Skip to main content Accessibility help
×
Hostname: page-component-6bf8c574d5-2jptb Total loading time: 0 Render date: 2025-02-22T10:10:26.518Z Has data issue: false hasContentIssue false

16 - Transition and Multiphysics in Inertial Confinement Fusion Capsules

from Part II - Challenges

Published online by Cambridge University Press:  31 January 2025

Fernando F. Grinstein
Affiliation:
Los Alamos National Laboratory
Filipe S. Pereira
Affiliation:
Los Alamos National Laboratory
Massimo Germano
Affiliation:
Duke University, North Carolina
Get access

Summary

Longstanding design and reproducibility challenges in inertial confinement fusion (ICF) capsule implosion experiments involve recognizing the need for appropriately characterized and modeled three-dimensional initial conditions and high-fidelity simulation capabilities to predict transitional flow approaching turbulence, material mixing characteristics, and late-time quantities of interest – for example, fusion yield. We build on previous coarse-graining (CG) simulations of the indirect-drive national ignition facility (NIF) cryogenic capsule N170601 experiment – a precursor of N221205 which resulted in net energy gain. We apply effectively combined initialization aspects and multiphysics coupling in conjunction with newly available hydrodynamics simulation methods, including directional unsplit algorithms and low Mach-number correction – key advances enabling high fidelity coarse-grained simulations of radiation-hydrodynamics driven transition.

Type
Chapter
Information
Coarse Graining Turbulence
Modeling and Data-Driven Approaches and their Applications
, pp. 494 - 524
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdallah, J., and Clark, R. E. 1985. TOPS: A Multigroup Opacity Code. Technical report LA–10454. Los Alamos National Laboratory, Los Alamos, USA.Google Scholar
Abu-Shawareb, H., Acree, R., Adams, P., Adams, J., Addis, B., Aden, R., Adrian, P., Afeyan, B. B., Aggleton, M., and et al., Aghaian. 2022. Lawson criterion for ignition exceeded in an inertial fusion experiment. Physical Review Letters, 129(Aug), 075001.CrossRefGoogle Scholar
Amendt, Peter. 2021. Entropy generation from hydrodynamic mixing in inertial confinement fusion indirect-drive targets. Physics of Plasmas, 28(7), 072701.CrossRefGoogle Scholar
ASME. 2009. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer – ASME V&V 20–2009. ASME.Google Scholar
Blue, B. E., Robey, H. F., Glendinning, S. G., and et al. 2005. Three-dimensional hydrodynamic experiments on the national ignition facility. Physics of Plasmas, 12(5), 056313.CrossRefGoogle Scholar
Brachet, M. E., Meiron, D. I., Orzag, S. A., Nickel, B. G., Morf, R. H., and Frisch, U. 1983. Small scale structure of the Taylor-Green vortex. Journal of Fluid Mechanics, 130, 411–452.CrossRefGoogle Scholar
Brown, L. S., Preston, D. L., and Singleton, R. 2005. Charged particle motion in a highly ionized plasma. Physics Reports, 410(4), 237–333.CrossRefGoogle Scholar
Cheng, B., Kwan, T. J. T., Wang, Y. M., Yi, S. A., Batha, S. H., and Wysocki, F. J. 2016. Effects of preheat and mix on the fuel adiabat of an imploding capsule. Physics of Plasmas, 23(12), 120702.CrossRefGoogle Scholar
Chiravalle, V. 2022. Verification and validation of two hydrodynamic methods for HEDP simulations. https://doi.org/10.1155/2022/8720064.CrossRefGoogle Scholar
