., and Komatsu, M. (2017). 26Al–26Mg systematics in chondrules from Kaba and Yamato 980145 CV3 carbonaceous chondrites. Geochimica et Cosmochimica Acta, 201, 303319.CrossRefGoogle Scholar
Olsen, M. B., Wielandt, D., Schiller, M., Van Kooten, E. M. M. E., and Bizzarro, M. (2016). Magnesium and 54Cr isotope compositions of carbonaceous chondrite chondrules – Insights into early disk processes. Geochimica et Cosmochimica Acta, 191, 118138.CrossRefGoogle ScholarPubMed
Palme, H., Hezel, D. C., and Ebel, D. S. (2015). The origin of chondrules: Constraints from matrix composition and matrix-chondrule complementarity. Earth and Planetary Science Letters, 411, 1119.CrossRefGoogle Scholar
Palme, H., Lodders, K., and Jones, A. (2014). Solar System Abundances of the Elements. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1536. Oxford: Elsevier.CrossRefGoogle Scholar
Qin, L., Dauphas, N., Wadhwa, M., Masarik, J., and Janney, P. E. (2008a). Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf-182W chronometry and thermal modeling. Earth and Planetary Science Letters, 273, 94104.CrossRefGoogle Scholar
Qin, L. P., Dauphas, N., Wadhwa, M., et al. (2008b). Tungsten nuclear anomalies in planetesimal cores. Astrophysical Journal, 674, 12341241.CrossRefGoogle Scholar
Render, J., Fischer-Gödde, M., Burkhardt, C., and Kleine, T. (2017). The cosmic molybdenum-neodymium isotope correlation and the building material of the Earth. Geochemical Perspectives Letters, 3, 170178.CrossRefGoogle Scholar
Rudraswami, N. G., and Goswami, J. N. (2007). 26Al in chondrules from unequilibrated L chondrites: Onset and duration of chondrule formation in the early solar system. Earth and Planetary Science Letters, 257, 231244.CrossRefGoogle Scholar
Sanders, I. S., and Scott, E. R. D. (2012). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteoritics & Planetary Science, 47, 21702192.CrossRefGoogle Scholar
Scherstén, A., Elliott, T., Hawkesworth, C., Russell, S. S., and Masarik, J. (2006). Hf–W evidence for rapid differentiation of iron meteorite parent bodies. Earth and Planetary Science Letters, 241, 530542.CrossRefGoogle Scholar
Schrader, D. L., Nagashima, K., Krot, A. N., et al. (2017). Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochimica et Cosmochimica Acta, 201, 275302.CrossRefGoogle Scholar
Scott, E. R. D. (2007). Chondrites and the protoplanetary disk. Annual Review of Earth and Planetary Sciences, 35, 577620.CrossRefGoogle Scholar
Shu, F. H., Shang, H., and Lee, T. (1996). Toward an astrophysical theory of chondrites. Science, 271, 15451552.CrossRefGoogle Scholar
Trieloff, M., Jessberger, E. K., Herrwerth, I., et al. (2003). Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature, 422, 502506.CrossRefGoogle ScholarPubMed
Trinquier, A., Elliott, T., Ulfbeck, D., et al. (2009). Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science, 324, 374376.CrossRefGoogle ScholarPubMed
Van Orman, J. A., Cherniak, D. J., and Kita, N. (2014). Magnesium diffusion in plagioclase: Dependence on composition, and implications for thermal resetting of the 26Al-26Mg early solar system chronometer. Earth and Planetary Science Letters, 385, 7988.CrossRefGoogle Scholar
Villeneuve, J., Chaussidon, M., and Libourel, G. (2009). Homogeneous distribution of Al-26 in the Solar System from the Mg isotopic composition of chondrules. Science, 325, 985988.CrossRefGoogle Scholar
Vockenhuber, C., Oberli, F., Bichler, M., et al. (2004). New half-life measurement of 182Hf: Improved chronometer for the early solar system. Physical Review Letters, 93, article # 172501.CrossRefGoogle ScholarPubMed
Wasson, J. T., and Kallemeyn, G. W. (1988). Compositions of chondrites. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 325, 535544.Google Scholar
Zanda, B., Bourot-Denise, M., Perron, C., and Hewins, R. H. (1994). Origin and metamorphic redistribution of silicon, chromium, and phosphorus in the metal of chondrites. Science, 265, 18461849.CrossRefGoogle ScholarPubMed
Zook, H. A. (1981). On a new model for the generation of chondrules. Lunar and Planetary Science Conference, XII, 1242–1244. Abstract.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×