Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T00:34:54.042Z Has data issue: false hasContentIssue false

Section 3 - Techniques

Published online by Cambridge University Press:  05 June 2016

Robert G. Hahn
Affiliation:
Linköpings Universitet, Sweden
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Shoemaker, WC, Appel, PL, Kram, HB, Waxman, K, Lee, TS. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 1988, 94 : 1176–86.CrossRefGoogle ScholarPubMed
Ackland, GL, Igbal, S, Paredes, LG, et al. for the POM-O (PostOperative Morbidity-Oxygen delivery) study group. Individualised oxygen delivery targeted hemodynamic therapy in high-risk surgical patients: a multicentre, randomised, double-blind, controlled, mechanistic trial. Lancet Respir Med 2015; 3 : 3341.CrossRefGoogle ScholarPubMed
Boyd, O, Grounds, RM, Bennett, ED. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 1993; 270 : 2699–707.CrossRefGoogle ScholarPubMed
Lobo, SM, Salgado, PF, Castillo, VG, et al. Maximizing O2 delivery in high-risk elderly surgery patients improves survivorship without altering O2 consumption. Crit Care Med 2000; 28 : 3396–404.Google Scholar
JrConnors, AF, Speroff, T, Dawson, NV, et al. for the SUPPORT Investigators. The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 1996; 276 : 889–97.CrossRefGoogle ScholarPubMed
Pölönen, P, Ruokonen, E, Hippeläinen, M, Pöyhonen, M, Takala, J. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 2000; 90 : 1052–9.CrossRefGoogle ScholarPubMed
Wakeling, HG, McFall, MR, Jenkins, CS, et al. Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth 2005; 95 : 634–42.CrossRefGoogle ScholarPubMed
Sinclair, S, James, S, Singer, M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ 1997; 315: 909–12.CrossRefGoogle ScholarPubMed
Hamilton, MA, Cecconi, M, Rhodes, A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 2011; 112 : 1392–402.CrossRefGoogle ScholarPubMed
Cecconi, M, Corredor, C, Arulkumaran, N, et al. Clinical review: Goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Crit Care 2013; 17 : 209.CrossRefGoogle Scholar
Kern, JW, Shoemaker, WC. Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 2002; 30: 1686–92.CrossRefGoogle ScholarPubMed
Grocott, MP, Dushianthan, A, Hamilton, MA, et al. Perioperative increase in global blood flow to explicit defined goals and outcomes following surgery, Optimisation Systematic Review Steering Group. Cochrane Database Syst Rev 2012; 11: CD004082.Google Scholar
Srinivasa, S, Taylor, MH, Singh, PP, et al. Randomized clinical trial of goal-directed fluid therapy within an enhanced recovery protocol for elective colectomy. Br J Surg 2013; 100 : 6674.CrossRefGoogle ScholarPubMed
McKenny, M, Conroy, P, Wong, A, et al. A randomised prospective trial of intra-operative esophageal Doppler-guided fluid administration in major gynecological surgery. Anaesthesia 2013; 68 : 1224–31.CrossRefGoogle Scholar
Pearse, RM, Harrison, DA, MacDonald, N, et al. for the OPTIMISE Study Group. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA 2014; 311 : 2181–90.CrossRefGoogle ScholarPubMed
Hayes, MA, Timmins, AC, Yau, EH, et al. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 1994; 330 : 1717–22.CrossRefGoogle ScholarPubMed
Critchley, LA, Critchley, JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 1999; 15 : 8591.CrossRefGoogle ScholarPubMed
Cecconi, M, Rhodes, A, Poloniecki, J, Della Rocca, G, Grounds, RM. Bench-to-bedside review. The importance of the precision of the reference technique in method comparison studies – with specific reference to the measurement of cardiac output. Crit Care 2009; 13 : 201.CrossRefGoogle Scholar
Fanshawe, M, Ellis, C, Habib, S, Konstadt, SN, Reich, DL. A retrospective analysis of the costs and benefits related to alterations in cardiac surgery from routine intraoperative transesophageal echocardiography. Anesth Analg 2002; 95 : 824–7.CrossRefGoogle ScholarPubMed
Cecconi, M, De Backer, D, Antonelli, M, et al. for the Task Force of the European Society of Intensive Care Medicine. Consensus on circulatory shock and hemodynamic monitoring. Intensive Care Med 2014; 40 : 1795–815.CrossRefGoogle ScholarPubMed
Rajaram, SS, Desai, NK, Kalra, A, et al. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev 2013; 2 : CD003408.Google Scholar
Harvey, S, Harrison, DA, Singer, M, et al. PAC-Man study collaboration. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet 2005; 366: 472–7.CrossRefGoogle ScholarPubMed
Sandham, JD, Hulkl, RD, Brant, RF, et al. for the Canadian Critical Care Clinical Trials Group. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 2003; 348 : 514.CrossRefGoogle ScholarPubMed
Wheeler, AP, Bernard, GR, Thompson, BT, et al. for the National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 2006; 354 : 2213–24.Google ScholarPubMed
Goedje, O, Hoeke, K, Lichtwarck-Aschoff, M, et al. Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med 1999; 27 : 2407–12.CrossRefGoogle ScholarPubMed
Gepfert, MS, Reuter, DA, Akyol, D, et al. Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 2007; 33: 96103.CrossRefGoogle Scholar
Kiefer, N, Hofer, CK, Marx, G, et al. Clinical validation of a new thermodilution system for the assessment of cardiac output and volumetric parameters. Crit Care 2012; 16: R98.CrossRefGoogle ScholarPubMed
Mora, B, Ince, I, Birkenberg, B, et al. Validation of cardiac output measurement with the LiDCOTM pulse contour system in patients with impaired left ventricular function after cardiac surgery. J Anesth 2011; 66: 675–81.Google Scholar
Costa, MG, Della Rocca, G, Chiarandini, P, et al. Continuous and intermittent cardiac output measurement in hyperdynamic conditions: pulmonary artery catheter vs. lithium dilution technique. Intensive Care Med 1008; 34: 257–63.Google Scholar
Pearse, R, Dawson, D, Fawcett, J, et al. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial. Crit Care 2005; 9: 687–93.Google ScholarPubMed
Ostergaard, M, Nielsen, J, Nygaard, E. Pulse contour cardiac output: an evaluation of the FloTrac method. Eur J Anaesthesiol 2009; 26: 484–9.CrossRefGoogle ScholarPubMed