Clark, D. S., Haan, S. W., Cook, A. W., Edwards, M. J., Hammel, B. A., Koning, J. M., and Marinak, M. M. 2011. Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs. Physics of Plasmas, 18(8), 082701.CrossRefGoogle Scholar
Clark, D. S., Weber, C. R., Milovich, J. L., Salmonson, J. D., Kritcher, A. L., Haan, S. W., Hammel, B. A., Hinkel, D. E., Hurricane, O. A., Jones, O. S., Marinak, M. M., Patel, P. K., Robey, H. F., Sepke, S. M., and Edwards, M. J. 2016. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility. Physics of Plasmas, 23(5), 056302.CrossRefGoogle Scholar
Clark, D. S., Weber, C. R., Milovich, J. L., Pak, A. E., Casey, D. T., Hammel, B. A., Ho, D. D., Jones, O. S., Koning, J. M., Kritcher, A. L., Marinak, M. M., Masse, L. P., Munro, D. H., Patel, M. V., Patel, P. K., Robey, H. F., Schroeder, C. R., Sepke, S. M., and Edwards, M. J. 2019. Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions. Physics of Plasmas, 26(050601).CrossRefGoogle Scholar
Colella, P. 1985. A direct Eulerian MUSCL scheme for gas dynamics. SIAM Journal on Scientific and Statistical Computing, 6(1), 104–117.CrossRefGoogle Scholar
Colella, P., and Woodward, P. R. 1984. The piecewise parabolic method (PPM) for gas-dynamical simulations. Journal of Computational Physics, 54(1), 174–201.CrossRefGoogle Scholar
Colgan, J., Kilcrease, D. P., Magee, N. H., and et al. 2016. A new generation of Los Alamos opacity tables. Astrophysical Journal, 817(2), 116.CrossRefGoogle Scholar
Davidovits, S., Weber, C. R., and Clark, D. S. 2022. Modeling ablator grain structure impacts in ICF implosions. Physics of Plasmas, 29(11), 112708.CrossRefGoogle Scholar
Dimotakis, P. E. 2000. The mixing transition in turbulent flows. Journal of Fluid Mechanics, 409, 69–98.CrossRefGoogle Scholar
Dolence, J. C., and Masser, T. 2017 (18–22 September). A new directionally unsplit option for hydrodynamics in the Eulerian AMR code xRage. In: International Conference on Numerical Methods for Multi-Material Fluid Flows (MultiMat).Google Scholar
Drikakis, D., Fureby, C., Grinstein, F. F., and Youngs, D. 2007. Simulation of transition and turbulence decay in the Taylor-Green vortex. Journal of Turbulence, 8(20).CrossRefGoogle Scholar
Eça, L., and Hoekstra, M. 2014. A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies. Journal of Computational Physics, 262, 104–130.CrossRefGoogle Scholar
Fatenejad, M., Fryxell, B., Wohlbier, J., and et al. 2013. Collaborative comparison of simulation codes for high-energy-density physics applications. Astrophysical Journal, 9(1), 63–66.Google Scholar
Foster, J. M., Rosen, P. A., Wilde, B. H., Hartigan, P., and Perry, T. S. 2010. Mach reflection in a warm dense plasma. Physics of Plasmas, 17(11), 056313.CrossRefGoogle Scholar
Fryxell, B., Olson, K., Ricker, P., and et al. 2000. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophysical Journal – Supplement Series, 131(1), 273–334.CrossRefGoogle Scholar
George, W. K., and Davidson, L. 2004. Role of initial conditions in establishing asymptotic flow behavior. AIAA Journal, 42(3), 438–446.CrossRefGoogle Scholar
Gittings, M., Weaver, R., Clover, M., Betlach, T., Byrne, N., Coker, R., Dendy, E., Hueckstaedt, R., New, K., Oakes, W. R., Ranta, D., and Stefan, R. 2008. The RAGE radiation-hydrodynamic code. Computational Science & Discovery, 1(1), 015005.CrossRefGoogle Scholar
Grinstein, F. F. 1995. Self-induced vortex ring dynamics in subsonic rectangular jets. Physics of Fluids, 7(10), 2519–2521.CrossRefGoogle Scholar
