Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T14:06:55.726Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  28 September 2020

Barbara M. Sattler
Affiliation:
Ruhr-Universität, Bochum, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Concept of Motion in Ancient Greek Thought
Foundations in Logic, Method, and Mathematics
, pp. 404 - 422
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Diels, Hermann and Kranz, Walther (eds) (1951), Fragmente der Vorsokratiker, Griechisch und Deutsch, Berlin: Weidmann.Google Scholar
Graham, Daniel W. (ed.) (2010), The Texts of Early Greek Philosophy: The Complete Fragments and Selected Testimonies of the Major Presocratics, Cambridge: Cambridge University Press.Google Scholar
Allan, D. J. (ed.) (2005), De caelo, Oxford: Clarendon Press.Google Scholar
Annas, Julia (tr.) (1976), Metaphysics Books M and N, trans. with introduction and notes, Oxford: Clarendon Press.Google Scholar
Barnes, Jonathan (ed.) (1995), The Complete Works of Aristotle: The Revised Oxford Translation, 6th ed., Princeton: Princeton University Press.Google Scholar
Bekker, Immanuel (ed.) (1831), Opera, Berlin: Reimer.Google Scholar
Bonitz, Hermann (tr.) (1994), Metaphysik, ed. by Ursula, Wolf, Reinbek bei Hamburg: Rowohlt.Google Scholar
Graham, Daniel W. (tr.) (1999), Physics Books VIII, with introduction and notes, Oxford: Clarendon Press.Google Scholar
Guthrie, W. K. C. (tr.) (1939), On the Heavens, Cambridge, MA: Harvard University Press.Google Scholar
Hussey, Edward (tr.) (1993), Physics Books III and IV, trans. with introduction and notes, Oxford: Clarendon Press.Google Scholar
Joachim, Harold H. (ed.) (1922), On Coming-To-Be and Passing-Away, a revised text with introduction and commentary, Oxford: Clarendon Press.Google Scholar
Makin, Stephen (tr.) (2006), Metaphysics, Book Θ, with commentary, Oxford: Clarendon Press.Google Scholar
Nussbaum, Martha (ed.) (1978), De motu animalium, text with translation, commentary, and interpretive essay, Princeton: Princeton University Press.Google Scholar
Pierre, Pellegrin (tr.) (2000), Physique, Paris: Garnier-Flammarion.Google Scholar
Ross, W. D. (1924), Metaphysics, revised text with introduction and commentary, 2 vols., Oxford: Clarendon Press.Google Scholar
Ross, W. D. (1936), Physics, revised text with introduction and commentary, Oxford: Clarendon Press.Google Scholar
Ross, David (1952), Selected Fragments, trans. into English, Oxford: Clarendon Press.Google Scholar
Ross, David (1961), De anima, ed. with introduction and commentary, Oxford: Clarendon Press.Google Scholar
Stevens, Annick (ed.) (2012), La Physique, new edition and trans., Paris: Vrin.Google Scholar
Tricot, J. (tr.) (2002), Métaphysique, II. Livres Η–Ν, Paris: Vrin.Google Scholar
Wagner, Hans (tr.) (1995), Physikvorlesung, 5th ed., Berlin: Akademieverlag.Google Scholar
Williams, C. J. F. (tr.) (1982), De generatione et corruptione, with notes, Oxford: Clarendon Press.Google Scholar
Zekl, Hans Günther (tr.) (1987), Physik, Hamburg: Meiner Verlag.Google Scholar
Philoponus (1887), In Aristotelis Physicorum Libros Tres Priores Commentaria. Vitelli, Edidit H.. Commentaria in Aristotelem Graeca, Vol. XVI, Berlin: Reimer.CrossRefGoogle Scholar
Philoponus (1888), In Aristotelis Physicorum Libros Quinque Posteriores Commentaria. Vitelli, Edidit H.. Commentaria in Aristotelem Graeca, Vol. XVII, Berlin: Reimer.Google Scholar
Philoponus (1994), On Aristotle Physics 5–8, translated by Paul Lettinck with Simplicius: On Aristotle on the void, translated by J. O. Urmson, introduction and notes by Peter Lautner, London.Google Scholar
Simplicius (1882), In Aristotelis Physicorum. Libros Quattuor Priores Commentaria. Edidit H. Diels. Commentaria in Aristotelem Graeca, Vol. IX, Berlin: Reimer.Google Scholar
Simplicius (1894), In Aristotelis De caelo. Edidit Heibeg, I. L.. Commentaria in Aristotelem Graeca, Vol. VIII, Berlin: Reimer.Google Scholar
Simplicius (1895), In Aristotelis Physicorum. Libros Quattuor Posteriores Commentaria. Edidit H. Diels. Commentaria in Aristotelem Graeca, Vol. X, Berlin: Reimer.Google Scholar
Luria, Salomon (ed.) (1970), Demokrit, edition and translation, Leningrad: Nauka.Google Scholar
Taylor, C. C. W. (1999), The Atomist Leucippus and Democritus: Fragments, text and translation with a commentary, Toronto: University of Toronto Press.Google Scholar
Hultsch, Fridericus (ed.) (1885), De Sphaera quae movetur, Leipzig: Teubner.Google Scholar
Lasserre, François (ed.) (1966), Die Fragmente des Eudoxos von Knidos, edition, translation, and commentary, Berlin: de Gruyter.Google Scholar
West, Martin (ed.) (1966), Theogony, Oxford: Clarendon Press.Google Scholar
Monro, David B. and Allen, Thomas W. (eds.) (1962), Homerii Opera: Tomus I, Iliadis Libros I–XII Continens; Tomus II, Iliadis Libros XIII–XXIV Continens, Oxford: Clarendon Press.Google Scholar
Conche, Marcel (ed.) (1996), Le Poème: Fragments, edition and translation, Paris: Presses Universitaires de France.Google Scholar
Cordero, Néstor-Luis (ed.) (1984), Les Deux Chemins de Parménide, critical edition, translation, study, and bibliography, Paris: Vrin.Google Scholar
Coxon, A. H. (1986), The Fragments of Parmenides, a critical text with introduction, translation, the ancient testimonia, and a commentary, Assen: Van Gorcum.Google Scholar
Diels, Hermann (ed.) (1897), Parmenides Lehrgedicht, griechisch und deutsch, Berlin: Reimer.Google Scholar
Gallop, David (1984), Fragments, a text and translation with an introduction, Toronto: University of Toronto.Google Scholar
Hölscher, Uvo (1986), Parmenides. Vom Wesen des Seienden, edition and translation, Frankfurt am Main: Suhrkamp.Google Scholar
Karsten, Simon (ed.) (1835), Parmenidis Eleatae Carminis Reliquiae, Amsterdam: Mueller.Google Scholar
O’Brien, Denis (ed.) (1987), Le Poème de Parménide, edition and translation, Paris: Vrin.Google Scholar
Tarán, Leonardo (ed.) (1965), Parmenides, text with translation, commentary, and critical essay, Princeton: Princeton University Press.Google Scholar
Untersteiner, Mario (ed.) (1958), Parmenide: Testimonianze e Frammenti, edition, introduction, translation, and commentary, Florence: La Nuova Italia.Google Scholar
Burnet, John (1900–7), Platonis Opera, Oxford: Clarendon Press.Google Scholar
Burnyeat, Myles (ed.) (1990), Theatetus, trans. by M. J. Levett, Indianapolis: Hackett.Google Scholar
Cornford, Francis MacDonald (tr.) (1939), Parmenides’ Way of Truth and Plato’s Parmenides, London: Routledge.Google Scholar
Cornford, Francis MacDonald (1960), Plato’s Theory of Knowledge: The Theaetetus and Sophist of Plato, translation with a running commentary, London: Routledge.Google Scholar
Cornford, Francis MacDonald (1997), Plato’s Cosmology: The Timaeus of Plato, translation with a running commentary, Indianapolis: Hackett.Google Scholar
Eigler, Gunther (ed.) (1970), Platon, Werke in acht Bänden. Griechisch und Deutsch, Darmstadt: Wissenschaftliche Buchges.Google Scholar
Rowe, Christopher (ed.) (2015), Plato: Theatetus and Sophist, edition and translation, Cambridge: Cambridge University Press.Google Scholar
Taylor, A. E. (1928), A Commentary on Plato’s Timaeus, Oxford: Clarendon Press.Google Scholar
White, Nicholas P. (1993), Plato, Sophist, Indianapolis: Hackett.Google Scholar
Zeyl, Donald (2000), Plato, Timaeus, translation with introduction, Indianapolis and Cambridge: Hackett.Google Scholar
Heiberg, J. L. (1903), Claudii Ptolemaei opera quae exstant omnia, Vol. 1 Part 2: Syntaxis mathematica, Leipzig: B. G. Teubner.Google Scholar
Toomer, G. J. (1984), Ptolemy’s Almagest, translation and annotation, London: Duckworth.Google Scholar
Huffman, Carl (1993), Philolaus of Croton: Pythagorean and Presocratic. A Commentary on the Fragments and Testimonia with Interpretive Essays, Cambridge: Cambridge University Press.Google Scholar
Lee, H. D. P. (ed.) (1967), Zeno of Elea, translation with notes, Amsterdam: Hakkert.Google Scholar
Ackrill, John (1957), “Plato and the Copula: Sophist 251–259”, Journal of Hellenic Studies 77, pp. 16.Google Scholar
Algra, Keimpe (1995), Concepts of Space in Greek Thought. Philosophia Antiqua, LXV, Leiden, New York, and Cologne: Brill.Google Scholar
Algra, Keimpe (1999), “The Beginning of Cosmology”, in The Cambridge Companion to Early Greek Philosophy, ed. by Long, A. A., Cambridge: Cambridge University Press, pp. 4565.Google Scholar
Alten, H. W., Djafari-Naini, A., Folkerts, M., Schlosser, H., Schlote, K.-H., and Wußing, H. (ed.) (2003), 4000 Jahre Algebra, Berlin and Heidelberg: Springer.Google Scholar
Anagnostopoulos, Andreas (2017), “Change, Agency and the Incomplete in Aristotle”, Phronesis 62, pp. 170209.Google Scholar
Annas, Julia (1975), “Aristotle, Number and Time”, Philosophical Quarterly 25, pp. 97113.Google Scholar
Annas, Julia (1981), Introduction to Plato’s Republic, Oxford: Clarendon Press.Google Scholar
Annas, Julia (1987), “Die Gegenstände der Mathematik bei Aristoteles”, in Mathematics and Metaphysics in Aristotle, ed. by Graeser, Andreas, Bern and Stuttgart: Paul Haupt, pp. 131–47.Google Scholar
Anscombe, G. E. M. (1981), “The New Theory of Forms”, in The Collected Philosophical Papers, Oxford: Blackwell.Google Scholar
Arnauld, Antoine and Nicole, Pierre (1996), Logic or the Art of Thinking, trans. by Jill Vance Buroker, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Artmann, Benno and Schäfer, Lothar (1993), “On Plato’s ‘Fairest Triangles’ (Timaeus 54a)”, Historia Mathematica 20, pp. 255–64.Google Scholar
Austin, Scott (1986), Parmenides: Being, Bounds, and Logic, New Haven: Yale University Press.Google Scholar
Austin, Scott (2002), “Parmenides, Double-Negation and Dialectic”, in Presocratic Philosophy, Essays in Honour of Alexander Mourelatos, ed. by Caston, Victor and Graham, Daniel, Aldershot: Ashgate, pp. 95–9.Google Scholar
Barnes, Jonathan (1982), The Presocratic Philosophers, rev. ed., London: Routledge.Google Scholar
Barnes, Jonathan (1986), “Peripatetic Negations”, Oxford Studies in Ancient Philosophy IV, pp. 201–14.Google Scholar
Barnes, Jonathan (1995), The Cambridge Companion to Aristotle, Cambridge: Cambridge University Press.Google Scholar
Becker, Oskar (1951), Geschichte der Mathematik, Bonn: Athenäum-Verlag.Google Scholar
Benardete, José (1964), Infinity, Oxford: Oxford University Press.Google Scholar
Berka, Karel (1983), Measurement: Its Concepts, Theories and Problems, Dordrecht: Reidel.Google Scholar
Berryman, Sylvia (2002), “Democritus and the Explanatory Power of the Void”, in Presocratic Philosophy: Essays in Honour of Alexander Mourelatos, ed. by Caston, V and Graham, D, London: Ashgate, pp. 183–91.Google Scholar
Betegh, Gábor (2010), “What Makes a Mythos eikôs? Remarks Inspired by Myles Burnyeat’s ‘EIKÔS MYTHOS’”, in One Book, the Whole Universe: Plato’s Timaeus Today, ed. by Mohr, Richard and Sattler, Barbara, Las Vegas: Parmenides Publishing, pp. 213–24.Google Scholar