Phan, TD, Wan, C, Wong, D, Padayachee, A. A comparison of three minimally invasive cardiac output devices with thermodilution in elective cardiac surgery. Anesthesiol Intensive Care 2011; 39: 1014–21.Google ScholarPubMed
Penn, A, Button, D, Zollinger, A, Hofer, CK. Assessment of cardiac output changes using a modified FloTrac/ Vigileo algorithm in cardiac surgery patients. Crit Care 2009; 13: R32.Google Scholar
Cecconi, M, Fasano, N, Langiano, N, et al. Goal-directed hemodynamic therapy during elective total hip arthroplasty under regional anesthesia. Crit Care 2011; 15: R132.CrossRefGoogle Scholar
Hadian, M, Kim, HK, Severyn, DA, Pinsky, MR. Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters. Crit Care 2010; 14: R212.CrossRefGoogle ScholarPubMed
Monnet, X, Anguel, N, Naudin, B, et al. Arterial pressure-based cardiac output in septic patients: different accuracy of pulse contour and uncalibrated pressure waveform devices. Crit Care 2010; 14: R109.CrossRefGoogle ScholarPubMed
Romano, SM, Pistolesi, M. Assessment of cardiac output from systemic arterial pressure in humans. Crit Care Med 2002; 30: 183441.CrossRefGoogle ScholarPubMed
Giomarelli, P. Cardiac output monitoring by pressure recording analytical method in cardiac surgery. Eur J Cardiothorac Surg 2004; 26: 515–20.CrossRefGoogle ScholarPubMed
Calamandrei, M, Mirabile, L, Muschetta, S, et al. Assessment of cardiac output in children: a comparison between the pressure recording analytical method and Doppler echocardiography. Pediatr Crit Care Med 2008; 9: 310–12.CrossRefGoogle ScholarPubMed
Cecconi, M, Parsons, AK, Rhodes, A. What is a fluid challenge? Current opinion in critical care. Crit Care 2011; 17: 290–5.Google Scholar
Cecconi, M, Hofer, C, Teboul, JL, et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med 2015; 41: 1529–37.Google ScholarPubMed

References

Pearse, RM, Moreno, RP, Bauer, P, et al. Mortality after surgery in Europe: a 7 day cohort study. Lancet. 2012; 380[9847]: 1059–65.CrossRefGoogle ScholarPubMed
Pearse, RM, Harrison, DA, James, P, et al. Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit Care. 2006; 10[3]: R81. Epub 2006/06/06.CrossRefGoogle ScholarPubMed
Khuri, SF, Henderson, WG, DePalma, RG, et al. Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. Ann Surg. 2005; 242[3]: 326–41; discussion 41–3.CrossRefGoogle ScholarPubMed
Shoemaker, WC, Appel, PL, Kram, HB, et al. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988; 94[6]: 1176–86. Epub 1988/12/01.CrossRefGoogle ScholarPubMed
Shoemaker, WC, Montgomery, ES, Kaplan, E, et al. Physiologic patterns in surviving and nonsurviving shock patients. Use of sequential cardiorespiratory variables in defining criteria for therapeutic goals and early warning of death. Arch Surg. 1973; 106[5]: 630–6. Epub 1973/05/01.CrossRefGoogle ScholarPubMed
Boyd, O, Grounds, RM, Bennett, ED. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA. 1993; 270[22]: 2699–707. Epub 1993/12/08.CrossRefGoogle ScholarPubMed
Wilson, J, Woods, I, Fawcett, J, et al. Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ. 1999; 318[7191]: 1099–103. Epub 1999/04/24.CrossRefGoogle ScholarPubMed
Polonen, P, Ruokonen, E, Hippelainen, M, et al. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg. 2000; 90[5]: 1052–9. Epub 2000/04/27.CrossRefGoogle ScholarPubMed
Lobo, SM, Salgado, PF, Castillo, VG, et al. Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Crit Care Med. 2000; 28[10]: 3396–404. Epub 2000/11/01.CrossRefGoogle ScholarPubMed
Jr.Connors, AF, Speroff, T, Dawson, NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996; 276[11]: 889–97. Epub 1996/09/18.CrossRefGoogle ScholarPubMed
Bellamy, MC. Wet, dry or something else? Br J Anaesth. 2006; 97[6]: 755–7. Epub 2006/11/14.CrossRefGoogle ScholarPubMed
Brandstrup, B, Tonnesen, H, Beier-Holgersen, R, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003; 238[5]: 641–8. Epub 2003/10/28.CrossRefGoogle ScholarPubMed
Bennett-Guerrero, E, Welsby, I, Dunn, TJ, et al. The use of a postoperative morbidity survey to evaluate patients with prolonged hospitalization after routine, moderate-risk, elective surgery. Anesth Analg. 1999; 89[2]: 514–19. Epub 1999/08/10.CrossRefGoogle ScholarPubMed
Hamilton-Davies, C, Mythen, MG, Salmon, JB, et al. Comparison of commonly used clinical indicators of hypovolaemia with gastrointestinal tonometry. Intensive Care Med. 1997; 23[3]: 276–81. Epub 1997/03/01.CrossRefGoogle ScholarPubMed
Osman, D, Ridel, C, Ray, P, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007; 35[1]: 64–8. Epub 2006/11/03.CrossRefGoogle Scholar
Marik, PE, Baram, M, Vahid, B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008; 134[1]: 172–8. Epub 2008/07/17.CrossRefGoogle ScholarPubMed
Davies, JN, Allen, DR, Chant, AD. Non-invasive Doppler-derived cardiac output: a validation study comparing this technique with thermodilution and Fick methods. Eur J Vasc Surg. 1991; 5[5]: 497500. Epub 1991/10/01.CrossRefGoogle ScholarPubMed
Okrainec, A, Bergman, S, Demyttenaere, S, et al. Validation of esophageal Doppler for noninvasive hemodynamic monitoring under pneumoperitoneum. Surg Endosc. 2007; 21[8]: 1349–53. Epub 2007/01/20.CrossRefGoogle ScholarPubMed
Lafanechere, A, Albaladejo, P, Raux, M, et al. Cardiac output measurement during infrarenal aortic surgery: echo-esophageal Doppler versus thermodilution catheter. J Cardiothorac Vasc Anesth. 2006; 20[1]: 2630. Epub 2006/02/07.CrossRefGoogle ScholarPubMed
Chytra, I, Pradl, R, Bosman, R, et al. Esophageal Doppler-guided fluid management decreases blood lactate levels in multiple-trauma patients: a randomized controlled trial. Crit Care. 2007; 11[1]: R24. Epub 2007/02/23.CrossRefGoogle ScholarPubMed
Rodriguez, RM, Lum-Lung, M, Dixon, K, et al. A prospective study on esophageal Doppler hemodynamic assessment in the ED. Am J Emerg Med. 2006; 24[6]: 658–63. Epub 2006/09/21.CrossRefGoogle ScholarPubMed
Dark, PM, Singer, M. The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med. 2004; 30[11]: 2060–6. Epub 2004/09/16.CrossRefGoogle ScholarPubMed