Grinstein, F. F. 2017. Initial conditions and modeling for simulations of shock driven turbulent material mixing. Computers and Fluids, 151, 58–72.CrossRefGoogle Scholar
Grinstein, F. F. 2001. Vortex dynamics and entrainment in rectangular free jets. Journal of Fluid Mechanics, 437, 69–101.CrossRefGoogle Scholar
Grinstein, F. F., Saenz, J. A., Dolence, J. C., Masser, T. O., Rauenzahn, R. M., and Francois, M. M. 2019. Effects of operator splitting and low Mach-number correction in turbulent mixing transition simulations. Computers and Mathematics with Applications, 78(2), 437–458.CrossRefGoogle Scholar
Grinstein, F. F., Saenz, J. A., and Germano, M. 2021. Coarse grained simulations of shock-driven turbulent material mixing. Physics of Fluids, 33(035131).CrossRefGoogle Scholar
Grinstein, F. F., Pereira, F. S., and Rider, W. J. 2023. Numerical approximations formulated as LES models. Chap. 10 of: Numerical Methods in Turbulence Simulations, Moser, R. (ed). Elsevier.Google Scholar
Haan, S. W., Lindl, J. D., Callahan, D. A., et al. 2011. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Physics of Plasmas, 18(051001).CrossRefGoogle Scholar
Hahn, M., Drikakis, D., Youngs, D. L., and Williams, R. J. R. 2011. Richtmyer–Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshocked flow. Physics of Fluids, 23, 046101.CrossRefGoogle Scholar
Haines, B. M., Vold, E. L., Molvig, K., Aldrich, C., and Rauenzahn, R. 2014a. The effects of plasma diffusion and viscosity on turbulent instability growth. Physics of Plasmas, 21, 092306.CrossRefGoogle Scholar
Haines, B. M., Clark, D. S., Weber, C. R., Edwards, M. J., Batha, S. H., and Kline, J. L. 2020a. Cross-code comparison of the impact of the fill tube on high yield implosions on the National Ignition Facility. Physics of Plasmas, 27(8).CrossRefGoogle Scholar
Haines, B. M., Shah, R. C., and Smidt, J. M. 2020b. The rate of development of atomic mixing and temperature equilibration in inertial confinement fusion implosions. Physics of Plasmas, 27(10).CrossRefGoogle Scholar
Haines, B. M. 2015. Exponential yield sensitivity to long-wavelength asymmetries in three-dimensional simulations of inertial confinement fusion capsule implosions. Physics of Plasmas, 22(8).CrossRefGoogle Scholar
Haines, B. M., Grinstein, F. F., Welser-Sherrill, L., Fincke, J. R., and Doss, F. W. 2013. Simulation ensemble for a laser-driven shear experiment. Physics of Plasmas, 20(9), 092301.Google Scholar
Haines, B. M., Grinstein, F. F., and Fincke, J. R. 2014b. Three-dimensional simulation strategy to determine the effects of turbulent mixing on inertial-confinement-fusion capsule performance. Physical Review E, 89(5).CrossRefGoogle ScholarPubMed
Haines, B. M., Grim, G. P., Fincke, J. R., Shah, R. C., Forrest, C. J., Silverstein, K., Marshall, F. J., Boswell, M., Fowler, M. M., Gore, R. A., Hayes-Sterbenz, A. C., Jungman, G., Klein, A., Rundberg, R. S., Steinkamp, M. J., and Wilhelmy, J. B. 2016. Detailed high-resolution three-dimensional simulations of OMEGA separated reactants ICF experiments. Physics of Plasmas, 23(072709).CrossRefGoogle Scholar
Haines, Brian M., Yi, S. A., Olson, R. E., Khan, S. F., Kyrala, G. A., Zylstra, A. B., Bradley, P. A., Peterson, R. R., Kline, J. L., Leeper, R. J., and Shah, R. C. 2017a. The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules. Physics of Plasmas, 24(7), 072709.Google Scholar