Betegh, Gábor (2016), “Colocation”, in ΣΩΜΑ. Körperkonzepte und körperliche Existenz in der antiken Philosophie und Literatur, ed. by Buchheim, Thomas, Wachsmann, Nora, and Meißner, David, Hamburg: Felix Meiner Verlag, pp. 393421.Google Scholar
Black, Max (1951), “Achilles and the Tortoise”, Analysis 11, pp. 91101.CrossRefGoogle Scholar
Black, Max (1954), “Is Achilles Still Running?”, in Problems of Analysis, London: Routledge, pp. 109–26.Google Scholar
Bodnár, István (1998), “Atomic Independence and Indivisibility”, Oxford Studies in Ancient Philosophy XVI, pp. 3561.Google Scholar
Bodnár, István (2012), “Sôzein ta phainomena: Some Semantic Considerations”, Croatian Journal of Philosophy 35, pp. 269–81.Google Scholar
Bostock, David (1972–3), “Aristotle, Zeno, and the Potential Infinite”, Proceedings of the Aristotelian Society 73, pp. 3751.Google Scholar
Bostock, David (1980), “Aristotle’s Account of Time”, Phronesis 25, pp. 148–69.Google Scholar
Bostock, David (1991), “Aristotle on Continuity in Physics VI”, in Aristotle’s Physics: A Collection of Essays, ed. by Judson, Lindsay, Oxford: Oxford University Press, pp. 179212.Google Scholar
Bostock, David (2006), Space, Time, Matter, and Form: Essays on Aristotle’s Physics, Oxford: Oxford University Press.Google Scholar
Boyer, Carl (1968), A History of Mathematics, New York: Wiley.Google Scholar
Brague, Rémi (1982), Du temps chez Plato et Aristote. Quatre études, Paris: Presses Universitaires de France.CrossRefGoogle Scholar
Brandwood, Leonard (1976), A Word Index to Plato. Compendia (Computer-Generated Aids to Literary and Linguistic Research), v. 8, Leeds: W. S. Maney and Son.Google Scholar
Broadie, Sarah (2012), Nature and Divinity in Plato’s Timaeus, Cambridge: Cambridge University Press.Google Scholar
Broadie, Sarah (2019), “Aristotle, Physics I.9: Responding to the Platonists”, in Aristotle’s Physics Alpha, Symposium Aristotelicum, ed. by Ierodiakonou, Katerina, Kalligas, Paul, and Karasmanis, Vassilis, Oxford: Oxford University Press, pp. 302–40.Google Scholar
Brown, Lesley (1986), “Being in the Sophist: A Syntactical Enquiry, Oxford Studies in Ancient Philosophy IV, pp. 4970.Google Scholar
Brown, Lesley (1994), “The Verb ‘To Be’ in Greek Philosophy: Some Remarks”, in Language, ed. by Everson, S, Companions to Ancient Thought 3, Cambridge: Cambridge University Press, pp. 212–36.Google Scholar
Brown, Lesley (2008), “The Sophist on Statements, Predication, and Falsehood”, in The Oxford Handbook of Plato, ed. by Fine, Gail, Oxford: Oxford University Press, pp. 437–62.Google Scholar
Bryan, Jenny (2011), Likeness and Likelihood in the Presocratics and Plato, Cambridge: Cambridge University Press.Google Scholar
Burkert, Walter (1972), Lore and Science in Ancient Pythagoreanism, trans. by E. L. Minar, Cambridge: Cambridge University Press.Google Scholar
Burnet, John (1930), Early Greek Philosophy, 4th ed., London: Black.Google Scholar
Burnyeat, Myles (2005), “Eikôs mythos”, Rhizai 2:2, pp. 143–65.Google Scholar
Burnyeat, Myles (2008), “Kinêsis vs Energeia: A Much-Read Passage in (but not of) Aristotle’s Metaphysics”, Oxford Studies in Ancient Philosophy 34, pp. 219–92.Google Scholar
Cantor, Georg (1966), Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Mit erläuternden Anmerkungen sowie mit Ergänzungen aus dem Briefwechsel Cantor-Dedekind, ed. by Zermelo, Ernst, Hildesheim: Olms.Google Scholar
Cantor, Georg (1984), Über unendliche, lineare Punktmannigfaltigkeiten. Arbeiten zur Mengenlehre aus den Jahren 1872–1884, ed. and commentary by Asser, G, Leipzig: B. G. Teubner.Google Scholar
Caveing, Maurice (1998), L’irrationalité dans les mathématiques grecques jusqu’à Euclide, Villeneuve d’Ascq: Presses universitaires du Septentrion.Google Scholar
Cerri, Giovanni (2011), “The Astronomical Section in Parmenides’ Poem” in Parmenides, Venerable and Awesome, ed. by Cordero, Néstor-Luis, Las Vegas: Parmenides Publishing, pp. 167–89.Google Scholar
Charlton, William (1991), “Aristotle’s Potential Infinites”, in Aristotle’s Physics: A Collection of Essays, ed. by Judson, Lindsay, Oxford: Oxford University Press, pp. 129–49.Google Scholar
Cherniss, H. F. (1935), Aristotle’s Criticism of Presocratic Philosophy, Baltimore: Johns Hopkins Press.Google Scholar
Cherniss, H. F. (1944), Aristotle’s Criticism of Plato and the Academy, Baltimore: Johns Hopkins Press.Google Scholar
Cherniss, H. F. (1954), “A Much Misread Passage of the Timaeus (Timaeus 49C7–50B5)”, The American Journal of Philology 75, pp. 113–30.Google Scholar
Cherniss, H. F. (1957), “The Relation of the Timaeus to Plato’s Later Dialogues”, in Studies in Plato’s Metaphysics, ed. Allen, R. E., London: Routledge and Kegan Paul, pp. 339–78.Google Scholar
Cleary, John (1995), Aristotle and Mathematics: Aporetic Method in Cosmology and Metaphysics. Philosophia Antiqua, 67, Leiden, New York, and Cologne: Brill.Google Scholar
Code, Alan (1976), “Aristotle’s Response to Quine’s Objection to Modal Logic”, Journal of Philosophical Logic 5:2, pp. 159–86CrossRefGoogle Scholar
Code, Murray (1982a), “Zeno’s Paradoxes I: The Standard Mathematical Response”, Nature and System 4, pp. 4558.Google Scholar
Code, Murray (1982b), “Zeno’s Paradoxes II: A Whiteheadean Response”, Nature and System 4, pp. 5975.Google Scholar
Conen, Paul (1964), Die Zeittheorie des Aristoteles, Munich: C. H. Beck.Google Scholar
Coope, Ursula (2005), Time for Aristotle: Physics IV. 10–14, Oxford: Oxford University Press.Google Scholar
Coope, Ursula (2012), “Aristotle on the Infinite”, in Oxford Handbook of Aristotle, ed. by Shields, Christopher, Oxford : Oxford University Press, pp. 267–86.Google Scholar
Cordero, Néstor-Luis (1979), “Les deux chemins de Parménide dans les fragments 6 et 7”, Phronesis 24, pp. 132.CrossRefGoogle Scholar
Cordero, Néstor-Luis (2004), By Being, it Is: The Thesis of Parmenides, Las Vegas: Parmenides Publishing, pp. 105–24.Google Scholar
Cordero, Néstor-Luis (2011), “Parmenidean Physics Is Not Part of What He Calls ‘Doxa’”, in Parmenides, Venerable and Awesome, ed. by Cordero, Néstor-Luis, Las Vegas: Parmenides Publishing, pp. 95113.Google Scholar
Crivelli, Paolo (2012), Plato’s Account of Falsehood, Cambridge: Cambridge University Press.Google Scholar
Crombie, A. C. (1996), Science, Art and Nature in Medieval and Modern Thought, London: Hambledon Press.Google Scholar
Curd, Patricia (1998), The Legacy of Parmenides, Eleatic Monism and Later Presocratic Thought, Princeton: Princeton University Press.Google Scholar
Curd, Patricia (2011), “New Work on the Presocratics”, Journal of the History of Philosophy 49, pp. 137.Google Scholar
Curd, Patricia and Graham, Daniel (eds.) (2008), The Oxford Handbook of Presocratic Philosophy, Oxford: Oxford University Press.Google Scholar
Della Rocca, Michael (2014), “Razing Structures to the Ground”, in Analytic Philosophy 55, pp. 276–94.Google Scholar
Della Rocca, Michael (2020), The Parmenidean Ascent, Oxford: Oxford University Press.Google Scholar
Denyer, Nicholas (1991), Language, Thought and Falsehood in Ancient Greek Philosophy, London: Routledge.Google Scholar
Dixsaut, Monique and Brancacci, Aldo (2002), Platon, sources des Présocratiques. Exploration, Paris: Vrin.Google Scholar
Dorter, Kenneth (2012), “Appearance and Reality in Parmenides”, in Metaphysics, ed. by Pestana, Mark, Rijeka: InTech, pp. 4564.Google Scholar
Duhem, Pierre (1908), Sōzein ta phainomena. Essai sur la notion de théorie physique de Platon à Galilée, Paris: Vrin.Google Scholar
Duhem, Pierre (1969), To Save the Phenomena: An Essay on the Idea of Physical Theory from Plato to Galileo, trans. by Edmund Doland and Chaninah Maschler, Chicago and London: Chicago University Press.CrossRefGoogle Scholar
Duncombe, Matthew (2015), “Aristotle’s Two Accounts of Relatives in Categories 7”, Phronesis 60, pp. 436–61.Google Scholar
Eberle, Stephan (1998), “Das Zeit-Raum-Kontinuum bei Zenon von Elea”, Philosophisches Jahrbuch 105, pp. 8599.Google Scholar
Ellis, Brian (1968), Basic Concepts of Measurement, Cambridge: Cambridge University Press.Google Scholar
Falcon, Andrea (2015), “Aristotle on Causality”, in The Stanford Encyclopedia of Philosophy, ed. by Zalta, Edward N., https://plato.stanford.edu/archives/spr2015/entries/aristotle-causality/.Google Scholar
Ferber, Rafael (1995), Zenons Paradoxien der Bewegung und die Struktur von Raum und Zeit, 2nd rev. ed., Stuttgart: Franz Steiner.Google Scholar
Fowler, D. H. (1999), The Mathematics of Plato’s Academy: A New Reconstruction, Oxford: Oxford University Press.Google Scholar
Fränkel, Hermann (1955), “Parmenidesstudien”, in Wege und Formen frühgriechischen Denkens. Literarische und philosophiegeschichtliche Studien, ed. by Tietze, Franz, Munich: C. H. Beck, pp. 157–97.Google Scholar
Fränkel, Hermann (1962), Dichtung und Philosophie des frühen Griechentums, Munich: C. H. Beck.Google Scholar
Frede, Michael (1967), Prädikation und Existenzaussage: Platons Gebrauch von “ … ist … ” und “ … ist nicht … ” im Sophistes, Göttingen: Vandenhoeck & Ruprecht.Google Scholar
Frede, Michael (1992), “Plato’s Sophist on False Statements”, in The Cambridge Companion to Plato, ed. by Kraut, Richard, Cambridge: Cambridge University Press, pp. 397424.Google Scholar
Frege, Gottlob (1892), “Über Begriff und Gegenstand”, Vierteljahrsschrift für wissenschaftliche Philosophie 16, pp. 192205.Google Scholar
Frege, Gottlob (1918–19), “Verneinung, eine logische Untersuchung”, Beiträge zur Philosophie des deutschen Idealismus 1, pp. 143–57.Google Scholar
Furley, David (1967), Two Studies in the Greek Atomists, Princeton: Princeton University Press.Google Scholar
Furley, David (1987), The Greek Cosmologists, Vol. 1: The Formation of the Atomic Theory and its Earliest Critics, Cambridge: Cambridge University Press.Google Scholar
Furley, David (1989), “The Dynamics of the Earth: Anaximander, Plato, and the Centrifocal Theory”, in Cosmic Problems, Cambridge: Cambridge University Press, pp. 1426.Google Scholar
Galileo (1933), Il Saggiatore [1623], in Opere di Galileo Galilei, Vol. VI, ed. by Favaro, A, Florence: G. Barbèra.Google Scholar
Garber, Dan (1992), Descartes’ Metaphysical Physics, Chicago: University of Chicago Press.Google Scholar
Gentzen, Gerhard (1969), “Investigations into Logical Deduction”, in The Collected Papers of Gerhard Gentzen, ed. by Szabo, M. E, Amsterdam and London: North Holland.Google Scholar
Gill, Mary Louise (1984), “Aristotle on the Individuation of Change”, Ancient Philosophy 4:1, pp. 922.Google Scholar
Gill, Mary Louise (2003), “Aristotle’s Distinction between Change and Activity”, in Process Theories: Crossdisciplinary Studies in Dynamic Categories, ed. by Seibt, Johanna, Dordrecht: Springer, pp. 322.CrossRefGoogle Scholar