Conway, DH, Mayall, R, Abdul-Latif, MS, et al. Randomised controlled trial investigating the influence of intravenous fluid titration using oesophageal Doppler monitoring during bowel surgery. Anaesthesia. 2002; 57[9]: 845–9.CrossRefGoogle ScholarPubMed
Gan, TJ, Soppitt, A, Maroof, M, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002; 97[4]: 820–6.CrossRefGoogle ScholarPubMed
Wakeling, HG, McFall, MR, Jenkins, CS, et al. Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth. 2005; 95[5]: 634–42.CrossRefGoogle ScholarPubMed
Noblett, SE, Snowden, CP, Shenton, BK, et al. Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg. 2006; 93[9]: 1069–76.CrossRefGoogle ScholarPubMed
Senagore, AJ, Emery, T, Luchtefeld, M, et al. Fluid management for laparoscopic colectomy: a prospective, randomized assessment of goal-directed administration of balanced salt solution or hetastarch coupled with an enhanced recovery program. Dis Colon Rectum. 2009; 52[12]: 1935–40. Epub 2009/11/26.CrossRefGoogle ScholarPubMed
Mythen, MG, Webb, AR. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg. 1995; 130[4]: 423–9. Epub 1995/04/01.CrossRefGoogle ScholarPubMed
McKendry, M, McGloin, H, Saberi, D, et al. Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery.[Erratum appears in BMJ. 2004 Aug 21;329[7463]:438]. BMJ. 2004; 329[7460]: 258.CrossRefGoogle Scholar
Sinclair, S, James, S, Singer, M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ. 1997; 315[7113]: 909–12.CrossRefGoogle ScholarPubMed
Venn, R, Steele, A, Richardson, P, et al. Randomized controlled trial to investigate influence of the fluid challenge on duration of hospital stay and perioperative morbidity in patients with hip fractures. Br J Anaesth. 2002; 88[1]: 6571.CrossRefGoogle ScholarPubMed
Lassen, K, Soop, M, Nygren, J, et al. Consensus review of optimal perioperative care in colorectal surgery: Enhanced Recovery After Surgery [ERAS] Group recommendations. Arch Surg. 2009; 144[10]: 961–9. Epub 2009/10/21.CrossRefGoogle ScholarPubMed
Esophageal Doppler ultrasound-based cardiac output monitoring for real-time therapeutic management of hospitalized patients: a review. Database of Abstracts of Reviews of Effects (DARE). Rochville: Agency for Healthcare Research and Quality, Department of Health & Human Services, 2007.Google Scholar
Mowatt, G, Houston, G, Hernandex, R Evidence review: Oesophageal Doppler monitoring in patients undergoing high-risk surgery and in critically ill patients. NHS Purchasing and Supply Agency, 2008; http://www.deltexmedical.com/downloads/CEPreport.pdf.Google Scholar
Marik, PE, Cavallazzi, R, Vasu, T, et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009; 37[9]: 2642–7. Epub 2009/07/16.CrossRefGoogle ScholarPubMed
Berkenstadt, H, Margalit, N, Hadani, M, et al. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg. 2001; 92[4]: 984–9.CrossRefGoogle ScholarPubMed
Michard, F. Long live dynamic parameters! Crit Care. 2014; 18[1]: 413.CrossRefGoogle ScholarPubMed
Renner, J, Gruenewald, M, Quaden, R, et al. Influence of increased intra-abdominal pressure on fluid responsiveness predicted by pulse pressure variation and stroke volume variation in a porcine model. Crit Care Med. 2009; 37[2]: 650–8. Epub 2008/12/31.CrossRefGoogle ScholarPubMed
Tavernier, B, Robin, E. Assessment of fluid responsiveness during increased intra-abdominal pressure: keep the indices, but change the thresholds. Crit Care. 2011; 15[2]: 134.CrossRefGoogle ScholarPubMed
Guinot, PG, de Broca, B, Bernard, E, et al. Respiratory stroke volume variation assessed by oesophageal Doppler monitoring predicts fluid responsiveness during laparoscopy. Br J Anaesth. 2014; 112[4]: 660–4.Google ScholarPubMed
Squara, P, Denjean, D, Estagnasie, P, et al. Noninvasive cardiac output monitoring [NICOM]: a clinical validation. Intensive Care Med. 2007; 33[7]: 1191–4. Epub 2007/04/27.CrossRefGoogle ScholarPubMed
Raval, NY, Squara, P, Cleman, M, et al. Multicenter evaluation of noninvasive cardiac output measurement by bioreactance technique. J Clin Monit Comput. 2008; 22[2]: 113–19.CrossRefGoogle ScholarPubMed
Waldron, NH, Miller, TE, Thacker, JK, et al. A prospective comparison of a noninvasive cardiac output monitor versus esophageal Doppler monitor for goal-directed fluid therapy in colorectal surgery patients. Anesth Analg. 2014; 118[5]: 966–75.CrossRefGoogle ScholarPubMed
Eeftinck Schattenkerk, DW, van Lieshout, JJ, van den Meiracker, AH, et al. Nexfin noninvasive continuous blood pressure validated against Riva-Rocci/Korotkoff. Am J Hypertens. 2009; 22[4]: 378–83.CrossRefGoogle ScholarPubMed
Broch, O, Renner, J, Gruenewald, M, et al. A comparison of the Nexfin[R] and transcardiopulmonary thermodilution to estimate cardiac output during coronary artery surgery. Anaesthesia. 2012; 67[4]: 377–83.CrossRefGoogle ScholarPubMed
Forget, P, Lois, F, de Kock, M. Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and improves fluid management. Anesth Analg. 2010; 111[4]: 910–14.CrossRefGoogle ScholarPubMed
Spiess, BD, Patel, MA, Soltow, LO, et al. Comparison of bioimpedance versus thermodilution cardiac output during cardiac surgery: evaluation of a second-generation bioimpedance device. J Cardiothorac Vasc Anesth. 2001; 15[5]: 567–73. Epub 2001/11/01.CrossRefGoogle ScholarPubMed
Suttner, S, Schollhorn, T, Boldt, J, et al. Noninvasive assessment of cardiac output using thoracic electrical bioimpedance in hemodynamically stable and unstable patients after cardiac surgery: a comparison with pulmonary artery thermodilution. Intensive Care Med. 2006; 32[12]: 2053–8. Epub 2006/10/14.CrossRefGoogle ScholarPubMed
Miller, TE, Scott, MJ. Enhanced recovery and the changing landscape of major abdominal surgery. Anesthesiol Clinics. 2015; 33[1]: xvxvi.CrossRefGoogle ScholarPubMed
Greco, M, Capretti, G, Beretta, L, et al. Enhanced recovery program in colorectal surgery: a meta-analysis of randomized controlled trials. World J Surg. 2014; 38[6]: 1531–41.CrossRefGoogle ScholarPubMed