Haines, Brian M., Aldrich, C. H., Campbell, J. M., Rauenzahn, R. M., and Wingate, C. A. 2017b. High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions. Physics of Plasmas, 24(5), 052701.Google Scholar
Haines, Brian M., Olson, R. E., Sweet, W., Yi, S. A., Zylstra, A. B., Bradley, P. A., Elsner, F., Huang, H., Jimenez, R., Kline, J. L., Kong, C., Kyrala, G. A., Leeper, R. J., Paguio, R., Pajoom, S., Peterson, R. R., Ratledge, M., and Rice, N. 2019. Robustness to hydrodynamic instabilities in indirectly driven layered capsule implosions. Physics of Plasmas, 26(1), 012707.CrossRefGoogle Scholar
Haines, Brian M., Shah, R. C., Smidt, J. M., Albright, B. J., Cardenas, T., Douglas, M. R., Forrest, C., Glebov, V. Yu, Gunderson, M. A., Hamilton, C. E., Henderson, K. C., Kim, Y., Lee, M. N., Murphy, T. J., Oertel, J. A., Olson, R. E., Patterson, B. M., Randolph, R. B., and Schmidt, D. W. 2020c. Observation of persistent species temperature separation in inertial confinement fusion mixtures. Nature Communications, 11, 544.Google Scholar
Haines, Brian M., Keller, D. E., Long, K. P., McKay, M. D., Medin, Z. J., Park, H., Rauenzahn, R. M., Scott, H. A., Anderson, K. S., Collins, T. J. B., Green, L. M., Marozas, J. A., McKenty, P. W., Peterson, J. H., Vold, E. L., Di Stefano, C., Lester, R. S., Sauppe, J. P., Stark, D. J., and Velechovsky, J. 2022a. The development of a high-resolution Eulerian radiation-hydrodynamics simulation capability for laser-driven Hohlraums. Physics of Plasmas, 29(8), 083901.CrossRefGoogle Scholar
Haines, Brian M., Sauppe, J. P., Albright, B. J., Daughton, W. S., Finnegan, S. M., Kline, J. L., and Smidt, J. M. 2022b. A mechanism for reduced compression in indirectly driven layered capsule implosions. Physics of Plasmas, 29(4), 042704.CrossRefGoogle Scholar
Hammel, B. A., Haan, S. W., Clark, D. S., Edwards, M. J., Langer, S. H., Marinak, M. M., Patel, M. V., Salmonson, J. D., and Scott, H. A. 2010. High-mode Rayleigh–Taylor growth in NIF ignition capsules. High Energy Density Physics, 6(2), 171–178.CrossRefGoogle Scholar
Harten, A., Lax, P. D., and van Leer, B. 1983. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1), 35–61.CrossRefGoogle Scholar
Hussain, A. K. M. F., and Husain, H. S. 1989. Elliptic jets. Part I. Characteristics of unexcited and excited jets. Journal of Fluid Mechanics, 208, 257–320.CrossRefGoogle Scholar
Jeong, J., and Hussain, F. 1995. On the identification of a vortex. Journal of Fluid Mechanics, 285, 69–94.CrossRefGoogle Scholar
Lee, Y. T., and More, R. M. 1984. An electron conductivity model for dense plasmas. Physics of Fluids, 27(5), 1273–1286.Google Scholar
LePape, S., Hopkins, L. F. Berzak, Divol, L., Pak, A., Dewald, E. L., Bhandarkar, S., Bennedetti, L. R., Bunn, T., Biener, J., Crippen, J., Casey, D., Edgell, D., Fittinghoff, D. N., Gatu-Johnson, M., Goyon, C., Haanl, S., Hatarik, R., Havre, M., Ho, D. D.-M., Izum, N., Jaquez, J., Khan, S. F., Kyrala, G. A., Ma, T., Mackinnon, A. J., MacPhee, A. G., MacGowan, B. J., Meezan, N. B., Milovich, J., Millot, M., Michel1, P., Nagel1, S. R., Nikroo, A., Patel, P., Ralph, J., Ross1, J. S., Rice, N. G., Strozzi, D., Stadermann, M., Volegov, P., Yeamans, C., Weber, C., Wild, C., Callahan, D., and Hurricane, O. A. 2018. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility. Physical Review Letters, 120(24), 245003.Google Scholar
