Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-29T05:18:49.892Z Has data issue: false hasContentIssue false

27 - The Dirac Monopole and Dirac Quantization

from Part II - Solitons and Topology; Non-Abelian Theory

Published online by Cambridge University Press:  04 March 2019

Horaƫiu Năstase
Affiliation:
Universidade Estadual Paulista, São Paulo
Get access

Summary

We define the Dirac monopole as a simple consequence of extending Maxwell duality to the Maxwell equations with sources, and we show that the resulting gauge fields are only defined on patches. We write formulas in terms of p-form language, and define the magnetic charge in terms of the gauge fields on patches. Then, from the quantization of the first Chern number, a topological number, we obtain Dirac quantization for the product of electric and magnetic charges. One obtains an unphysical Dirac string singularity, and its unphysical nature leads again to Dirac quantization. Finally, semiclassical nonrelativistic considerations also lead to the same Dirac quantization.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×