Gill, Mary Louise (2016), “Method and Metaphysics in Plato’s Sophist and Statesman”, in The Stanford Encyclopedia of Philosophy, ed. by Zalta, Edward N, https://plato.stanford.edu/archives/win2016/entries/plato-sophstate/.Google Scholar
Glenn, S. (2011), “Proportion and Mathematics in Plato’s Timaeus”, Hermathena 190, pp. 1127.Google Scholar
Gomperz, Theodor (1912), The Greek Thinkers, Vol. IV, London: J. Murray.Google Scholar
Graham, D. W. (1999), “Empedocles and Anaxagoras: Responses to Parmenides,” in The Cambridge Companion to Early Greek Philosophy, ed. by Long, A. A., Cambridge: Cambridge University Press, pp. 159–80.Google Scholar
Graham, D. W. (2006), Explaining the Cosmos: The Ionian Tradition in Scientific Philosophy, Princeton: Princeton University Press.Google Scholar
Gregory, Andrew (2000), Plato’s Philosophy of Science, London: Duckworth.Google Scholar
Gregory, Andrew (2013), “Leucippus and Democritus on Like to Like and ou mallon”, Apeiron 46, pp. 446–68.Google Scholar
Gregory, Andrew (2016), Anaximander: A Re-Assessment, London: Bloomsbury.Google Scholar
Grünbaum, Adolf (1968), Modern Science and Zeno’s Paradoxes, London: Allen & Unwin.Google Scholar
Guthrie, W. K. C. (1962–81), History of Greek Philosophy, Cambridge: Cambridge University Press.Google Scholar
Guthrie, W. K. C. (1965), History of Greek Philosophy, Vol. II: The Presocratic Tradition from Parmenides to Democritus, Cambridge: Cambridge University Press.Google Scholar
Hager, F. P. (1984), “Natur”, in Historisches Wörterbuch der Philosophie, 6, ed. by Ritter, Joachim, Basel and Stuttgart: Schwabe, pp. 421–41.Google Scholar
Hankinson, R. J. (2001), Cause and Explanation in Ancient Greek Thought, Oxford: Clarendon Press.Google Scholar
Harte, Verity (2002), Plato on Parts and Wholes: The Metaphysics of Structure, Oxford: Oxford University Press.CrossRefGoogle Scholar
Hatfield, Gary (1990), “Metaphysics and the New Science”, in Reappraisals of the Scientific Revolution, ed. by Lindberg, David and Westman, Robert, Cambridge: Cambridge University Press, pp. 93166.Google Scholar
Hasper, Pieter (2006), “Zeno Unlimited”, Oxford Studies in Ancient Philosophy 29, pp. 4985.Google Scholar
Hasse, Helmut and Scholz, Heinrich (1928), Die Grundlagenkrisis der griechischen Mathematik, Charlottenburg: Pan.Google Scholar
Heath, T. L. (1921), A History of Greek Mathematics, Oxford: Clarendon Press.Google Scholar
Heath, T. L. (1949), Mathematics in Aristotle, Oxford: Oxford University Press.Google Scholar
Heinimann, Felix (1945), Nomos und Physis: Herkunft und Bedeutung einer Antithese im griechischen Denken des 5. Jahrhunderts, Basel: Friedrich Reinhardt.Google Scholar
Herold, N. (1976), “Kontinuum, Kontinuität I and II”, in Historisches Wörterbuch der Philosophie, 4, ed. by Ritter, Joachim, Basel and Stuttgart: Schwabe, pp. 1044–58.Google Scholar
Hintikka, Jakkoo (1966), “Aristotelian Infinity”, Philosophical Review 75, pp. 197218.Google Scholar
Horsten, Leon and Richard, Pettigrew (2014), The Bloomsbury Companion of Philosophical Logic, London: Bloomsbury.Google Scholar
Horn, Lawrence (2001), A Natural History of Negation, Stanford: CSLI.Google Scholar
Horn, Lawrence (2018), “Contradiction”, in The Stanford Encyclopedia of Philosophy, ed. by Zalta, Edward N, https://plato.stanford.edu/archives/win2018/entries/contradiction/.Google Scholar
Huby, Pamela M. (1973), “‘Concerning Nature’: Review of Peri Physeos: zur Frühgeschichte der Buchtitel by Egidius Schmalzriedt”, Classical Review 23:2, pp. 206–8.Google Scholar
Irwin, Terence (1990), Aristotle’s First Principles, Oxford: Oxford University Press.Google Scholar
Johansen, Thomas (2004), Plato’s Natural Philosophy: A Study of the Timaeus-Critias, Cambridge: Cambridge University Press.Google Scholar
Johansen, Thomas (2016), “Parmenides’ Likely Story”, Oxford Studies in Ancient Philosophy 50, pp. 129.Google Scholar
Jones, Alexander (2019), “Greco-Roman Sundials: Precision and Displacement”, in Down to the Hour: Short Time in the Ancient Mediterranean and Near East, ed. by Miller, Kassandra and Symons, Sarah, Time, Astronomy, and Calendars, vol. 8, Leiden: Brill, pp. 125–57.Google Scholar
Jope, James (1972), “Subordinate Demonstrative Science in the Sixth Book of Aristotle’s Physics”, Classical Quarterly 22:2, pp. 279–92.Google Scholar
Judson, Lindsay (ed.) (1991), Aristotle’s Physics: A Collection of Essays, Oxford: Oxford University Press.Google Scholar
Kahn, Charles (1966), The Greek Verb “To Be” and the Concept of Being, Indianapolis: Bobbs-Merrill.Google Scholar
Kahn, Charles (1969), “The Thesis of Parmenides”, Review of Metaphysics 22, pp. 700–24.Google Scholar
Kahn, Charles (1973), The Verb “Be” in Ancient Greek, Dordrecht: Reidel.Google Scholar
Kahn, Charles (1994), Anaximander and the Origins of Greek Cosmology, Indianapolis and Cambridge: Hackett.Google Scholar
Kahn, Charles (2004), “Return to the Theory of the Verb to Be”, Ancient Philosophy 24, pp. 381405.Google Scholar
Kahn, Charles (2009), “Parmenides and Plato Once More”, in Essays on Being, Oxford: Oxford University Press, pp. 192206.Google Scholar
Karfik, Filip (2004), Die Beseelung des Kosmos, Untersuchung zur Kosmologie, Seelenlehre und Theologie in Platons Phaidon und Timaios, Munich and Leipzig: K. G. Saur.Google Scholar
Kelsey, Sean (2003), “Aristotle’s Definition of Nature”, Oxford Studies in Ancient Philosophy 25, pp. 5987.Google Scholar
Kirk, G. S., Raven, J. E., and Schofield, M. (eds.) (1983), The Presocratic Philosophers, 2nd ed., Cambridge: Cambridge University Press.Google Scholar
Kneale, William and Kneale, Martha (1962), The Development of Logic, Oxford: Clarendon Press.Google Scholar
Knorr, Wilbur (1990), “Plato and Eudoxus and the Planetary Motions”, Journal for the History of Astronomy 21, pp. 313–29.Google Scholar
Koyré, Alexandre (1968), “An Experiment in Measurement”, in Metaphysics and Measurement: Essays in Scientific Revolution, London: Chapman and Hall, pp. 89117.Google Scholar
Krantz, David H., Luce, R. Duncan, Suppes, Patrick, and Tversky, Amos (2006), Foundations of Measurement, Vol. I: Additive and Polynomial Representations, Mineola: Dover.Google Scholar
Kretzmann, Norman (1976), “Aristotle on the Instant of Change”, Proceedings of the Aristotelian Society 50, pp. 91114.Google Scholar
Kretzmann, Norman (1982), “Continuity, Contrariety, Contradiction, and Change”, in Infinity and Continuity in Ancient and Medieval Thought, ed. by Kretzmann, Norman, Ithaca: Cornell University Press, pp. 270–96.Google Scholar
Kuhn, Thomas (1985), The Copernican Revolution. Planetary Astronomy in the Development of Western Thought, Cambridge, MA: Harvard University Press.Google Scholar
Kühner, Raphael and Gerth, Bernhard (1904), Ausführliche Grammatik der Griechischen Sprache, 3rd ed., Hanover and Leipzig: Hahnsche Buchhandlung.Google Scholar
Laraudogoitia, Jon Pérez (2016), “Supertasks”, in Stanford Encyclopedia of Philosophy, ed. by Zalta, Edward N., https://plato.stanford. edu/archives/spr2016/entries/spacetime-supertasks/.Google Scholar
Lear, Jonathan (1979–80), “Aristotelian Infinity”, Proceedings of the Aristotelian Society 80, pp. 187210.Google Scholar
Lear, Jonathan (1981), “A Note on Zeno’s Arrow”, Phronesis 26, pp. 91104.Google Scholar
Lear, Jonathan (1982), “Aristotle’s Philosophy of Mathematics”, Philosophical Review 91, pp. 161–92.Google Scholar
Ledermann, Harvey (2014), “Ho pote on esti and Coupled Entities: A Form of Explanation in Aristotle’s Natural Philosophy”, Oxford Studies in Ancient Philosophy 46, pp. 109–64.Google Scholar
Lee, David (2014), “Zeno’s Puzzle in Plato’s Parmenides”, Ancient Philosophy 34, pp. 255–73.Google Scholar
Lee, Edward N. (1972), “Plato on Negation and Not-Being in the Sophist”, The Philosophical Review 81, pp. 267304.Google Scholar
Leigh, Fiona (2008), “The Copula and Semantic Continuity in Plato’s Sophist”, Oxford Studies in Ancient Philosophy 34, pp. 105–21.Google Scholar
Lesher, James (2008), “The Humanizing of Knowledge in Presocratic Thought”, in The Oxford Handbook of Presocratic Philosophy, ed. by Patricia, Curd and Daniel, Graham, Oxford: Oxford University Press, pp. 458–84.Google Scholar
Lewis, Frank A. (1977), “Plato on ‘Not’”, California Studies in Classical Antiquity 9, pp. 89115.Google Scholar
Liddell, Henry George and Scott, Robert (1968), A Greek-English Lexicon, revised and augmented throughout by Sir Henry Stuart Jones, with a supplement, 9th ed., Oxford: Oxford University Press.Google Scholar
Lloyd, G. E. R. (1978), “Saving the Appearances”, in Classical Quarterly 28:1, pp. 202–22.Google Scholar
Lloyd, G. E. R. (1987), Revolutions of Wisdom, Berkeley: University of California Press.Google Scholar
Lloyd, G. E. R. (1991), “Saving the Appearances II”, in Methods and Problems in Greek Science, Cambridge: Cambridge University Press, pp. 248–77.Google Scholar
Long, A. A. (1963), “The Principles of Parmenides’ Cosmogony”, Phronesis 8, pp. 90107.Google Scholar
Łukasiewicz, Jan (1910), “Über den Satz des Widerspruchs bei Aristoteles”, Bulletin International de l’Académie des sciences de Cracovie, Classe de philologie, classe de d’histoire et de philosophie, pp. 1538.Google Scholar
Macé, Arnaud (2012), “La Naissance de la Nature en Grèce ancienne”, in Anciens et modernes par-delà nature et société, ed. by Haber, Stéphane and Macé, Arnaud, Besançon: Presses universitaires de Franche-Comté, pp. 4784.Google Scholar
Macé, Arnaud (2013), “L’invention de la Nature en Grèce ancienne”, unpublished mémoire d’habilitation, Sorbonne, Paris, 15 November 2013.Google Scholar
Makin, Stephen (1988), “How Can We Find Out What Ancient Philosophers Said?”, Phronesis 33, pp. 121–32.Google Scholar
Makin, Stephen (1993), Indifference Arguments, Oxford: Blackwell.Google Scholar
Makin, Stephen (1998), “Zeno of Elea”, in Routledge Encyclopedia of Philosophy, www.rep.routledge.com/articles/biographical/zeno-of-elea-fl-c-450-bc/v-1.Google Scholar
Mansfeld, Jaap (1964), Die Offenbarung des Parmenides und die Menschliche Welt, Assen: Van Gorcum.Google Scholar
Mansfeld, Jaap. (1999), “Sources”, in The Cambridge Companion to Early Greek Philosophy, ed. by Long, A. A., Cambridge: Cambridge University Press, pp. 2244.Google Scholar
Martens, Rhonda (2003), “A Commentary on Genesis, Plato’s Timaeus and Kepler’s Astronomy”, in Plato’s Timaeus as Cultural Icon, ed. by Reydams-Schils, G, Notre Dame: University of Notre Dame Press, pp. 251–66.Google Scholar
Mates, Ben (1979), “Identity and Predication in Plato”, Phronesis 24, pp. 211–29.Google Scholar
McKirahan, Richard (2001), “Anaximander’s Infinite Worlds”, in Essays in Ancient Greek Philosophy VI: Before Plato, ed. by Preus, A, Albany: State University of New York Press, pp. 4965.Google Scholar