Leweke, T., Le, Dizés, S., and Williamson, C. H. K. 2016. Dynamics and instabilities of vortex pairs. Annual Review of Fluid Mechanics, 48(1), 507–541.CrossRefGoogle Scholar
Lindl, John. 1995. Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Physics of Plasmas, 2(11), 3933–4024.CrossRefGoogle Scholar
Lyon, S. P., and Johnson, J. D. 1992. SESAME: The Los Alamos National Laboratory Equation of State Database. Technical Report LA-UR-92-3407. Los Alamos National Laboratory, Los Alamos, USA.Google Scholar
McClarren, R. G., and Wohlbier, J. G. 2011. Solutions for ion-electron–radiation coupling with radiation and electron diffusion. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(1), 119–130.CrossRefGoogle Scholar
McNally, J. R., Rothe, K. E., and Sharp, R. D. 1979. Fusion Re-activity Graphs and Tables for Charged Particle Reactions. Technical Report. Oak Ridge National Laboratory, Oak Ridge, TN, USA.CrossRefGoogle Scholar
Mihalas, D., and Mihalas, B. W. 2013. Foundations of Radiation Hydrodynamics. Courier Corporation.Google Scholar
Mikaelian, K. 1993. Effect of viscosity on Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Physical Review E, 47(1), 375–383.CrossRefGoogle ScholarPubMed
Miller, S. C., and Goncharov, V. N. 2022. Instability seeding mechanisms due to internal defects in inertial confinement fusion targets. Physics of Plasmas, 29(8), 082701.CrossRefGoogle Scholar
Molvig, K., Simakov, A. N., and Vold, E. L. 2014. Classical transport equations for burning gas–metal plasmas. Physics of Plasmas, 21(092709).CrossRefGoogle Scholar
Nuckolls, J., Wood, J., Thiessen, A., and Zimmerman, G. 1972. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature, 239, 139–142.CrossRefGoogle Scholar
Pereira, F. S., Grinstein, F. F., Israel, D. M., Rauenzahn, R., and Girimaji, S. S. 2021. Modeling and simulation of transitional Rayleigh–Taylor flow with partially-averaged Navier–Stokes equations. Physics of Fluids, 33, 115118.CrossRefGoogle Scholar
Pickworth, L. A., Hammel, B. A., Smalyuk, V. A., Robey, H. F., Benedetti, L. R., Hopkins, L. Berzak, Bradley, D. K., Field, J. E., Haan, S. W., Hatarik, R., Hartouni, E., Izumi, N., Johnson, S., Khan, S., Lahmann, B., Landen, O. L., LePape, S., MacPhee, A. G., Meezan, N. B., Milovich, J., Nagel, S. R., Nikroo, A., Pak, A. E., Petrasso, R., Remington, B. A., Rice, N. G., Springer, P. T., Stadermann, M., Widmann, K., and Hsing, W. 2018. Visualizing deceleration-phase instabilities in inertial confinement fusion implosions using an “enhanced self-emission” technique at the National Ignition Facility. Physics of Plasmas, 25(5), 054502.Google Scholar
Pradeep, D. S., and Hussain, F. 2001. Core dynamics of a strained vortex: instability and transition. Journal of Fluid Mechanics, 447, 247–285.CrossRefGoogle Scholar
Rasmus, A. M., Stefano, C. A. Di, Flippo, K. A., and et al. 2019. Shock-driven hydrodynamic instability of a sinusoidally perturbed high-Atwood number oblique interface. Physics of Plasmas, 26(6), 062103.CrossRefGoogle Scholar
Ristorcelli, J. R., Gowardhan, A. A., and Grinstein, F. F. 2013. Two classes of Richtmyer–Meshkov instabilities: A detailed statistical look. Physics of Fluids, 25(044106).CrossRefGoogle Scholar