Brandstrup, B, Svendsen, PE, Rasmussen, M, et al. Which goal for fluid therapy during colorectal surgery is followed by the best outcome: near-maximal stroke volume or zero fluid balance? Br J Anaesth. 2012; 109[2]: 191–9. Epub 2012/06/20.CrossRefGoogle ScholarPubMed
Srinivasa, S, Taylor, MH, Singh, PP, et al. Randomized clinical trial of goal-directed fluid therapy within an enhanced recovery protocol for elective colectomy. Br J Surg. 2013; 100[1]: 6674. Epub 2012/11/08.CrossRefGoogle ScholarPubMed
Pestana, D, Espinosa, E, Eden, A, et al. Perioperative goal-directed hemodynamic optimization using noninvasive cardiac output monitoring in major abdominal surgery: a prospective, randomized, multicenter, pragmatic trial: POEMAS Study [PeriOperative goal-directed thErapy in Major Abdominal Surgery]. Anesth Analg. 2014; 119[3]: 579–87.CrossRefGoogle ScholarPubMed
Pearse, RM, Harrison, DA, MacDonald, N, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014; 311[21]: 2181–90.CrossRefGoogle ScholarPubMed
Minto, G, Struthers, R. Stroke volume optimisation: is the fairy tale over? Anaesthesia. 2014; 69[4]: 291–6. Epub 2014/03/20.CrossRefGoogle ScholarPubMed
Grocott, MP, Dushianthan, A, Hamilton, MA, et al. Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane Systematic Review. Br J Anaesth. 2013; 111[4]: 535–48. Epub 2013/05/11.CrossRefGoogle ScholarPubMed
Roger, C, Muller, L, Deras, P, et al. Does the type of fluid affect rapidity of shock reversal in an anaesthetized-piglet model of near-fatal controlled haemorrhage? A randomized study. Br J Anaesth. 2014; 112[6]: 1015–23. Epub 2013/12/03.CrossRefGoogle Scholar
Perel, P, Roberts, I, Ker, K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013; 2: CD000567.Google Scholar
Yates, DR, Davies, SJ, Milner, HE, et al. Crystalloid or colloid for goal-directed fluid therapy in colorectal surgery. Br J Anaesth. 2014; 112[2]: 281–9. Epub 2013/09/24.CrossRefGoogle ScholarPubMed
Brienza, N, Giglio, MT, Marucci, M, et al. Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med. 2009; 37[6]: 2079–90.CrossRefGoogle ScholarPubMed
Giglio, MT, Marucci, M, Testini, M, et al. Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. Br J Anaesth. 2009; 103[5]: 637–46.CrossRefGoogle ScholarPubMed

References

Weiser, TG, Regenbogen, SE, Thompson, KD, et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet 2008; 372 : 139–44.CrossRefGoogle ScholarPubMed
Pearse, RM, Harrison, DA, James, P, et al. Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit Care 2006; 10 : R81.CrossRefGoogle ScholarPubMed
Bennett-Guerrero, E, Welsby, I, Dunn, TJ, et al. The use of a postoperative morbidity survey to evaluate patients with prolonged hospitalization after routine, moderate-risk, elective surgery. Anesth Analg 1999; 89 : 514–19.CrossRefGoogle ScholarPubMed
Gan, TJ, Mythen, MG. Does peroperative gut-mucosa hypoperfusion cause postoperative nausea and vomiting? Lancet 1995; 345 : 1123–4.CrossRefGoogle ScholarPubMed
Guyton, AH, Hall, JE. Heart muscle; the heart as a pump and function of the heart valves. In: Textbook of Medical Physiology, 11th edn. Philadelphia: Elsevier, Inc., 2006, pp.103–15.Google Scholar
Guyton, AH, Hall, JE. Overview of the circulation: medical physics of pressure, flow, and resistance. In: Textbook of Medical Physiology, 11th edn. Philadelphia: Elsevier, Inc., 2006, pp. 161–70.Google Scholar
Gan, TJ, Soppitt, A, Maroof, M, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 2002; 97 : 820–6.CrossRefGoogle ScholarPubMed
Pearse, R, Dawson, D, Fawcett, J, et al. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial. Crit Care 2005; 9 : R687–93.Google ScholarPubMed
Wakeling, HG, McFall, MR, Jenkins, CS, et al. Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth 2005; 95 : 634–42.CrossRefGoogle ScholarPubMed
Mayer, J, Boldt, J, Mengistu, AM, Rohm, KD, Suttner, S. Goal-directed intraoperative therapy based on autocalibrated arterial pressure waveform analysis reduces hospital stay in high-risk surgical patients: a randomized, controlled trial. Crit Care 2010; 14 : R18.CrossRefGoogle ScholarPubMed
Michard, F, Boussat, S, Chemla, D, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 2000; 162 : 134–8.CrossRefGoogle ScholarPubMed
Cannesson, M, Slieker, J, Desebbe, O, et al. The ability of a novel algorithm for automatic estimation of the respiratory variations in arterial pulse pressure to monitor fluid responsiveness in the operating room. Anesth Analg 2008; 106 : 11952000.CrossRefGoogle ScholarPubMed
Cannesson, M, Attof, Y, Rosamel, P, et al. Respiratory variations in pulse oximetry plethysmographic waveform amplitude to predict fluid responsiveness in the operating room. Anesthesiology 2007; 106 : 1105–11.CrossRefGoogle ScholarPubMed
Cannesson, M, Desebbe, O, Rosamel, P, et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth 2008; 101 : 200–6.CrossRefGoogle ScholarPubMed
Cannesson, M. Arterial pressure variation and goal-directed fluid therapy. J Cardiothorac Vasc Anesth 2010; 24 : 487–97.CrossRefGoogle ScholarPubMed
Michard, F. Changes in arterial pressure during mechanical ventilation. Anesthesiology 2005; 103 : 419–28.CrossRefGoogle ScholarPubMed
Perel, A, Pizov, R, Cotev, S. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 1987; 67 : 498502.CrossRefGoogle ScholarPubMed
Marik, PE, Baram, M, Vahid, B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008; 134 : 172–8.CrossRefGoogle ScholarPubMed
Pinsky, MR, Payen, D. Functional hemodynamic monitoring. Crit Care 2005; 9 : 566–72.CrossRefGoogle ScholarPubMed
Marik, PE, Cavallazzi, R, Vasu, T, Hirani, A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 2009; 37 : 2642–7.CrossRefGoogle ScholarPubMed
De Backer, D, Pinsky, MR. Can one predict fluid responsiveness in spontaneously breathing patients? Intensive Care Med 2007; 33 : 1111–13.CrossRefGoogle ScholarPubMed
De Backer, D, Heenen, S, Piagnerelli, M, Koch, M, Vincent, JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 2005; 31 : 517–23.CrossRefGoogle ScholarPubMed