McKirahan, Richard (2008), “Signs and Arguments in Parmenides B8”, in The Oxford Handbook of Presocratic Philosophy, ed. by Patricia, Curd and Daniel, Graham, Oxford: Oxford University Press, pp. 189229.Google Scholar
McKirahan, Richard (2011), Philosophy before Socrates, 2nd ed., Indianapolis: Hackett.Google Scholar
Melamed, Yitzhak and Lin, Martin (2016), “Principle of Sufficient Reason”, in The Stanford Encyclopedia of Philosophy, ed. by Zalta, Edward N., https://plato.stanford.edu/archives/spr2018/entries/sufficient-reason/.Google Scholar
Mendell, Henry (1998), “Making Sense of Aristotelian Demonstration”, Oxford Studies in Ancient Philosophy 16, pp. 161225.Google Scholar
Mendell, Henry (2000), “The Trouble with Eudoxus”, in Ancient and Medieval Traditions in the Exact Sciences, Essays in Memory of Wilbur Knorr, ed. by Suppes, Patrick, Moravcsik, Julius, and Mendell, Henry, Stanford: CSLI, pp. 59135.Google Scholar
Mendell, Henry (2004), “Aristotle and Mathematics”, in Stanford Encyclopaedia of Philosophy, ed. by Zalta, Edward N., https://plato.stanford.edu/archives/spr2017/entries/aristotle-mathematics/.Google Scholar
Mendell, Henry (2007), “Two Traces of a Two-Step Eudoxian Proportion Theory in Aristotle: A Tale of Definitions in Aristotle, with a Moral”, Archive for the History of Exact Sciences 61:1, pp. 337.Google Scholar
Mendell, Henry (2009), “Plato by the Numbers”, in Logos and Language: Essays in Honour of Julius Moravcsik, ed. by Follesdal, Dagfinn and Woods, John, London: College Publications, pp. 125–60.Google Scholar
Mendell, Henry Democritus on Mathematical and Physical Shapes and the Emergence of Fifth-Century Geometry, unpublished manuscript.Google Scholar
Menn, Stephen (2018), “Eudoxus’ Theory of Proportion and His Method of Exhaustion”, in Logic, Philosophy of Mathematics, and Their History: Essays in Honor of W. W. Tait, ed. by Reck, Erich, London: College Publications, pp. 185230.Google Scholar
Menn, Stephen The Aim and the Argument of Aristotle’s Metaphysics, unpublished manuscript.Google Scholar
Miller, Fred (1982), “Aristotle against the Atomists”, in Infinity and Continuity in Ancient and Medieval Thought, ed. by Kretzmann, Norman, Ithaca and London: Cornell University Press, pp. 87111.Google Scholar
Mittelstrass, J. (1962), Die Rettung der Phänomene, Berlin: de Gruyter.Google Scholar
Mohr, Richard (1986), “Plato on Time and Eternity”, Ancient Philosophy 6, pp. 3946.Google Scholar
Moorhouse, A. C. (1962), “ΔΕΝ in Classical Greek”, The Classical Quarterly 12, pp. 235–8.Google Scholar
Moore, A. W. (2001), The Infinite, 2nd ed., London and New York: Routledge.Google Scholar
Morison, Benjamin (2013), “Aristotle on Primary Time in Physics 6”, Oxford Studies in Ancient Philosophy 45, pp. 149–93.Google Scholar
Mourelatos, Alexander (1970), The Route of Parmenides, New Haven: Yale University Press.Google Scholar
Mourelatos, Alexander (2010), “The Epistemological Section (29b–d) of the Proem in Timaeus’ Speech: M. F. Burnyeat on eikôs mythos, and a Comparison with Xenophanes B34 and B35”, in One Book, the Whole Universe: Plato’s Timaeus Today, ed. by Mohr, Richard and Sattler, Barbara, Las Vegas: Parmenides Publishing, pp. 225–47.Google Scholar
Mourelatos, Alexander (2011), “Parmenides, Early Greek Astronomy, and Modern Scientific Realism”, in Parmenides, Venerable and Awesome, ed. by Cordero, Néstor-Luis, Las Vegas: Parmenides Publishing, pp. 167–89.Google Scholar
Mueller, Ian (1970), “Aristotle on Geometrical Objects”, Archiv für Geschichte der Philosophie 52, pp. 156–71.Google Scholar
Mueller, Ian (1981), Philosophy of Mathematics and Deductive Structure in Euclid’s Elements, Cambridge, MA: MIT Press.Google Scholar
Naddaf, Gérard (2008), Le concept de nature chez les présocratiques, Paris: Klincksieck.Google Scholar
Nehamas, Alexander (1981), “On Parmenides’ Three Ways of Inquiry”, Deucalion 33–4, pp. 97111.Google Scholar
Netz, Reviel (2002), “Did Plato Have a Philosophy of Science? A Discussion of Andrew Gregory, Plato’s Philosophy of Science”, Oxford Studies in Ancient Philosophy 23, pp. 247–63.Google Scholar
O’Brien, Denis (1967), “Anaximander’s Measurements”, Classical Quarterly 17, pp. 423–32.Google Scholar
Odzuck, Sebastian (2014), The Priority of Locomotion in Aristotle’s Physics. Göttingen: Vandenhoeck & Ruprecht.CrossRefGoogle Scholar
Osborne, Catherine (2006), “Was There an Eleatic Revolution in Philosophy?”, in Rethinking Revolutions through Ancient Greece, ed. by Goldhill, Simon and Osborne, Robin, Cambridge: Cambridge University Press, pp. 218–45.Google Scholar
Owen, G. E. L. (1957–58), “Zeno and the Mathematicians”, Proceedings of the Aristotelian Society 58, pp. 199222.Google Scholar
Owen, G. E. L. (1960), “Eleatic Questions”, Classical Quarterly 10, pp. 84102.Google Scholar
Owen, G. E. L. (1966), “Plato and Parmenides on the Timeless Present”, Monist 50, pp. 317–40.Google Scholar
Owen, G. E. L. (1970), “Plato on Not-Being”, in Plato I: Metaphysics and Epistemology, ed. by Vlastos, Gregory, Garden City: Anchor Books, pp. 223–67.Google Scholar
Palmer, John (1999), Plato’s Reception of Parmenides, Oxford and New York: Oxford University Press.Google Scholar
Palmer, John (2009), Parmenides and Presocratic Philosophy. Oxford: Oxford University Press.Google Scholar
Palmer, John (2016), “Parmenides”, in The Stanford Encyclopedia of Philosophy, ed. by Zalta, Edward N., https://plato.stanford.edu/archives/fall2019/entries/parmenides/.Google Scholar
Pape, Wilhelm (1880), Altgriechisches Wörterbuch, Berlin: Braunschweig.Google Scholar
Pariente, Jean-Claude (1985), L’analyse du langage à Port-Royal, Paris: Les Editions de Minuit.Google Scholar
Price, H. (1990), “Why ‘Not’?”, Mind 99, pp. 221–38.Google Scholar
Pritchard, Paul (1995), Plato’s Philosophy of Mathematics, Sankt Augustin: Academia Verlag.Google Scholar
Rapp, Christof (1993), “Aristoteles über die Rechtfertigung des Satzes vom Widerspruch”, Zeitschrift für philosophische Forschung 47:4, pp. 521–41.Google Scholar
Rapp, Christof (2006), “Zeno and the Eleatic Anti-Pluralism”, in La costruzione del discurso filosofico nell’età det Presocratici, ed. by Sassi, M. M, Pisa: Edizione della Normale, pp. 161–82.Google Scholar
Reinhardt, Karl (1916), Parmenides und die Geschichte der griechischen Philosophie, Bonn: F. Cohen.Google Scholar
Resnik, Michael (1997), Mathematics as a Science of Patterns, Oxford: Clarendon Press.Google Scholar
Ripley, David (2011), “Negation, Denial, and Rejection”, Philosophy Compass, 6, pp. 622–9.Google Scholar
Roark, Tony (2011), Aristotle on Time: A Study of the Physics, Cambridge: Cambridge University Press.Google Scholar
Robinson, Richard (1971), “Plato’s Separation of Reason from Desire”, Phronesis 16:1, pp. 3848.Google Scholar
Rosen, Jacob (2015), “Physics V–VI versus VIII: Unity of Change and Disunity in the Physics”, in Aristotle’s Physics: A Critical Guide, ed. Leunissen, Mariska, Cambridge: Cambridge University Press, pp. 206–24.Google Scholar
Rowett, Catherine (2013), “Philosophy’s Numerical Turn: Why the Pythagoreans’ Interest in Numbers Is Truly Awesome”, in Doctrine and Doxography: Studies on Heraclitus and Pythagoras, ed. by Sider, David and Dirk, Obbink, De Gruyter, pp. 331.Google Scholar
Runia, David (2008), “The Sources for Presocratic Philosophy”, in Oxford Handbook of Presocratic Philosophy, ed. by Curd, Patricia and Graham, Daniel, Oxford: Oxford University Press, pp. 2754.Google Scholar
Russell, Bertrand (1945), A History of Western Philosophy, New York: Simon and Schuster.Google Scholar
Russell, Bertrand (1970), “The Problem of Infinity Considered Historically”, in Zeno’s Paradoxes, ed. by Salmon, Wesley C, Indianapolis: Bobbs-Merrill, pp. 4558.Google Scholar
Russell, Bertrand (1972), The Principles of Mathematics, London: Allen & Unwin.Google Scholar
Ryle, Gilbert (1939), “Plato’s Parmenides,” Mind 48, pp. 129–51, 302–25.Google Scholar
Salmon, Wesley C. (1970), Zeno’s Paradoxes, Indianapolis: Bobbs-Merrill.Google Scholar
Salmon, Wesley C. (1980), Space, Time and Motion: A Philosophical Introduction, 2nd, rev. ed., Minneapolis: University of Minnesota Press.Google Scholar
Schaeffer, Jonathan (2007), “From Nihilism to Monism”, Australasian Journal of Philosophy 85:2, pp. 175–91.Google Scholar
Sattler, Barbara (2010), “A Time for Learning and for Counting: Egyptians, Greeks and Empirical Processes in Plato’s Timaeus”, in One Book, the Whole Universe: Plato’s Timaeus Today, ed. by Mohr, Richard and Sattler, Barbara, Las Vegas: Parmenides Publishing, pp. 249–66.Google Scholar
Sattler, Barbara (2011), “Parmenides’ System: The Logical Origins of his Monism”, in Proceedings of the Boston Area Colloquium in Ancient Philosophy, Vol. XXVI ed. by Gurtler, Gary M and Wians, William, Leiden and Boston: Brill, pp. 2570.Google Scholar
Sattler, Barbara (2012), “A Likely Account of Necessity, Plato’s Receptacle as a Physical and Metaphysical Basis of Space”, Journal of the History of Philosophy 50, pp. 159–95.Google Scholar
Sattler, Barbara (2013), Review of Oxford Handbook of Presocratic Philosophy, ed. by Patricia Curd and Daniel Graham, Ancient Philosophy 33, pp. 187–93.Google Scholar
Sattler, Barbara (2014), Review of John Palmer, Parmenides and Presocratic Philosophy, Classical World 107:3, pp. 421–3.Google Scholar
Sattler, Barbara (2015), “Time Is Double the Trouble: Zeno’s Moving Rows”, Ancient Philosophy 35:1, pp. 122.Google Scholar
Sattler, Barbara (2016), “Von der Bewegung himmlischer zu der irdischer Körper – Die wissenschaftliche Erfassung physischer Bewegung in der griechischen Antike”, in ΣΩΜΑ. Körperkonzepte und körperliche Existenz in der antiken Philosophie und Literatur, ed. by Buchheim, Thomas, Wachsmann, Nora, and Meißner, David, Hamburg: Felix Meiner Verlag, pp. 437–54.Google Scholar
Sattler, Barbara (2017a), “Aristotle’s Measurement Dilemma”, Oxford Studies in Ancient Philosophy 52, pp. 257301.Google Scholar
Sattler, Barbara (2017b), “How Natural Is a Unified Notion of Time? Temporal Experience in Early Greek Thought”, in The Routledge Handbook of the Philosophy of Temporal Experience, ed. by Phillips, Ian, London and New York: Routledge, 2017, pp. 1929.Google Scholar
Sattler, Barbara (2018a), “Sufficient Reason in the Phaedo and its Presocratic Antecedents”, in Plato’s Phaedo: Selected Papers from the Eleventh Symposium Platonicum, ed. by Cornelli, Gabriele, Bravo, Francisco, and Robinson, Tom, International Plato Studies, St. Augustin: Academia Verlag, pp. 239–48.Google Scholar
Sattler, Barbara (2018b), “Measurement and Scales in Aristotle”, Insights e-Journal 10:16, www.dur.ac.uk/ias/insights/volume10/article16/.Google Scholar
Sattler, Barbara (2019a), “The Notion of Continuity in Parmenides”, in Philosophical Inquiry 43:1–2, pp. 4053.Google Scholar