Robey, H. F., Boehly, T. R., Celliers, P. M., Eggert, J. H., Hicks, D., Smith, R. F., Collins, R., Bowers, M. W., Krauter, K. G., Datte, P. S., Munro, D. H., Milovich, J. L., Jones, O. S., Michel, P. A., Thomas, C. A., Olson, R. E., Pollaine, S., Town, R. P. J., Haan, S., Callahan, D., Clark, D., Edwards, J., Kline, J. L., Dixit, S., Schneider, M. B., Dewald, E. L., Widmann, K., Moody, J. D., Döppner, T., Radousky, H. B., Throop, A., Kalantar, D., DiNicola, P., Nikroo, A., Kroll, J. J., Hamza, A. V., Horner, J. B., Bhandarkar, S. D., Dzenitis, E., Alger, E., Giraldez, E., Castro, C., Moreno, K., Haynam, C., LaFortune, K. N., Widmayer, C., Shaw, M., Jancaitis, K., Parham, T., Holunga, D. M., Walters, C. F., Haid, B., Mapoles, E. R., Sater, J., Gibson, C. R., Malsbury, T., Fair, J., Trummer, D., Coffee, K. R., Burr, B., Berzins, L. V., Choate, C., Brereton, S. J., Azevedo, S., Chandrasekaran, H., Eder, D. C., Masters, N. D., Fisher, A. C., Sterne, P. A., Young, B. K., Landen, O. L., Van Wonterghem, B. M., MacGowan, B. J., Atherton, J., Lindl, J. D., Meyerhofer, D. D., and Moses, E. 2012. Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation. Physics of Plasmas, 19(4), 042706.CrossRefGoogle Scholar
Robey, H. F., MacGowan, B. J., Landen, O. L., LaFortune, K. N., Widmayer, C., Celliers, P. M., Moody, J. D., Ross, J. S., Ralph, J., LePape, S., Berzak Hopkins, L. F., Spears, B. K., Haan, S. W., Clark, D., Lindl, J. D., and Edwards, M. J. 2013. The effect of laser pulse shape variations on the adiabat of NIF capsule implosions. Physics of Plasmas, 20(5), 052707.CrossRefGoogle Scholar
Sauppe, J. P., Haines, B. M., Palaniyappan, S., et al. 2019. Modeling of direct-drive cylindrical implosion experiments with an Eulerian radiation-hydrodynamics code. Physics of Plasmas, 26(4), 042701.CrossRefGoogle Scholar
Sauppe, J. P., Palaniyappan, S., Tobias, B. J., and et al. 2020. Demonstration of scale-invariant Rayleigh–Taylor instability growth in laser-driven cylindrical implosion experiments. Physical Review Letters, 124(18), 185003.CrossRefGoogle ScholarPubMed
Toro, E. F., Spruce, M., and Speares, W. 1994. Restoration of the Contact Surface in the HLL-Riemann Solver. Shock Waves, 4(1), 25–34.CrossRefGoogle Scholar
Vold, E. L., Rauenzahn, R. M., Aldrich, C. H., Molvig, K., Simakov, A. N., and Haines, B. M. 2017. Plasma transport in an Eulerian AMR code. Physics of Plasmas, 24(042702).CrossRefGoogle Scholar
Weber, C. R., Clark, D. S., Cook, A. W., Busby, L. E., and Robey, H. F. 2014. Inhibition of Turbulence in Inertial-Confinement-Fusion Hot Spots by Viscous Dissipation. Physical Review E, 89, 053106.CrossRefGoogle ScholarPubMed
Weber, C. R., Clark, D. S., Pak, A., Alfonso, N., Bachmann, B., Berzak Hopkins, L. F., Bunn, T., Crippen, J., Divol, L., Dittrich, T., Kritcher, A. L., Landen, O. L., Le Pape, S., MacPhee, A. G., Marley, E., Masse, L. P., Milovich, J. L., Nikroo, A., Patel, P. K., Pickworth, L. A., Rice, N., Smalyuk, V. A., and Stadermann, M. 2020. Mixing in ICF implosions on the National Ignition Facility caused by the fill-tube. Physics of Plasmas, 27(3), 032703.CrossRefGoogle Scholar
Yao, J., and Hussain, F. 2022. Vortex reconnection and turbulence cascade. Annual Review of Fluid Mechanics, 54, 317–347.CrossRefGoogle Scholar
Zhou, Y. 2007. Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations. Physics of Plasmas, 14(082701).CrossRefGoogle Scholar
Zhou, Y. 2017a. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Physics Reports, 720-722, 1–136.Google Scholar
Zhou, Y. 2017b. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Physics Reports, 723-725, 1–160.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×