Duperret, S, Lhuillier, F, Piriou, V, et al. Increased intra-abdominal pressure affects respiratory variations in arterial pressure in normovolaemic and hypovolaemic mechanically ventilated pigs. Intensive Care Med 2007; 33 : 163–71.CrossRefGoogle Scholar
Reisner, A, Shaltis, PA, McCombie, D, Asada, HH. Utility of the photoplethysmogram in circulatory monitoring. Anesthesiology 2008; 108 : 950–8.CrossRefGoogle ScholarPubMed
Shelley, KH, Dickstein, M, Shulman, SM. The detection of peripheral venous pulsation using the pulse oximeter as a plethysmograph. J Clin Monit 1993; 9 : 283–7.CrossRefGoogle ScholarPubMed
Agashe, GS, Coakley, J, Mannheimer, PD. Forehead pulse oximetry: headband use helps alleviate false low readings likely related to venous pulsation artifact. Anesthesiology 2006; 105 : 1111–16.CrossRefGoogle ScholarPubMed
Landsverk, SA, Hoiseth, LO, Kvandal, P, et al. Poor agreement between respiratory variations in pulse oximetry photoplethysmographic waveform amplitude and pulse pressure in intensive care unit patients. Anesthesiology 2008; 109 : 849–55.CrossRefGoogle ScholarPubMed
Shamir, M, Eidelman, LA, Floman, Y, Kaplan, L, Pizov, R. Pulse oximetry plethysmographic waveform during changes in blood volume. Br J Anaesth 1999; 82 : 178–81.CrossRefGoogle ScholarPubMed
Cannesson, M, Besnard, C, Durand, PG, Bohe, J, Jacques, D. Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients. Crit Care 2005; 9 : R562–8.CrossRefGoogle ScholarPubMed
Cannesson, M, Desebbe, O, Hachemi, M, et al. Respiratory variations in pulse oximeter waveform amplitude are influenced by venous return in mechanically ventilated patients under general anaesthesia. Eur J Anaesthesiol 2007; 24 : 245–51.CrossRefGoogle ScholarPubMed
Feissel, M, Teboul, JL, Merlani, P, et al. Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Med 2007; 33 : 993–9.CrossRefGoogle ScholarPubMed
Wyffels, PA, Durnez, PJ, Helderweirt, J, Stockman, WM, De Kegel, D. Ventilation-induced plethysmographic variations predict fluid responsiveness in ventilated postoperative cardiac surgery patients. Anesth Analg 2007; 105 : 448–52.CrossRefGoogle ScholarPubMed
Pizov, R, Eden, A, Bystritski, D, et al. Arterial and plethysmographic waveform analysis in anesthetized patients with hypovolemia. Anesthesiology 2010; 113 : 8391.CrossRefGoogle ScholarPubMed
Feldman, JM. Can clinical monitors be used as scientific instruments? Anesth Analg 2006; 103 : 1071–2.CrossRefGoogle ScholarPubMed
Cannesson, M, Delannoy, B, Morand, A, et al. Does the pleth variability index indicate the respiratory induced variation in the plethysmogram and arterial pressure waveforms? Anesth Analg 2008; 106 : 1189–94.CrossRefGoogle ScholarPubMed
Zimmermann, M, Feibicke, T, Keyl, C, et al. Accuracy of stroke volume variation compared with pleth variability index to predict fluid responsiveness in mechanically ventilated patients undergoing major surgery. Eur J Anaesthesiol 2009; 27 : 555–61.Google Scholar
Bundgaard-Nielsen, M, Holte, K, Secher, NH, Kehlet, H. Monitoring of perioperative fluid administration by individualized goal-directed therapy. Acta Anaesthesiol Scand 2007; 51 : 331–40.CrossRefGoogle ScholarPubMed
Rhodes, A, Cecconi, M, Hamilton, M, et al. Goal-directed therapy in high-risk surgical patients: a 15-year follow-up study. Intensive Care Med 2010: 36 : 1327–32.CrossRefGoogle ScholarPubMed
Lopes, MR, Oliveira, MA, Pereira, VO, et al. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care 2007; 11 : R100.CrossRefGoogle ScholarPubMed
Benes, J, Chytra, I, Altmann, P, et al. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care 2010; 14 : R118.CrossRefGoogle ScholarPubMed
Forget, P, Lois, F, de Kock, M. Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and improves fluid management. Anesth Analg 2010; 111 : 910–14.CrossRefGoogle ScholarPubMed
Cannesson, M, Vallet, B, Michard, F. Pulse pressure variation and stroke volume variation: from flying blind to flying right? Br J Anaesth 2009; 103 : 896–7; author reply 7–9.CrossRefGoogle ScholarPubMed

References

Klövekorn, W.P., Laks, H., Pilon, R.N., et al. Effects of acute hemodilution in man. Eur Surg Res 1973; 5(Suppl 2): 27–8.Google Scholar
Jamnicki, M., Kocian, R., van der Linden, P., Zaugg, M., Spahn, D.R.. Acute normovolemic hemodilution: physiology, limitations, and clinical use. J Cardiothorac Vasc Anesth 2003; 17: 747–54.CrossRefGoogle ScholarPubMed
Van der Linden, P.. The physiology of acute isovolaemic anaemia. Acta Anaesthesiol Belg 2002; 53: 97103.Google ScholarPubMed
Hébert, P.C., Van der Linden, P., Biro, G.P., Qun, L.. Physiologic aspects of anemia. Crit Care Clin 2004; 20: 187212.CrossRefGoogle ScholarPubMed
Kreimeier, U., Messmer, K.. Perioperative hemodilution. Transfus Apher Sci 2002; 27: 5972.CrossRefGoogle ScholarPubMed
Tsui, A.K., Dattani, N.D., Marsden, P.A., et al. Reassessing the risk of hemodilutional anemia: Some new pieces to an old puzzle. Can J Anaesth 2010; 57: 779–91.CrossRefGoogle Scholar
Chapler, C.K., Cain, C.M.. The physiologic reserve in oxygen carrying capacity: studies in experimental hemodilution. Can J Physiol Pharmacol 1986, 64: 712.CrossRefGoogle ScholarPubMed
Fan, F.C., Chen, R.Y.Z., Schuessler, G.B., Chien, S.. Effects of hematocrit variations on regional hemodynamics and and oxygen transport in the dog. Am J Physiol 1980; 238: H545–52.Google ScholarPubMed
Lauscher, P., Kertscho, H., Schmidt, O., et al. Determina-tion of organ-specific anemia tolerance. Crit Care Med 2013; 41: 1037–45.CrossRefGoogle Scholar
Crystal, G.J.. Regional tolerance to acute normovo-lemic hemodilution: evidence that the kidney may be at greatest risk. J Cardiothorac Vasc Anesth 2015; 29: 320–7.CrossRefGoogle ScholarPubMed
Messmer, K., Gutierrez, G., Vincent, J.L.. Blood rheology factors and capillary blood flow. In: Tissue Oxygen Utilization. Berlin, Heidelberg, New-York: Springer-Verlag; 1991: 103–13.Google Scholar
Van der Linden, P., Gilbart, E., Paques, P., Simon, C., Vincent, J.L.. Influence of hematocrit on tissue O2 extraction capabilities during acute hemorrhage. Am J Physiol 1993; 264: H1942–7.Google ScholarPubMed
