Book contents
- Frontmatter
- Contents
- Contributors
- Prologue
- Part I Paradigms and Tools
- Part II Challenges
- 9 Transition to Turbulence
- 10 Wall-Bounded Turbulence
- 11 Scale-by-Scale Nonequilibrium in Turbulent Flows
- 12 Coarse-Graining in Multiphase Flows: From Micro to Meso to Macroscale for Euler–Lagrange and Euler–Euler Simulations
- 13 Coarse Graining for Thermal Flows
- 14 High-Order Simulations of Supersonic Combustion
- 15 Coarse-Graining Supersonic Combustion
- 16 Transition and Multiphysics in Inertial Confinement Fusion Capsules
- 17 Firestorms, Fallout, and Atmospheric Turbulence Induced by a Nuclear Detonation
- Epilogue
- Abbreviations
- Index
- References
16 - Transition and Multiphysics in Inertial Confinement Fusion Capsules
from Part II - Challenges
Published online by Cambridge University Press: 31 January 2025
- Frontmatter
- Contents
- Contributors
- Prologue
- Part I Paradigms and Tools
- Part II Challenges
- 9 Transition to Turbulence
- 10 Wall-Bounded Turbulence
- 11 Scale-by-Scale Nonequilibrium in Turbulent Flows
- 12 Coarse-Graining in Multiphase Flows: From Micro to Meso to Macroscale for Euler–Lagrange and Euler–Euler Simulations
- 13 Coarse Graining for Thermal Flows
- 14 High-Order Simulations of Supersonic Combustion
- 15 Coarse-Graining Supersonic Combustion
- 16 Transition and Multiphysics in Inertial Confinement Fusion Capsules
- 17 Firestorms, Fallout, and Atmospheric Turbulence Induced by a Nuclear Detonation
- Epilogue
- Abbreviations
- Index
- References
Summary
Longstanding design and reproducibility challenges in inertial confinement fusion (ICF) capsule implosion experiments involve recognizing the need for appropriately characterized and modeled three-dimensional initial conditions and high-fidelity simulation capabilities to predict transitional flow approaching turbulence, material mixing characteristics, and late-time quantities of interest – for example, fusion yield. We build on previous coarse-graining (CG) simulations of the indirect-drive national ignition facility (NIF) cryogenic capsule N170601 experiment – a precursor of N221205 which resulted in net energy gain. We apply effectively combined initialization aspects and multiphysics coupling in conjunction with newly available hydrodynamics simulation methods, including directional unsplit algorithms and low Mach-number correction – key advances enabling high fidelity coarse-grained simulations of radiation-hydrodynamics driven transition.
- Type
- Chapter
- Information
- Coarse Graining TurbulenceModeling and Data-Driven Approaches and their Applications, pp. 494 - 524Publisher: Cambridge University PressPrint publication year: 2025