Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T16:24:01.508Z Has data issue: false hasContentIssue false

9 - Unambiguous monoids of relations

Published online by Cambridge University Press:  05 March 2013

Jean Berstel
Affiliation:
Université de Paris-Est
Dominique Perrin
Affiliation:
Université de Paris-Est
Christophe Reutenauer
Affiliation:
Université du Québec, Montréal
Get access

Summary

To each unambiguous automaton corresponds a monoid of relations which is also called unambiguous. A relation in this monoid corresponds to each word and the computations on words are replaced by computations on relations.

The principal result of this chapter (Theorem 9.4.1) shows that very thin codes are exactly the codes for which the associated monoid satisfies a finiteness condition: it contains relations of finite positive rank. This result explains why thin codes constitute a natural family containing the recognizable codes. It makes it possible to prove properties of thin codes by reasoning in finite structures. As a consequence, we shall give, for example, an alternative proof of the maximality of thin complete codes which does not use probabilities.

The main result also allows us to define, for each thin code, some important parameters: the degree and the group of the code. The group of a thin code is a finite permutation group. The degree of the code is the number of elements on which this group acts. These parameters reflect properties of words by means of “interpretations”. For example, the synchronized codes in the sense of Chapter 3 are those having degree 1.

This chapter is organized in the following manner. In Section 9.1, basic properties of unambiguous monoids of relations are proved. These monoids constantly appear in what follows, since each unambiguous automaton gives rise to an unambiguous monoid of relations. In Section 9.2, we define two representations of unambiguous monoids of relations, called the R and L-representations or Schützenberger representations.

Type
Chapter
Information
Codes and Automata , pp. 327 - 372
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×