Rodman, T., Close, H.P., Purcell, M.K.. The oxyhemoglobin dissociation curve in anemia. Ann Intern Med 1960; 52: 295301.Google ScholarPubMed
Kungys, G., Rose, D.D., Fleming, N.W.. Stroke volume variation during acute normovolemic hemodilution. Anesth Analg 2009; 109: 1823–30.CrossRefGoogle ScholarPubMed
Ickx, B., Rigolet, M., Van der Linden, P.. Cardiovascular and metabolic response to acute normovolemic anemia: effects of anesthesia. Anesthesiology 2000; 93: 1011–16.CrossRefGoogle ScholarPubMed
Spahn, D.R., Leone, B.J., Reves, J.G., Pasch, T.. Cardiovascular and coronary physiology of acute isovolemic hemodilution: a review of nonoxygen-carrying and oxygen-carrying solutions. Anesth Analg 1994; 78: 1000–21.CrossRefGoogle ScholarPubMed
Räsänen, J.. Supply-dependent oxygen consumption and mixed venous oxyhemoglobin saturation during isovolemic hemodilution in pigs. Chest 1992; 101: 1121–4.CrossRefGoogle ScholarPubMed
Van der Linden, P., De Groote, F., Mathieu, N., et al. Critical haemoglobin concentration in anaesthetized dogs: comparison of two plasma substitutes. Br J Anaesth 1998; 81: 556–62.CrossRefGoogle ScholarPubMed
Van der Linden, P., De Hert, S., Mathieu, N., et al. Tolerance to acute isovolemic hemodilution: effect of anesthetic depth. Anesthesiology 2003; 99: 97104.CrossRefGoogle ScholarPubMed
Pape, A., Kutschker, S., Kertscho, H., et al. The choice of the intravenous fluid influences the tolerance of acute normovolemic anemia in anesthetized domestic pigs. Crit Care 2012; 16: R69.CrossRefGoogle ScholarPubMed
van Woerkens, E.C.S.M., Trouwborst, A., Van Lanschot, J.J.B.. Profound hemodilution: what is the critical level of hemodilution at which oxygen delivery-dependent oxygen consumption starts in an anesthetized human? Anesth Analg 1992; 75: 818–21.CrossRefGoogle Scholar
Richardson, T.Q., Guyton, A.C.. Effects of polycythemia and anemia on cardiac output and other circulatory factors. Am J Physiol 1959; 197: 1167–70.CrossRefGoogle Scholar
Otsuki, D.A., Fantoni, D.T., Margarido, C.B., et al. Hydroxyethyl starch is superior to lactated Ringer as a replacement fluid in a pig model of acute normovolaemic haemodilution. Br J Anaesth 2007; 98: 2937.CrossRefGoogle Scholar
Arya, V.K., Nagdeve, N.G., Kumar, A., Thingnam, S.K., Dhaliwal, R.S.. Comparison of hemodynamic changes after acute normovolemic hemodilution using Ringer's lactate versus 5% albumin in patients on beta-blockers undergoing coronary artery bypass surgery. J Cardiothorac Vasc Anesth 2006; 20: 812–18.CrossRefGoogle ScholarPubMed
Jacob, M., Chappell, D.. Reappraising Starling: the physiology of the microcirculation. Curr Opin Crit Care 2013; 19: 282–9.CrossRefGoogle ScholarPubMed
Konrad, F.M., Mik, E.G., Bodmer, S.I., et al. Acute normovolemic hemodilution in the pig is associated with renal tissue edema, impaired renal microvascular oxygenation, and functional loss. Anesthesiology 2013; 119: 256–69.CrossRefGoogle ScholarPubMed
Kahvegian, M., Aya Otsuki, D., Holms, C., et al. Modulation of inflammation during acute normovolemic anemia with different fluid replacement. Minerva Anestesiol 2013; 79: 1113–25.Google Scholar
Weiskopf, R.B., Feiner, J., Hopf, H., et al. Heart rate increases linearly in response to acute isovolemic anemia. Transfusion 2003; 43: 235–40.CrossRefGoogle ScholarPubMed
Carson, J.L., Carless, P.A., Hebert, P.C.. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst Rev 2012; 4: CD002042.Google ScholarPubMed
Carson, J.L., Brooks, M.M., Abbott, J., et al. Liberal versus restrictive transfusion thresholds for patients with symptomatic coronary artery disease. Am Heart J 2013; 165: 964–71.CrossRefGoogle ScholarPubMed
Tircoveanu, R., Van der Linden, P.. Hemodilution and anemia in patients with cardiac disease: what is the safe limit? Curr Opin Anaesthesiol 2008; 21: 6670.CrossRefGoogle ScholarPubMed
Licker, M., Ellenberger, C., Sierra, J., et al. Cardioprotective effects of acute normovolemic hemodilution in patients undergoing coronary artery bypass surgery. Chest 2005; 128: 838–47.CrossRefGoogle ScholarPubMed
Cromheecke, S., Lorsomradee, S., Van der Linden, P.J., De Hert, S.G.. Moderate acute isovolemic hemodilution alters myocardial function in patients with coronary artery disease. Anesth Analg 2008; 107: 1145–52.CrossRefGoogle ScholarPubMed
De Hert, S.G., Cromheecke, S., Lorsomradee, S., Van der Linden, P.J.. Effects of moderate acute isovolaemic haemodilution on myocardial function in patients undergoing coronary surgery under volatile inhalational anaesthesia. Anaesthesia 2009; 64:239–45.CrossRefGoogle ScholarPubMed
Hogue, C.W., Goodnough, L.T., Monk, T.. Perioperative myocardial ischemic episodes are related to hematocrit level in patients undergoing radical prostatectomy. Transfusion 1998; 38: 1070–7.CrossRefGoogle ScholarPubMed
Ouakine-Orlando, B., Samama, C.M., de Moerloose, P., et al. Hématocrite et hémostase. In: Hémorragies et thromboses périopératoires: approche pratique. Paris: Masson; 2000: 113–19.Google Scholar
Van der Linden, P., Ickx, B.E.. The effects of colloid solutions on hemostasis. Can J Anaesth 2006; 53(Suppl): S30–9.Google ScholarPubMed
Westphal, M., James, M.F., Kozek-Langenecker, S., et al. Hydroxyethyl starches: different products–different effects. Anesthesiology 2009; 111: 187202.CrossRefGoogle ScholarPubMed
Jones, S.B., Whitten, C.W., Despotis, G.J., Monk, T.G.. The influence of crystalloid and colloid replacement solutions in acute normovolemic hemodilution: a preliminary survey of hemostatic markers. Anesth Analg 2003; 96: 363–8, table of contents.CrossRefGoogle ScholarPubMed
Thyes, C., Madjdpour, C., Frascarolo, P., et al. Effect of high- and low-molecular-weight low-substituted hydroxyethyl starch on blood coagulation during acute normovolemic hemodilution in pigs. Anesthesiology 2006; 105: 1228–37.CrossRefGoogle ScholarPubMed
Kangg, J.G., Ahn, H.J., Kim, G.S., et al. The hemostatic profiles of patients with Type O and non-O blood after acute normovolemic hemodilution with 6% hydroxyethyl starch (130/0.4). Anesth Analg 2006; 103: 1543–8.Google Scholar
