2 - General Relativity
Published online by Cambridge University Press: 17 August 2020
Summary
The basic principles of general relativity are reviewed, in particular the different forms of the equivalence principle: the weak, Einstein, and strong equivalence principles. The concept of a metric is introduced within special relativity. The Einstein equations are derived in an heurisitic manner including the Christoffel symbols, the Ricci tensor, and the Ricci scalar. The Schwarzschild as the solution of Einstein‘s equation in vacuum are explicitly derived. The notion of the energy–momentum tensor, as the source term of the Einstein equations, is discussed in terms of the four-momentum of particles. For bulk matter, the definition of an ideal fluid is given. The conservation of the energy–momentum tensor in curved space-time is discussed. The Einstein equations are solved for a sphere of an ideal fluid to arrive at the Tolman–Oppenheimer–Volkoff equations, the central equations for the investigation of compact stars. Finally the analytically known solution for a sphere of an incompressible fluid, the Schwarzschild solution, is derived and used to set the Buchdahl limit on the compactness of a compact star.
Keywords
- Type
- Chapter
- Information
- Compact Star Physics , pp. 8 - 37Publisher: Cambridge University PressPrint publication year: 2020