Sattler, Barbara (2019b), “The Labours of Zeno – a Supertask?”, Ancient Philosophy Today: DIALOGOI 1, pp. 117.Google Scholar
Sattler, Barbara (2019c), “Time and Space in Plato’s Parmenides”, Etudes Platoniciennes 15, https://journals.openedition.org/etudesplatoniciennes/1717.Google Scholar
Sattler, Barbara (forthcoming), “From the Object to the Subject: Plato’s Version of the Principle of Non-Contradiction in Republic IV”, in Re-Reading Plato’s Republic, ed. by McCabe, M. M. and Trépanier, S, Edinburgh: Edinburgh University Press.Google Scholar
Sattler, Barbara Ancient Notions of Time from Homer to Plato, book manuscript in progress.Google Scholar
Sattler, Barbara “Reconstructing Zeno’s Fourth Paradox of Motion”, submitted article.Google Scholar
Sattler, Barbara Conceptions of Space in Ancient Greek Thought, book manuscript in preparation for CUP.Google Scholar
Sattler, Barbara “Thinking Makes the World Go Round: Intellection and Astronomy in Plato’s Timaeus”, unpublished article.Google Scholar
Sattler, Barbara “What Is Doing the Explaining? An Atomistic Idea”, unpublished paper.Google Scholar
Schibli, H. S. (1996), “On the One in Philolaus, Fragment 7”, Classical Quarterly 46:1, pp. 114–30.Google Scholar
Schmalzriedt, Egidius (1970), Peri physeōs: Zur Frühgeschichte des Buchtitels, Munich: Fink.Google Scholar
Schofield, Malcom (2002), “Leucippus, Democritus and the οὐ μα̑λλον Principle: An Examination of Theophrastus ‘Phys. Op.’ Fr. 8”, Phronesis 47, pp. 253–63.Google Scholar
Sedley, David (1982), “Two Conceptions of Vacuum”, Phronesis 27:2, pp. 175–93.Google Scholar
Sedley, David (1992), “Sextus Empiricus and the Atomist Criteria of Truth”, Elenchos 13, pp. 2156.Google Scholar
Sedley, David (1998), “Platonic Causes”, Phronesis 43, pp. 114–32.Google Scholar
Sedley, David (2007), Creationism and Its Critics in Antiquity, Berkeley: University of California Press.Google Scholar
Sedley, David (2008), “Atomism’s Eleatic Roots”, in The Oxford Handbook of Presocratic Philosophy, ed. by Curd, Patricia and Graham, Daniel, Oxford: Oxford University Press, pp. 305–32.Google Scholar
Sedley, David (2017), “Zenonian Strategies”, Oxford Studies in Ancient Philosophy 53, pp. 132.Google Scholar
Silverman, Allan (2002), The Dialectic of Essence, Princeton: Princeton University Press.Google Scholar
Sisko, John and Weiss, Yale (2015), “A Fourth Alternative in Interpreting Parmenides”, Phronesis 60, pp. 4059.Google Scholar
Smith, A.M. (1981), “Saving the Appearances of the Appearances: The Foundations of Classical Geometrical Optics”, Archiv for the History of the Exact Sciences 24, pp. 7399.Google Scholar
Smith, Robin (2002), “Ancient Greek Philosophical Logic”, in A Companion to Philosophical Logic, ed. by Jacquette, Dale, Oxford: Blackwell, pp. 1123.Google Scholar
Smyth, H. W. (1956), Greek Grammar, rev. by Messing, G. M.. Cambridge, MA: Harvard University Press.Google Scholar
Solmsen, Friedrich (1960), Aristotle’s System of the Physical World: A Comparison with his Predecessors, Ithaca: Cornell University Press.Google Scholar
Solmsen, Friedrich (1971), “The Evidence about Zeno Re-Examined”, Phronesis 16:1, pp. 116–41.Google Scholar
Sorabji, Richard (1980), Necessity, Cause and Blame, London: Duckworth.Google Scholar
(1983), Time, Creation and the Continuum: Theories in Antiquity and the Early Middle Ages, London: Duckworth.Google Scholar
Sorabji, Richard (1988), Matter, Space, and Motion: Theories in Antiquity and their Sequel, London: Duckworth.Google Scholar
Stenzel, Julius (1933), Zahl und Gestalt bei Platon und Aristoteles, Leipzig and Berlin: Teubner.Google Scholar
Stokes, Michael (1971), One and Many in Presocratic Philosophy, Washington, DC: Center for Hellenic Studies.Google Scholar
Strobach, Niko (1998), The Moment of Change: A Systematic History in the Philosophy of Space and Time, Dordrecht: Kluwer Academic Publishers.Google Scholar
Suppes, Patrick (2000), “Measurement, Theory of”, in Concise Routledge Encyclopedia of Philosophy, ed. by Craig, Edward, London: Routledge, pp. 549–50.Google Scholar
Tannery, Paul (1930), Pour l’histoire de la science hellène. De Thalès à Empédocle, 2nd ed., Paris: Gauthier-Villars et Cie.Google Scholar
Taylor, Richard. (1951), “Mr Black on Temporal Paradoxes”, Analysis 12:2, pp. 3844.Google Scholar
Taylor, C. C. W. (2007), “Nomos and Phusis in Democritus and Plato”, Social Philosophy and Policy 24:2, pp. 120.Google Scholar
Thomson, J. F. (1954), “Tasks and Supertasks”, Analysis 15, pp. 113.Google Scholar
Überweg, Friedrich (2004), Grundriss der Geschichte der Philosophie, Vol. 3, ed. by Flashar, Hellmut, Basel: Schwabe Verlag.Google Scholar
Überweg, Friedrich (19832018), Grundriss der Geschichte der Philosophie, Basel: Schwabe Verlag.Google Scholar
Unguru, Sabetai (1975), “On the Need to Rewrite the History of Greek Mathematics”, Archive for History of Exact Sciences 15, pp. 67114.Google Scholar
Verdenius, Willem Jacob (1942), Parmenides, Some Comments on his Poem, trans. by A. Fontein, Groningen: J. B. Wolters.Google Scholar
Vlastos, Gregory (1969), “Reasons and Causes in the Phaedo”, The Philosophical Review 78, pp. 291325.Google Scholar
Vlastos, Gregory (1973), Platonic Studies, Princeton: Princeton University Press.Google Scholar
Vlastos, Gregory (1975a), “Zeno’s Race Course”, in Studies in Presocratic Philosophy, Vol. II: The Eleatics and Pluralists, ed. by Allen, R. E. and Furley, David J., London: Routledge and Kegan Paul, pp. 201–20.Google Scholar
Vlastos, Gregory (1975b), “A Note on Zeno’s Arrow”, in Studies in Presocratic Philosophy, Vol. II: The Eleatics and Pluralists, ed. Allen, R. E. and Furley, David J., London: Routledge and Kegan Paul, pp. 184200.Google Scholar
Vlastos, Gregory (1975c), Plato’s Universe, Oxford: Clarendon Press.Google Scholar
Vlastos, Gregory (1995), “Creation in the Timaeus: Is It a Fiction?”, in Studies in Greek Philosophy, Vol. II: Socrates, Plato, and Their Tradition, ed. by Graham, Daniel W., Princeton: Princeton University Press.Google Scholar
von Fritz, Kurt (1970), “The Discovery of Incommensurability by Hippasus of Metapontum”, in Studies in Presocratic Philosophy, Vol. 1: The Beginnings of Philosophy, ed. by Furley, David J. and Allen, R. E, London: Routledge and Kegan Paul, pp. 382412.Google Scholar
Waschkies, Hans-Joachim (1977), Von Eudoxos zu Aristoteles, das Fortwirken der Eudoxischen Proportionstheorie in der Aristotelischen Lehre vom Kontinuum, Amsterdam: Grüner.Google Scholar
Waterhouse, W. C. (1972–3), “The Discovery of the Regular Solids”, Archive for the History of Exact Sciences 9, pp. 212–21.Google Scholar
Waterlow, Sarah (1982), Nature, Change and Agency in Aristotle’s Physics, Oxford: Oxford University Press.Google Scholar
Waterlow, Sarah (1984), “Aristotle´s Now”, Philosophical Quarterly 34, pp. 104–28.Google Scholar
Watling, John (1952), “The Sum of an Infinite Series”, Analysis 13, pp. 3946.Google Scholar
Wedin, Michael (2004), “Aristotle on the Firmness of the Principle of Non-Contradiction”, Phronesis 49:3, pp. 225–65.Google Scholar
Weidemann, Hermann (2017), “Potentiality and Actuality of the Infinite: A Misunderstood Passage in Aristotle’s Metaphysics (Θ.6, 1048b14-17)”, Phronesis 62, pp. 210–25.Google Scholar
Weyl, Hermann (1949), Philosophy of Mathematics and Natural Science, Princeton: Princeton University Press.Google Scholar
White, Michael (1992), The Continuous and the Discrete: Ancient Physical Theories from a Contemporary Perspective, Oxford: Clarendon Press.Google Scholar
White, Stephen A. (2008), “Milesian Measures: Time, Space, and Matter”, in Oxford Handbook of Presocratic Philosophy, ed. by Curd, Patricia and Graham, Daniel, Oxford: Oxford University Press, pp. 89133.Google Scholar
Wieland, Wolfgang (1962), Die aristotelische Physik. Untersuchungen über die Grundlagen der Naturwissenschaft und die sprachlichen Bedingungen der Prinzipienforschung bei Aristoteles, Göttingen: Vandenhoeck & Ruprecht.Google Scholar
Wilamowitz-Moellendorf, Ulrich von (1899), “Lesefrüchte”, Hermes 34, pp. 204–5.Google Scholar
Williamson, Timothy (1998), “Identity”, in Routledge Encyclopedia of Philosophy, www.rep.routledge.com/articles/thematic/identity/v-1.Google Scholar
Yavetz, Ido (2003), “On Simplicius’ Testimony Regarding Eudoxan Lunar Theory”, Science in Context 16:3, pp. 319–29.Google Scholar
Zhmud, Leonid (1998), “Plato as Architect of Science”, Phronesis 43, pp. 211–44.Google Scholar
Zeller, Eduard (1879), Die Philosophie der Griechen in ihrer geschichtlichen Entwicklung, Vol. II, 3rd ed., Leipzig: R. Reisland.Google Scholar
Zeyl, Donald (2014), “Plato’s Timaeus”, in The Stanford Encyclopedia of Philosophy, ed. by Zalta, Edward N, https://plato.stanford.edu/archives/spr2014/entries/plato-timaeus/.Google Scholar

Secondary Sources

Allan, D. J. (ed.) (2005), De caelo, Oxford: Clarendon Press.Google Scholar
Annas, Julia (tr.) (1976), Metaphysics Books M and N, trans. with introduction and notes, Oxford: Clarendon Press.Google Scholar
Barnes, Jonathan (ed.) (1995), The Complete Works of Aristotle: The Revised Oxford Translation, 6th ed., Princeton: Princeton University Press.Google Scholar
Bekker, Immanuel (ed.) (1831), Opera, Berlin: Reimer.Google Scholar
Bonitz, Hermann (tr.) (1994), Metaphysik, ed. by Ursula, Wolf, Reinbek bei Hamburg: Rowohlt.Google Scholar
Graham, Daniel W. (tr.) (1999), Physics Books VIII, with introduction and notes, Oxford: Clarendon Press.Google Scholar
Guthrie, W. K. C. (tr.) (1939), On the Heavens, Cambridge, MA: Harvard University Press.Google Scholar
Hussey, Edward (tr.) (1993), Physics Books III and IV, trans. with introduction and notes, Oxford: Clarendon Press.Google Scholar
Joachim, Harold H. (ed.) (1922), On Coming-To-Be and Passing-Away, a revised text with introduction and commentary, Oxford: Clarendon Press.Google Scholar
Makin, Stephen (tr.) (2006), Metaphysics, Book Θ, with commentary, Oxford: Clarendon Press.Google Scholar
Nussbaum, Martha (ed.) (1978), De motu animalium, text with translation, commentary, and interpretive essay, Princeton: Princeton University Press.Google Scholar
Pierre, Pellegrin (tr.) (2000), Physique, Paris: Garnier-Flammarion.Google Scholar
Ross, W. D. (1924), Metaphysics, revised text with introduction and commentary, 2 vols., Oxford: Clarendon Press.Google Scholar
Ross, W. D. (1936), Physics, revised text with introduction and commentary, Oxford: Clarendon Press.Google Scholar
Ross, David (1952), Selected Fragments, trans. into English, Oxford: Clarendon Press.Google Scholar
Ross, David (1961), De anima, ed. with introduction and commentary, Oxford: Clarendon Press.Google Scholar
Stevens, Annick (ed.) (2012), La Physique, new edition and trans., Paris: Vrin.Google Scholar
Tricot, J. (tr.) (2002), Métaphysique, II. Livres Η–Ν, Paris: Vrin.Google Scholar
Wagner, Hans (tr.) (1995), Physikvorlesung, 5th ed., Berlin: Akademieverlag.Google Scholar
