Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T16:55:53.946Z Has data issue: false hasContentIssue false

5 - Deciphering delay

Published online by Cambridge University Press:  05 March 2013

Jean Berstel
Affiliation:
Université de Paris-Est
Dominique Perrin
Affiliation:
Université de Paris-Est
Christophe Reutenauer
Affiliation:
Université du Québec, Montréal
Get access

Summary

This chapter is devoted to codes with finite deciphering delay. Intuitively, codes with finite deciphering delay can be decoded, from left to right, with a finite lookahead. There is an obvious practical interest in this condition. Codes with finite deciphering delay form a family intermediate between prefix codes and general codes. There are two ways to define the deciphering delay, counting either codewords or letters. The first one is called verbal delay, or simply delay for short, and the second one literal delay.

The first section is devoted to codes with finite verbal deciphering delay. We present first some preliminary material. In particular we prove a characterization of the deciphering delay in terms of simplifying words.

In the second section, we prove Schützenberger's theorem (Theorem 5.2.4) saying that a finite maximal code with finite deciphering delay is prefix. We prove that any rational code with finite deciphering delay is contained in a maximal rational code with the same delay (Theorem 5.2.9).

The next section considers the literal deciphering delay, that is the deciphering delay counted in terms of letters instead of words of the code. A code with finite literal deciphering delay is called weakly prefix. We introduce the notion of automata with finite delay, also called weakly deterministic. We prove the equivalence between weakly prefix codes and weakly deterministic automata (Proposition 5.3.4). We use this characterization to give yet another proof of Schützenberger's theorem. Next, we show that a rational completion with the same literal deciphering delay exists (Theorem 5.3.7).

Type
Chapter
Information
Codes and Automata , pp. 199 - 224
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×