Reyher, C., Bingold, T.M., Menzel, S., et al. Impact of acute normovolemic hemodilution on primary hemostasis. Anaesthesist 2014; 63: 496502.CrossRefGoogle ScholarPubMed
Lu, S.Y., Konig, G., Yazer, M.H., et al. Stationary versus agitated storage of whole blood during acute normovolemic hemodilution. Anesth Analg 2014; 118: 264–8.CrossRefGoogle ScholarPubMed
Bryson, G.L., Laupacis, A., Wells, G.A.. Does acute normovolemic hemodilution reduce perioperative allogeneic transfusion? A meta-analysis. Anesth Analg 1998; 86: 915.CrossRefGoogle ScholarPubMed
Segal, J.B., Blasco-Colmenares, E., Norris, E.J., Guallar, E.. Preoperative acute normovolemic hemodilution: a meta-analysis. Transfusion 2004; 44: 632–44.CrossRefGoogle ScholarPubMed
Guo, J.R., Jin, X.J., Yu, J., et al. Acute normovolemic hemodilution effects on perioperative coagulation in elderly patients undergoing hepatic carcinectomy. Asian Pacif J Cancer Prevent 2013; 14: 4529–32.Google ScholarPubMed
Weiskopf, R.B.. Efficacy of acute normovolemic hemodilution assessed as a function of fraction of blood volume lost. Anesthesiology 2001; 94: 439–46.CrossRefGoogle ScholarPubMed
Carless, P., Moxey, A., O'Connell, D., Henry, D.. Autologous transfusion techniques: a systematic review of their efficacy. Transfus Med 2004; 14: 123–44.CrossRefGoogle ScholarPubMed
Singbartl, G., Held, A.L., Singbartl, K.. Ranking the effectiveness of autologous blood conservation measures through validated modeling of independent clinical data. Transfusion 2013; 53: 3060–79.CrossRefGoogle ScholarPubMed
White, N., Bayliss, S., Moore, D.. Systematic review of interventions for minimizing perioperative blood transfusion for surgery for craniosynostosis. J Craniofac Surg 2015; 26: 2636.CrossRefGoogle ScholarPubMed
Voorn, V.M., Marang-van de Mheen, P.J., Wentink, M.M., et al. Frequent use of blood-saving measures in elective orthopaedic surgery: a 2012 Dutch blood management survey. BMC Musculoskel Dis 2013; 14: 230.CrossRefGoogle ScholarPubMed
Matot, I., Scheinin, O., Jurim, O., Eid, A.. Effectiveness of acute normovolemic hemodilution to minimize allogeneic blood transfusion in major liver resections. Anesthesiology 2002; 97: 794800.CrossRefGoogle ScholarPubMed
Jarnagin, W.R., Gonen, M., Maithel, S.K., et al. A prospective randomized trial of acute normovolemic hemodilution compared to standard intraoperative management in patients undergoing major hepatic resection. Ann Surg 2008; 248: 360–9.CrossRefGoogle ScholarPubMed
Spahn, D.R., Waschke, K.F., Standl, T., et al. Use of perflubron emulsion to decrease allogeneic blood transfusion in high-blood-loss non-cardiac surgery: results of a European phase 3 study. Anesthesiology 2002; 97: 1338–49.CrossRefGoogle ScholarPubMed
Frankel, T.L., Fischer, M., Grant, F., et al. Selecting patients for acute normovolemic hemodilution during hepatic resection: a prospective randomized evaluation of nomogram-based allocation. J Am Coll Surg 2013; 217: 210–20.CrossRefGoogle ScholarPubMed

References

Mortensen, K, Nilsson, M, Slim, K, et al. Consensus guidelines for enhanced recovery after gastrectomy: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Br J Surg 2014; 101: 1209–29.CrossRefGoogle Scholar
Gustafsson, UO, Scott, MJ, Schwenk, W, et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. World J Surg 2013; 37: 259–84.CrossRefGoogle Scholar
Nygren, J, Thacker, J, Carli, F, et al. Guidelines for perioperative care in elective rectal/pelvic surgery: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Clin Nutr 2012; 31: 801–16.CrossRefGoogle Scholar
Cerantola, Y, Valerio, M, Persson, B, et al. Guidelines for perioperative care after radical cystectomy for bladder cancer: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Clin Nutr 2013; 32: 879–87.CrossRefGoogle Scholar
Lassen, K, Coolsen, MM, Slim, K, et al. Guidelines for perioperative care for pancreaticoduodenectomy: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Clin Nutr 2012; 31: 817–30.CrossRefGoogle Scholar
Varadhan, KK, Lobo, DN. A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right. Proc Nutr Soc 2010; 69: 488–98.CrossRefGoogle ScholarPubMed
Khuri, SF, Henderson, WG, DePalma, RG, et al. Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. Ann Surg 2005; 242: 326–41; discussion 341–3.CrossRefGoogle ScholarPubMed
Dimick, JB, Chen, SL, Taheri, PA, et al. Hospital costs associated with surgical complications: a report from the private-sector National Surgical Quality Improvement Program. J Am Coll Surg 2004; 199: 531–7.CrossRefGoogle ScholarPubMed
Doherty, M, Buggy, DJ. Intraoperative fluids: how much is too much? Br J Anaesth 2012; 109: 6979.CrossRefGoogle ScholarPubMed
Lobo, DN. Fluid overload and surgical outcome: another piece in the jigsaw. Ann Surg 2009; 249: 186–8.CrossRefGoogle ScholarPubMed
Faria, MS, de Aguilar-Nascimento, JE, Pimenta, OS, et al. Preoperative fasting of 2 hours minimizes insulin resistance and organic response to trauma after video-cholecystectomy: a randomized, controlled, clinical trial. World J Surg 2009; 33: 1158–64.CrossRefGoogle ScholarPubMed
Smith, I, Kranke, P, Murat, I, et al. Perioperative fasting in adults and children: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol 2011; 28: 556–69.CrossRefGoogle ScholarPubMed
Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures: an updated report by the American Society of Anesthesiologists Committee on Standards and Practice Parameters. Anesthesiology 2011; 114: 495511.CrossRefGoogle Scholar
Cao, F, Li, J, Li, F. Mechanical bowel preparation for elective colorectal surgery: updated systematic review and meta-analysis. Int J Colorectal Dis 2012; 27: 803–10.CrossRefGoogle ScholarPubMed
Guenaga, KF, Matos, D, Wille-Jorgensen, P. Mechanical bowel preparation for elective colorectal surgery. Cochrane Database Syst Rev 2011: CD001544.Google ScholarPubMed
Nygren, J. The metabolic effects of fasting and surgery. Best Pract Res Clin Anaesthesiol 2006; 20: 429–38.CrossRefGoogle ScholarPubMed
Awad, S, Varadhan, KK, Ljungqvist, O, et al. A meta-analysis of randomised controlled trials on preoperative oral carbohydrate treatment in elective surgery. Clin Nutr 2013; 32: 3444.CrossRefGoogle ScholarPubMed