Williams, C. J. F. (tr.) (1982), De generatione et corruptione, with notes, Oxford: Clarendon Press.Google Scholar
Zekl, Hans Günther (tr.) (1987), Physik, Hamburg: Meiner Verlag.Google Scholar
Philoponus (1887), In Aristotelis Physicorum Libros Tres Priores Commentaria. Vitelli, Edidit H.. Commentaria in Aristotelem Graeca, Vol. XVI, Berlin: Reimer.CrossRefGoogle Scholar
Philoponus (1888), In Aristotelis Physicorum Libros Quinque Posteriores Commentaria. Vitelli, Edidit H.. Commentaria in Aristotelem Graeca, Vol. XVII, Berlin: Reimer.Google Scholar
Philoponus (1994), On Aristotle Physics 5–8, translated by Paul Lettinck with Simplicius: On Aristotle on the void, translated by J. O. Urmson, introduction and notes by Peter Lautner, London.Google Scholar
Simplicius (1882), In Aristotelis Physicorum. Libros Quattuor Priores Commentaria. Edidit H. Diels. Commentaria in Aristotelem Graeca, Vol. IX, Berlin: Reimer.Google Scholar
Simplicius (1894), In Aristotelis De caelo. Edidit Heibeg, I. L.. Commentaria in Aristotelem Graeca, Vol. VIII, Berlin: Reimer.Google Scholar
Simplicius (1895), In Aristotelis Physicorum. Libros Quattuor Posteriores Commentaria. Edidit H. Diels. Commentaria in Aristotelem Graeca, Vol. X, Berlin: Reimer.Google Scholar
Luria, Salomon (ed.) (1970), Demokrit, edition and translation, Leningrad: Nauka.Google Scholar
Taylor, C. C. W. (1999), The Atomist Leucippus and Democritus: Fragments, text and translation with a commentary, Toronto: University of Toronto Press.Google Scholar
Hultsch, Fridericus (ed.) (1885), De Sphaera quae movetur, Leipzig: Teubner.Google Scholar
Lasserre, François (ed.) (1966), Die Fragmente des Eudoxos von Knidos, edition, translation, and commentary, Berlin: de Gruyter.Google Scholar
West, Martin (ed.) (1966), Theogony, Oxford: Clarendon Press.Google Scholar
Monro, David B. and Allen, Thomas W. (eds.) (1962), Homerii Opera: Tomus I, Iliadis Libros I–XII Continens; Tomus II, Iliadis Libros XIII–XXIV Continens, Oxford: Clarendon Press.Google Scholar
Conche, Marcel (ed.) (1996), Le Poème: Fragments, edition and translation, Paris: Presses Universitaires de France.Google Scholar
Cordero, Néstor-Luis (ed.) (1984), Les Deux Chemins de Parménide, critical edition, translation, study, and bibliography, Paris: Vrin.Google Scholar
Coxon, A. H. (1986), The Fragments of Parmenides, a critical text with introduction, translation, the ancient testimonia, and a commentary, Assen: Van Gorcum.Google Scholar
Diels, Hermann (ed.) (1897), Parmenides Lehrgedicht, griechisch und deutsch, Berlin: Reimer.Google Scholar
Gallop, David (1984), Fragments, a text and translation with an introduction, Toronto: University of Toronto.Google Scholar
Hölscher, Uvo (1986), Parmenides. Vom Wesen des Seienden, edition and translation, Frankfurt am Main: Suhrkamp.Google Scholar
Karsten, Simon (ed.) (1835), Parmenidis Eleatae Carminis Reliquiae, Amsterdam: Mueller.Google Scholar
O’Brien, Denis (ed.) (1987), Le Poème de Parménide, edition and translation, Paris: Vrin.Google Scholar
Tarán, Leonardo (ed.) (1965), Parmenides, text with translation, commentary, and critical essay, Princeton: Princeton University Press.Google Scholar
Untersteiner, Mario (ed.) (1958), Parmenide: Testimonianze e Frammenti, edition, introduction, translation, and commentary, Florence: La Nuova Italia.Google Scholar
Burnet, John (1900–7), Platonis Opera, Oxford: Clarendon Press.Google Scholar
Burnyeat, Myles (ed.) (1990), Theatetus, trans. by M. J. Levett, Indianapolis: Hackett.Google Scholar
Cornford, Francis MacDonald (tr.) (1939), Parmenides’ Way of Truth and Plato’s Parmenides, London: Routledge.Google Scholar
Cornford, Francis MacDonald (1960), Plato’s Theory of Knowledge: The Theaetetus and Sophist of Plato, translation with a running commentary, London: Routledge.Google Scholar
Cornford, Francis MacDonald (1997), Plato’s Cosmology: The Timaeus of Plato, translation with a running commentary, Indianapolis: Hackett.Google Scholar
Eigler, Gunther (ed.) (1970), Platon, Werke in acht Bänden. Griechisch und Deutsch, Darmstadt: Wissenschaftliche Buchges.Google Scholar
Rowe, Christopher (ed.) (2015), Plato: Theatetus and Sophist, edition and translation, Cambridge: Cambridge University Press.Google Scholar
Taylor, A. E. (1928), A Commentary on Plato’s Timaeus, Oxford: Clarendon Press.Google Scholar
White, Nicholas P. (1993), Plato, Sophist, Indianapolis: Hackett.Google Scholar
Zeyl, Donald (2000), Plato, Timaeus, translation with introduction, Indianapolis and Cambridge: Hackett.Google Scholar
Heiberg, J. L. (1903), Claudii Ptolemaei opera quae exstant omnia, Vol. 1 Part 2: Syntaxis mathematica, Leipzig: B. G. Teubner.Google Scholar
Toomer, G. J. (1984), Ptolemy’s Almagest, translation and annotation, London: Duckworth.Google Scholar
Huffman, Carl (1993), Philolaus of Croton: Pythagorean and Presocratic. A Commentary on the Fragments and Testimonia with Interpretive Essays, Cambridge: Cambridge University Press.Google Scholar
Lee, H. D. P. (ed.) (1967), Zeno of Elea, translation with notes, Amsterdam: Hakkert.Google Scholar
Ackrill, John (1957), “Plato and the Copula: Sophist 251–259”, Journal of Hellenic Studies 77, pp. 16.Google Scholar
Algra, Keimpe (1995), Concepts of Space in Greek Thought. Philosophia Antiqua, LXV, Leiden, New York, and Cologne: Brill.Google Scholar
Algra, Keimpe (1999), “The Beginning of Cosmology”, in The Cambridge Companion to Early Greek Philosophy, ed. by Long, A. A., Cambridge: Cambridge University Press, pp. 4565.Google Scholar
Alten, H. W., Djafari-Naini, A., Folkerts, M., Schlosser, H., Schlote, K.-H., and Wußing, H. (ed.) (2003), 4000 Jahre Algebra, Berlin and Heidelberg: Springer.Google Scholar
Anagnostopoulos, Andreas (2017), “Change, Agency and the Incomplete in Aristotle”, Phronesis 62, pp. 170209.Google Scholar
Annas, Julia (1975), “Aristotle, Number and Time”, Philosophical Quarterly 25, pp. 97113.Google Scholar
Annas, Julia (1981), Introduction to Plato’s Republic, Oxford: Clarendon Press.Google Scholar
Annas, Julia (1987), “Die Gegenstände der Mathematik bei Aristoteles”, in Mathematics and Metaphysics in Aristotle, ed. by Graeser, Andreas, Bern and Stuttgart: Paul Haupt, pp. 131–47.Google Scholar
Anscombe, G. E. M. (1981), “The New Theory of Forms”, in The Collected Philosophical Papers, Oxford: Blackwell.Google Scholar
Arnauld, Antoine and Nicole, Pierre (1996), Logic or the Art of Thinking, trans. by Jill Vance Buroker, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Artmann, Benno and Schäfer, Lothar (1993), “On Plato’s ‘Fairest Triangles’ (Timaeus 54a)”, Historia Mathematica 20, pp. 255–64.Google Scholar
Austin, Scott (1986), Parmenides: Being, Bounds, and Logic, New Haven: Yale University Press.Google Scholar
Austin, Scott (2002), “Parmenides, Double-Negation and Dialectic”, in Presocratic Philosophy, Essays in Honour of Alexander Mourelatos, ed. by Caston, Victor and Graham, Daniel, Aldershot: Ashgate, pp. 95–9.Google Scholar
Barnes, Jonathan (1982), The Presocratic Philosophers, rev. ed., London: Routledge.Google Scholar
Barnes, Jonathan (1986), “Peripatetic Negations”, Oxford Studies in Ancient Philosophy IV, pp. 201–14.Google Scholar
Barnes, Jonathan (1995), The Cambridge Companion to Aristotle, Cambridge: Cambridge University Press.Google Scholar
Becker, Oskar (1951), Geschichte der Mathematik, Bonn: Athenäum-Verlag.Google Scholar
Benardete, José (1964), Infinity, Oxford: Oxford University Press.Google Scholar
Berka, Karel (1983), Measurement: Its Concepts, Theories and Problems, Dordrecht: Reidel.Google Scholar
Berryman, Sylvia (2002), “Democritus and the Explanatory Power of the Void”, in Presocratic Philosophy: Essays in Honour of Alexander Mourelatos, ed. by Caston, V and Graham, D, London: Ashgate, pp. 183–91.Google Scholar
Betegh, Gábor (2010), “What Makes a Mythos eikôs? Remarks Inspired by Myles Burnyeat’s ‘EIKÔS MYTHOS’”, in One Book, the Whole Universe: Plato’s Timaeus Today, ed. by Mohr, Richard and Sattler, Barbara, Las Vegas: Parmenides Publishing, pp. 213–24.Google Scholar
Betegh, Gábor (2016), “Colocation”, in ΣΩΜΑ. Körperkonzepte und körperliche Existenz in der antiken Philosophie und Literatur, ed. by Buchheim, Thomas, Wachsmann, Nora, and Meißner, David, Hamburg: Felix Meiner Verlag, pp. 393421.Google Scholar
Black, Max (1951), “Achilles and the Tortoise”, Analysis 11, pp. 91101.CrossRefGoogle Scholar
Black, Max (1954), “Is Achilles Still Running?”, in Problems of Analysis, London: Routledge, pp. 109–26.Google Scholar
Bodnár, István (1998), “Atomic Independence and Indivisibility”, Oxford Studies in Ancient Philosophy XVI, pp. 3561.Google Scholar
Bodnár, István (2012), “Sôzein ta phainomena: Some Semantic Considerations”, Croatian Journal of Philosophy 35, pp. 269–81.Google Scholar
Bostock, David (1972–3), “Aristotle, Zeno, and the Potential Infinite”, Proceedings of the Aristotelian Society 73, pp. 3751.Google Scholar
Bostock, David (1980), “Aristotle’s Account of Time”, Phronesis 25, pp. 148–69.Google Scholar
Bostock, David (1991), “Aristotle on Continuity in Physics VI”, in Aristotle’s Physics: A Collection of Essays, ed. by Judson, Lindsay, Oxford: Oxford University Press, pp. 179212.Google Scholar
Bostock, David (2006), Space, Time, Matter, and Form: Essays on Aristotle’s Physics, Oxford: Oxford University Press.Google Scholar
Boyer, Carl (1968), A History of Mathematics, New York: Wiley.Google Scholar
Brague, Rémi (1982), Du temps chez Plato et Aristote. Quatre études, Paris: Presses Universitaires de France.CrossRefGoogle Scholar
Brandwood, Leonard (1976), A Word Index to Plato. Compendia (Computer-Generated Aids to Literary and Linguistic Research), v. 8, Leeds: W. S. Maney and Son.Google Scholar
Broadie, Sarah (2012), Nature and Divinity in Plato’s Timaeus, Cambridge: Cambridge University Press.Google Scholar
Broadie, Sarah (2019), “Aristotle, Physics I.9: Responding to the Platonists”, in Aristotle’s Physics Alpha, Symposium Aristotelicum, ed. by Ierodiakonou, Katerina, Kalligas, Paul, and Karasmanis, Vassilis, Oxford: Oxford University Press, pp. 302–40.Google Scholar
Brown, Lesley (1986), “Being in the Sophist: A Syntactical Enquiry, Oxford Studies in Ancient Philosophy IV, pp. 4970.Google Scholar
Brown, Lesley (1994), “The Verb ‘To Be’ in Greek Philosophy: Some Remarks”, in Language, ed. by Everson, S, Companions to Ancient Thought 3, Cambridge: Cambridge University Press, pp. 212–36.Google Scholar
Brown, Lesley (2008), “The Sophist on Statements, Predication, and Falsehood”, in The Oxford Handbook of Plato, ed. by Fine, Gail, Oxford: Oxford University Press, pp. 437–62.Google Scholar
Bryan, Jenny (2011), Likeness and Likelihood in the Presocratics and Plato, Cambridge: Cambridge University Press.Google Scholar
Burkert, Walter (1972), Lore and Science in Ancient Pythagoreanism, trans. by E. L. Minar, Cambridge: Cambridge University Press.Google Scholar
Burnet, John (1930), Early Greek Philosophy, 4th ed., London: Black.Google Scholar
Burnyeat, Myles (2005), “Eikôs mythos”, Rhizai 2:2, pp. 143–65.Google Scholar
Burnyeat, Myles (2008), “Kinêsis vs Energeia: A Much-Read Passage in (but not of) Aristotle’s Metaphysics”, Oxford Studies in Ancient Philosophy 34, pp. 219–92.Google Scholar
Cantor, Georg (1966), Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Mit erläuternden Anmerkungen sowie mit Ergänzungen aus dem Briefwechsel Cantor-Dedekind, ed. by Zermelo, Ernst, Hildesheim: Olms.Google Scholar
Cantor, Georg (1984), Über unendliche, lineare Punktmannigfaltigkeiten. Arbeiten zur Mengenlehre aus den Jahren 1872–1884, ed. and commentary by Asser, G, Leipzig: B. G. Teubner.Google Scholar
Caveing, Maurice (1998), L’irrationalité dans les mathématiques grecques jusqu’à Euclide, Villeneuve d’Ascq: Presses universitaires du Septentrion.Google Scholar
Cerri, Giovanni (2011), “The Astronomical Section in Parmenides’ Poem” in Parmenides, Venerable and Awesome, ed. by Cordero, Néstor-Luis, Las Vegas: Parmenides Publishing, pp. 167–89.Google Scholar
Charlton, William (1991), “Aristotle’s Potential Infinites”, in Aristotle’s Physics: A Collection of Essays, ed. by Judson, Lindsay, Oxford: Oxford University Press, pp. 129–49.Google Scholar
Cherniss, H. F. (1935), Aristotle’s Criticism of Presocratic Philosophy, Baltimore: Johns Hopkins Press.Google Scholar
Cherniss, H. F. (1944), Aristotle’s Criticism of Plato and the Academy, Baltimore: Johns Hopkins Press.Google Scholar
Cherniss, H. F. (1954), “A Much Misread Passage of the Timaeus (Timaeus 49C7–50B5)”, The American Journal of Philology 75, pp. 113–30.Google Scholar
Cherniss, H. F. (1957), “The Relation of the Timaeus to Plato’s Later Dialogues”, in Studies in Plato’s Metaphysics, ed. Allen, R. E., London: Routledge and Kegan Paul, pp. 339–78.Google Scholar
Cleary, John (1995), Aristotle and Mathematics: Aporetic Method in Cosmology and Metaphysics. Philosophia Antiqua, 67, Leiden, New York, and Cologne: Brill.Google Scholar
Code, Alan (1976), “Aristotle’s Response to Quine’s Objection to Modal Logic”, Journal of Philosophical Logic 5:2, pp. 159–86CrossRefGoogle Scholar
Code, Murray (1982a), “Zeno’s Paradoxes I: The Standard Mathematical Response”, Nature and System 4, pp. 4558.Google Scholar
Code, Murray (1982b), “Zeno’s Paradoxes II: A Whiteheadean Response”, Nature and System 4, pp. 5975.Google Scholar
Conen, Paul (1964), Die Zeittheorie des Aristoteles, Munich: C. H. Beck.Google Scholar
Coope, Ursula (2005), Time for Aristotle: Physics IV. 10–14, Oxford: Oxford University Press.Google Scholar
Coope, Ursula (2012), “Aristotle on the Infinite”, in Oxford Handbook of Aristotle, ed. by Shields, Christopher, Oxford : Oxford University Press, pp. 267–86.Google Scholar
Cordero, Néstor-Luis (1979), “Les deux chemins de Parménide dans les fragments 6 et 7”, Phronesis 24, pp. 132.CrossRefGoogle Scholar
Cordero, Néstor-Luis (2004), By Being, it Is: The Thesis of Parmenides, Las Vegas: Parmenides Publishing, pp. 105–24.Google Scholar
Cordero, Néstor-Luis (2011), “Parmenidean Physics Is Not Part of What He Calls ‘Doxa’”, in Parmenides, Venerable and Awesome, ed. by Cordero, Néstor-Luis, Las Vegas: Parmenides Publishing, pp. 95113.Google Scholar
Crivelli, Paolo (2012), Plato’s Account of Falsehood, Cambridge: Cambridge University Press.Google Scholar
Crombie, A. C. (1996), Science, Art and Nature in Medieval and Modern Thought, London: Hambledon Press.Google Scholar
Curd, Patricia (1998), The Legacy of Parmenides, Eleatic Monism and Later Presocratic Thought, Princeton: Princeton University Press.Google Scholar
Curd, Patricia (2011), “New Work on the Presocratics”, Journal of the History of Philosophy 49, pp. 137.Google Scholar
Curd, Patricia and Graham, Daniel (eds.) (2008), The Oxford Handbook of Presocratic Philosophy, Oxford: Oxford University Press.Google Scholar
Della Rocca, Michael (2014), “Razing Structures to the Ground”, in Analytic Philosophy 55, pp. 276–94.Google Scholar
Della Rocca, Michael (2020), The Parmenidean Ascent, Oxford: Oxford University Press.Google Scholar
Denyer, Nicholas (1991), Language, Thought and Falsehood in Ancient Greek Philosophy, London: Routledge.Google Scholar
Dixsaut, Monique and Brancacci, Aldo (2002), Platon, sources des Présocratiques. Exploration, Paris: Vrin.Google Scholar
Dorter, Kenneth (2012), “Appearance and Reality in Parmenides”, in Metaphysics, ed. by Pestana, Mark, Rijeka: InTech, pp. 4564.Google Scholar
Duhem, Pierre (1908), Sōzein ta phainomena. Essai sur la notion de théorie physique de Platon à Galilée, Paris: Vrin.Google Scholar
Duhem, Pierre (1969), To Save the Phenomena: An Essay on the Idea of Physical Theory from Plato to Galileo, trans. by Edmund Doland and Chaninah Maschler, Chicago and London: Chicago University Press.CrossRefGoogle Scholar
Duncombe, Matthew (2015), “Aristotle’s Two Accounts of Relatives in Categories 7”, Phronesis 60, pp. 436–61.Google Scholar
Eberle, Stephan (1998), “Das Zeit-Raum-Kontinuum bei Zenon von Elea”, Philosophisches Jahrbuch 105, pp. 8599.Google Scholar
Ellis, Brian (1968), Basic Concepts of Measurement, Cambridge: Cambridge University Press.Google Scholar
Falcon, Andrea (2015), “Aristotle on Causality”, in The Stanford Encyclopedia of Philosophy, ed. by Zalta, Edward N., https://plato.stanford.edu/archives/spr2015/entries/aristotle-causality/.Google Scholar
Ferber, Rafael (1995), Zenons Paradoxien der Bewegung und die Struktur von Raum und Zeit, 2nd rev. ed., Stuttgart: Franz Steiner.Google Scholar
Fowler, D. H. (1999), The Mathematics of Plato’s Academy: A New Reconstruction, Oxford: Oxford University Press.Google Scholar
Fränkel, Hermann (1955), “Parmenidesstudien”, in Wege und Formen frühgriechischen Denkens. Literarische und philosophiegeschichtliche Studien, ed. by Tietze, Franz, Munich: C. H. Beck, pp. 157–97.Google Scholar
Fränkel, Hermann (1962), Dichtung und Philosophie des frühen Griechentums, Munich: C. H. Beck.Google Scholar
Frede, Michael (1967), Prädikation und Existenzaussage: Platons Gebrauch von “ … ist … ” und “ … ist nicht … ” im Sophistes, Göttingen: Vandenhoeck & Ruprecht.Google Scholar
Frede, Michael (1992), “Plato’s Sophist on False Statements”, in The Cambridge Companion to Plato, ed. by Kraut, Richard, Cambridge: Cambridge University Press, pp. 397424.Google Scholar
Frege, Gottlob (1892), “Über Begriff und Gegenstand”, Vierteljahrsschrift für wissenschaftliche Philosophie 16, pp. 192205.Google Scholar
Frege, Gottlob (1918–19), “Verneinung, eine logische Untersuchung”, Beiträge zur Philosophie des deutschen Idealismus 1, pp. 143–57.Google Scholar
Furley, David (1967), Two Studies in the Greek Atomists, Princeton: Princeton University Press.Google Scholar
Furley, David (1987), The Greek Cosmologists, Vol. 1: The Formation of the Atomic Theory and its Earliest Critics, Cambridge: Cambridge University Press.Google Scholar
Furley, David (1989), “The Dynamics of the Earth: Anaximander, Plato, and the Centrifocal Theory”, in Cosmic Problems, Cambridge: Cambridge University Press, pp. 1426.Google Scholar
Galileo (1933), Il Saggiatore [1623], in Opere di Galileo Galilei, Vol. VI, ed. by Favaro, A, Florence: G. Barbèra.Google Scholar
Garber, Dan (1992), Descartes’ Metaphysical Physics, Chicago: University of Chicago Press.Google Scholar
Gentzen, Gerhard (1969), “Investigations into Logical Deduction”, in The Collected Papers of Gerhard Gentzen, ed. by Szabo, M. E, Amsterdam and London: North Holland.Google Scholar
Gill, Mary Louise (1984), “Aristotle on the Individuation of Change”, Ancient Philosophy 4:1, pp. 922.Google Scholar
Gill, Mary Louise (2003), “Aristotle’s Distinction between Change and Activity”, in Process Theories: Crossdisciplinary Studies in Dynamic Categories, ed. by Seibt, Johanna, Dordrecht: Springer, pp. 322.CrossRefGoogle Scholar
Gill, Mary Louise (2016), “Method and Metaphysics in Plato’s Sophist and Statesman”, in The Stanford Encyclopedia of Philosophy, ed. by Zalta, Edward N, https://plato.stanford.edu/archives/win2016/entries/plato-sophstate/.Google Scholar
Glenn, S. (2011), “Proportion and Mathematics in Plato’s Timaeus”, Hermathena 190, pp. 1127.Google Scholar
Gomperz, Theodor (1912), The Greek Thinkers, Vol. IV, London: J. Murray.Google Scholar
Graham, D. W. (1999), “Empedocles and Anaxagoras: Responses to Parmenides,” in The Cambridge Companion to Early Greek Philosophy, ed. by Long, A. A., Cambridge: Cambridge University Press, pp. 159–80.Google Scholar
Graham, D. W. (2006), Explaining the Cosmos: The Ionian Tradition in Scientific Philosophy, Princeton: Princeton University Press.Google Scholar
Gregory, Andrew (2000), Plato’s Philosophy of Science, London: Duckworth.Google Scholar
Gregory, Andrew (2013), “Leucippus and Democritus on Like to Like and ou mallon”, Apeiron 46, pp. 446–68.Google Scholar
Gregory, Andrew (2016), Anaximander: A Re-Assessment, London: Bloomsbury.Google Scholar
Grünbaum, Adolf (1968), Modern Science and Zeno’s Paradoxes, London: Allen & Unwin.Google Scholar
Guthrie, W. K. C. (1962–81), History of Greek Philosophy, Cambridge: Cambridge University Press.Google Scholar
Guthrie, W. K. C. (1965), History of Greek Philosophy, Vol. II: The Presocratic Tradition from Parmenides to Democritus, Cambridge: Cambridge University Press.Google Scholar
Hager, F. P. (1984), “Natur”, in Historisches Wörterbuch der Philosophie, 6, ed. by Ritter, Joachim, Basel and Stuttgart: Schwabe, pp. 421–41.Google Scholar
Hankinson, R. J. (2001), Cause and Explanation in Ancient Greek Thought, Oxford: Clarendon Press.Google Scholar
Harte, Verity (2002), Plato on Parts and Wholes: The Metaphysics of Structure, Oxford: Oxford University Press.CrossRefGoogle Scholar
Hatfield, Gary (1990), “Metaphysics and the New Science”, in Reappraisals of the Scientific Revolution, ed. by Lindberg, David and Westman, Robert, Cambridge: Cambridge University Press, pp. 93166.Google Scholar
Hasper, Pieter (2006), “Zeno Unlimited”, Oxford Studies in Ancient Philosophy 29, pp. 4985.Google Scholar
Hasse, Helmut and Scholz, Heinrich (1928), Die Grundlagenkrisis der griechischen Mathematik, Charlottenburg: Pan.Google Scholar
Heath, T. L. (1921), A History of Greek Mathematics, Oxford: Clarendon Press.Google Scholar
Heath, T. L. (1949), Mathematics in Aristotle, Oxford: Oxford University Press.Google Scholar
Heinimann, Felix (1945), Nomos und Physis: Herkunft und Bedeutung einer Antithese im griechischen Denken des 5. Jahrhunderts, Basel: Friedrich Reinhardt.Google Scholar
Herold, N. (1976), “Kontinuum, Kontinuität I and II”, in Historisches Wörterbuch der Philosophie, 4, ed. by Ritter, Joachim, Basel and Stuttgart: Schwabe, pp. 1044–58.Google Scholar