Giglio, MT, Marucci, M, Testini, M, et al. Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. Br J Anaesth 2009; 103: 637–46.CrossRefGoogle ScholarPubMed
Bundgaard-Nielsen, M, Secher, NH, Kehlet, H. ‘Liberal’ vs. ‘restrictive’ perioperative fluid therapy–a critical assessment of the evidence. Acta Anaesthesiol Scand 2009; 53: 843–51.CrossRefGoogle ScholarPubMed
Schnuriger, B, Inaba, K, Wu, T, et al. Crystalloids after primary colon resection and anastomosis at initial trauma laparotomy: excessive volumes are associated with anastomotic leakage. J Trauma 2011; 70: 603–10.Google ScholarPubMed
Bellamy, MC. Wet, dry or something else? Br J Anaesth 2006; 97:755–7.CrossRefGoogle ScholarPubMed
Pearse, R, Dawson, D, Fawcett, J, et al. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care 2005; 9: R687–93.Google ScholarPubMed
Gan, TJ, Soppitt, A, Maroof, M, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 2002; 97: 820–6.CrossRefGoogle ScholarPubMed
Noblett, SE, Snowden, CP, Shenton, BK, et al. Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg 2006; 93: 1069–76.CrossRefGoogle ScholarPubMed
Phan, TD, D'Souza, B, Rattray, MJ, et al. A randomised controlled trial of fluid restriction compared to oesophageal Doppler-guided goal-directed fluid therapy in elective major colorectal surgery within an Enhanced Recovery After Surgery program. Anaesth Intensive Care 2014; 42: 752–60.CrossRefGoogle ScholarPubMed
Srinivasa, S, Taylor, MH, Sammour, T, et al. Oesophageal Doppler-guided fluid administration in colorectal surgery: critical appraisal of published clinical trials. Acta Anaesthesiol Scand 2011; 55: 413.CrossRefGoogle ScholarPubMed
Srinivasa, S, Lemanu, DP, Singh, PP, et al. Systematic review and meta-analysis of oesophageal Doppler-guided fluid management in colorectal surgery. Br J Surg 2013; 100: 1701–8.CrossRefGoogle ScholarPubMed
Rollins, KE, Lobo, DN. Intraoperative goal-directed fluid therapy in elective major abdominal surgery: A meta-analysis of randomized controlled trials. Ann Surg 2015; 263: 465–76.Google Scholar
Lobo, DN, Bostock, KA, Neal, KR, et al. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet 2002; 359: 1812–18.CrossRefGoogle ScholarPubMed
Brandstrup, B, Tonnesen, H, Beier-Holgersen, R, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 2003; 238: 641–8.CrossRefGoogle ScholarPubMed
Cheatham, ML, Chapman, WC, Key, SP, et al. A meta-analysis of selective versus routine nasogastric decompression after elective laparotomy. Ann Surg 1995; 221: 469–76.CrossRefGoogle ScholarPubMed
Nelson, R, Edwards, S, Tse, B. Prophylactic nasogastric decompression after abdominal surgery. Cochrane Database Syst Rev 2007: CD004929.Google ScholarPubMed
Lewis, SJ, Andersen, HK, Thomas, S. Early enteral nutrition within 24 h of intestinal surgery versus later commencement of feeding: a systematic review and meta-analysis. J Gastrointest Surg 2009; 13: 569–75.CrossRefGoogle Scholar
Block, BM, Liu, SS, Rowlingson, AJ, et al. Efficacy of postoperative epidural analgesia: a meta-analysis. JAMA 2003; 290: 2455–63.CrossRefGoogle ScholarPubMed
Holte, K, Foss, NB, Svensen, C, et al. Epidural anesthesia, hypotension, and changes in intravascular volume. Anesthesiology 2004; 100: 281–6.CrossRefGoogle ScholarPubMed
Chowdhury, AH, Cox, EF, Francis, ST, et al. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and Plasma-Lyte(R) 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg 2012; 256: 1824.CrossRefGoogle Scholar
McCluskey, SA, Karkouti, K, Wijeysundera, D, et al. Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study. Anesth Analg 2013; 117: 412–21.CrossRefGoogle ScholarPubMed
Krajewski, ML, Raghunathan, K, Paluszkiewicz, SM, et al. Meta-analysis of high- versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg 2015; 102: 2436.CrossRefGoogle ScholarPubMed
Lobo, DN, Stanga, Z, Simpson, JA, et al. Dilution and redistribution effects of rapid 2-litre infusions of 0.9% (w/v) saline and 5% (w/v) dextrose on haematological parameters and serum biochemistry in normal subjects: a double-blind crossover study. Clin Sci (Lond) 2001; 101: 173–9.CrossRefGoogle ScholarPubMed
O'Malley, CM, Frumento, RJ, Hardy, MA, et al. A randomized, double-blind comparison of lactated Ringer's solution and 0.9% NaCl during renal transplantation. Anesth Analg 2005; 100: 1518–24.Google ScholarPubMed
Waters, JH, Gottlieb, A, Schoenwald, P, et al. Normal saline versus lactated Ringer's solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg 2001; 93: 817–22.CrossRefGoogle ScholarPubMed
Brunkhorst, FM, Engel, C, Bloos, F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 2008; 358: 125–39.CrossRefGoogle ScholarPubMed
Perner, A, Haase, N, Guttormsen, AB, et al. Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. N Engl J Med 2012; 367: 124–34.CrossRefGoogle Scholar
Myburgh, JA, Finfer, S, Bellomo, R, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med 2012; 367: 1901–11.CrossRefGoogle ScholarPubMed
Awad, S, Lobo, DN. Fluid management. In: Feldman, LS, Delaney, CP, Ljungqvist, O, Carli, F, eds. The SAGES/ERAS Manual of Enhanced Recovery Programs for Gastrointestinal Surgery. Switzerland, Springer International. 2015; 119132.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Techniques
  • Edited by Robert G. Hahn, Linköpings Universitet, Sweden
  • Book: Clinical Fluid Therapy in the Perioperative Setting
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316401972.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Techniques
  • Edited by Robert G. Hahn, Linköpings Universitet, Sweden
  • Book: Clinical Fluid Therapy in the Perioperative Setting
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316401972.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Techniques
  • Edited by Robert G. Hahn, Linköpings Universitet, Sweden
  • Book: Clinical Fluid Therapy in the Perioperative Setting
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316401972.016
Available formats
×