Hintikka, Jakkoo (1966), “Aristotelian Infinity”, Philosophical Review 75, pp. 197218.Google Scholar
Horsten, Leon and Richard, Pettigrew (2014), The Bloomsbury Companion of Philosophical Logic, London: Bloomsbury.Google Scholar
Horn, Lawrence (2001), A Natural History of Negation, Stanford: CSLI.Google Scholar
Horn, Lawrence (2018), “Contradiction”, in The Stanford Encyclopedia of Philosophy, ed. by Zalta, Edward N, https://plato.stanford.edu/archives/win2018/entries/contradiction/.Google Scholar
Huby, Pamela M. (1973), “‘Concerning Nature’: Review of Peri Physeos: zur Frühgeschichte der Buchtitel by Egidius Schmalzriedt”, Classical Review 23:2, pp. 206–8.Google Scholar
Irwin, Terence (1990), Aristotle’s First Principles, Oxford: Oxford University Press.Google Scholar
Johansen, Thomas (2004), Plato’s Natural Philosophy: A Study of the Timaeus-Critias, Cambridge: Cambridge University Press.Google Scholar
Johansen, Thomas (2016), “Parmenides’ Likely Story”, Oxford Studies in Ancient Philosophy 50, pp. 129.Google Scholar
Jones, Alexander (2019), “Greco-Roman Sundials: Precision and Displacement”, in Down to the Hour: Short Time in the Ancient Mediterranean and Near East, ed. by Miller, Kassandra and Symons, Sarah, Time, Astronomy, and Calendars, vol. 8, Leiden: Brill, pp. 125–57.Google Scholar
Jope, James (1972), “Subordinate Demonstrative Science in the Sixth Book of Aristotle’s Physics”, Classical Quarterly 22:2, pp. 279–92.Google Scholar
Judson, Lindsay (ed.) (1991), Aristotle’s Physics: A Collection of Essays, Oxford: Oxford University Press.Google Scholar
Kahn, Charles (1966), The Greek Verb “To Be” and the Concept of Being, Indianapolis: Bobbs-Merrill.Google Scholar
Kahn, Charles (1969), “The Thesis of Parmenides”, Review of Metaphysics 22, pp. 700–24.Google Scholar
Kahn, Charles (1973), The Verb “Be” in Ancient Greek, Dordrecht: Reidel.Google Scholar
Kahn, Charles (1994), Anaximander and the Origins of Greek Cosmology, Indianapolis and Cambridge: Hackett.Google Scholar
Kahn, Charles (2004), “Return to the Theory of the Verb to Be”, Ancient Philosophy 24, pp. 381405.Google Scholar
Kahn, Charles (2009), “Parmenides and Plato Once More”, in Essays on Being, Oxford: Oxford University Press, pp. 192206.Google Scholar
Karfik, Filip (2004), Die Beseelung des Kosmos, Untersuchung zur Kosmologie, Seelenlehre und Theologie in Platons Phaidon und Timaios, Munich and Leipzig: K. G. Saur.Google Scholar
Kelsey, Sean (2003), “Aristotle’s Definition of Nature”, Oxford Studies in Ancient Philosophy 25, pp. 5987.Google Scholar
Kirk, G. S., Raven, J. E., and Schofield, M. (eds.) (1983), The Presocratic Philosophers, 2nd ed., Cambridge: Cambridge University Press.Google Scholar
Kneale, William and Kneale, Martha (1962), The Development of Logic, Oxford: Clarendon Press.Google Scholar
Knorr, Wilbur (1990), “Plato and Eudoxus and the Planetary Motions”, Journal for the History of Astronomy 21, pp. 313–29.Google Scholar
Koyré, Alexandre (1968), “An Experiment in Measurement”, in Metaphysics and Measurement: Essays in Scientific Revolution, London: Chapman and Hall, pp. 89117.Google Scholar
Krantz, David H., Luce, R. Duncan, Suppes, Patrick, and Tversky, Amos (2006), Foundations of Measurement, Vol. I: Additive and Polynomial Representations, Mineola: Dover.Google Scholar
Kretzmann, Norman (1976), “Aristotle on the Instant of Change”, Proceedings of the Aristotelian Society 50, pp. 91114.Google Scholar
Kretzmann, Norman (1982), “Continuity, Contrariety, Contradiction, and Change”, in Infinity and Continuity in Ancient and Medieval Thought, ed. by Kretzmann, Norman, Ithaca: Cornell University Press, pp. 270–96.Google Scholar
Kuhn, Thomas (1985), The Copernican Revolution. Planetary Astronomy in the Development of Western Thought, Cambridge, MA: Harvard University Press.Google Scholar
Kühner, Raphael and Gerth, Bernhard (1904), Ausführliche Grammatik der Griechischen Sprache, 3rd ed., Hanover and Leipzig: Hahnsche Buchhandlung.Google Scholar
Laraudogoitia, Jon Pérez (2016), “Supertasks”, in Stanford Encyclopedia of Philosophy, ed. by Zalta, Edward N., https://plato.stanford. edu/archives/spr2016/entries/spacetime-supertasks/.Google Scholar
Lear, Jonathan (1979–80), “Aristotelian Infinity”, Proceedings of the Aristotelian Society 80, pp. 187210.Google Scholar
Lear, Jonathan (1981), “A Note on Zeno’s Arrow”, Phronesis 26, pp. 91104.Google Scholar
Lear, Jonathan (1982), “Aristotle’s Philosophy of Mathematics”, Philosophical Review 91, pp. 161–92.Google Scholar
Ledermann, Harvey (2014), “Ho pote on esti and Coupled Entities: A Form of Explanation in Aristotle’s Natural Philosophy”, Oxford Studies in Ancient Philosophy 46, pp. 109–64.Google Scholar
Lee, David (2014), “Zeno’s Puzzle in Plato’s Parmenides”, Ancient Philosophy 34, pp. 255–73.Google Scholar
Lee, Edward N. (1972), “Plato on Negation and Not-Being in the Sophist”, The Philosophical Review 81, pp. 267304.Google Scholar
Leigh, Fiona (2008), “The Copula and Semantic Continuity in Plato’s Sophist”, Oxford Studies in Ancient Philosophy 34, pp. 105–21.Google Scholar
Lesher, James (2008), “The Humanizing of Knowledge in Presocratic Thought”, in The Oxford Handbook of Presocratic Philosophy, ed. by Patricia, Curd and Daniel, Graham, Oxford: Oxford University Press, pp. 458–84.Google Scholar
Lewis, Frank A. (1977), “Plato on ‘Not’”, California Studies in Classical Antiquity 9, pp. 89115.Google Scholar
Liddell, Henry George and Scott, Robert (1968), A Greek-English Lexicon, revised and augmented throughout by Sir Henry Stuart Jones, with a supplement, 9th ed., Oxford: Oxford University Press.Google Scholar
Lloyd, G. E. R. (1978), “Saving the Appearances”, in Classical Quarterly 28:1, pp. 202–22.Google Scholar
Lloyd, G. E. R. (1987), Revolutions of Wisdom, Berkeley: University of California Press.Google Scholar
Lloyd, G. E. R. (1991), “Saving the Appearances II”, in Methods and Problems in Greek Science, Cambridge: Cambridge University Press, pp. 248–77.Google Scholar
Long, A. A. (1963), “The Principles of Parmenides’ Cosmogony”, Phronesis 8, pp. 90107.Google Scholar
Łukasiewicz, Jan (1910), “Über den Satz des Widerspruchs bei Aristoteles”, Bulletin International de l’Académie des sciences de Cracovie, Classe de philologie, classe de d’histoire et de philosophie, pp. 1538.Google Scholar
Macé, Arnaud (2012), “La Naissance de la Nature en Grèce ancienne”, in Anciens et modernes par-delà nature et société, ed. by Haber, Stéphane and Macé, Arnaud, Besançon: Presses universitaires de Franche-Comté, pp. 4784.Google Scholar
Macé, Arnaud (2013), “L’invention de la Nature en Grèce ancienne”, unpublished mémoire d’habilitation, Sorbonne, Paris, 15 November 2013.Google Scholar
Makin, Stephen (1988), “How Can We Find Out What Ancient Philosophers Said?”, Phronesis 33, pp. 121–32.Google Scholar
Makin, Stephen (1993), Indifference Arguments, Oxford: Blackwell.Google Scholar
Makin, Stephen (1998), “Zeno of Elea”, in Routledge Encyclopedia of Philosophy, www.rep.routledge.com/articles/biographical/zeno-of-elea-fl-c-450-bc/v-1.Google Scholar
Mansfeld, Jaap (1964), Die Offenbarung des Parmenides und die Menschliche Welt, Assen: Van Gorcum.Google Scholar
Mansfeld, Jaap. (1999), “Sources”, in The Cambridge Companion to Early Greek Philosophy, ed. by Long, A. A., Cambridge: Cambridge University Press, pp. 2244.Google Scholar
Martens, Rhonda (2003), “A Commentary on Genesis, Plato’s Timaeus and Kepler’s Astronomy”, in Plato’s Timaeus as Cultural Icon, ed. by Reydams-Schils, G, Notre Dame: University of Notre Dame Press, pp. 251–66.Google Scholar
Mates, Ben (1979), “Identity and Predication in Plato”, Phronesis 24, pp. 211–29.Google Scholar
McKirahan, Richard (2001), “Anaximander’s Infinite Worlds”, in Essays in Ancient Greek Philosophy VI: Before Plato, ed. by Preus, A, Albany: State University of New York Press, pp. 4965.Google Scholar
McKirahan, Richard (2008), “Signs and Arguments in Parmenides B8”, in The Oxford Handbook of Presocratic Philosophy, ed. by Patricia, Curd and Daniel, Graham, Oxford: Oxford University Press, pp. 189229.Google Scholar
McKirahan, Richard (2011), Philosophy before Socrates, 2nd ed., Indianapolis: Hackett.Google Scholar
Melamed, Yitzhak and Lin, Martin (2016), “Principle of Sufficient Reason”, in The Stanford Encyclopedia of Philosophy, ed. by Zalta, Edward N., https://plato.stanford.edu/archives/spr2018/entries/sufficient-reason/.Google Scholar
Mendell, Henry (1998), “Making Sense of Aristotelian Demonstration”, Oxford Studies in Ancient Philosophy 16, pp. 161225.Google Scholar
Mendell, Henry (2000), “The Trouble with Eudoxus”, in Ancient and Medieval Traditions in the Exact Sciences, Essays in Memory of Wilbur Knorr, ed. by Suppes, Patrick, Moravcsik, Julius, and Mendell, Henry, Stanford: CSLI, pp. 59135.Google Scholar
Mendell, Henry (2004), “Aristotle and Mathematics”, in Stanford Encyclopaedia of Philosophy, ed. by Zalta, Edward N., https://plato.stanford.edu/archives/spr2017/entries/aristotle-mathematics/.Google Scholar
Mendell, Henry (2007), “Two Traces of a Two-Step Eudoxian Proportion Theory in Aristotle: A Tale of Definitions in Aristotle, with a Moral”, Archive for the History of Exact Sciences 61:1, pp. 337.Google Scholar
Mendell, Henry (2009), “Plato by the Numbers”, in Logos and Language: Essays in Honour of Julius Moravcsik, ed. by Follesdal, Dagfinn and Woods, John, London: College Publications, pp. 125–60.Google Scholar
Mendell, Henry Democritus on Mathematical and Physical Shapes and the Emergence of Fifth-Century Geometry, unpublished manuscript.Google Scholar
Menn, Stephen (2018), “Eudoxus’ Theory of Proportion and His Method of Exhaustion”, in Logic, Philosophy of Mathematics, and Their History: Essays in Honor of W. W. Tait, ed. by Reck, Erich, London: College Publications, pp. 185230.Google Scholar
Menn, Stephen The Aim and the Argument of Aristotle’s Metaphysics, unpublished manuscript.Google Scholar
Miller, Fred (1982), “Aristotle against the Atomists”, in Infinity and Continuity in Ancient and Medieval Thought, ed. by Kretzmann, Norman, Ithaca and London: Cornell University Press, pp. 87111.Google Scholar
Mittelstrass, J. (1962), Die Rettung der Phänomene, Berlin: de Gruyter.Google Scholar
Mohr, Richard (1986), “Plato on Time and Eternity”, Ancient Philosophy 6, pp. 3946.Google Scholar
Moorhouse, A. C. (1962), “ΔΕΝ in Classical Greek”, The Classical Quarterly 12, pp. 235–8.Google Scholar
Moore, A. W. (2001), The Infinite, 2nd ed., London and New York: Routledge.Google Scholar
Morison, Benjamin (2013), “Aristotle on Primary Time in Physics 6”, Oxford Studies in Ancient Philosophy 45, pp. 149–93.Google Scholar
Mourelatos, Alexander (1970), The Route of Parmenides, New Haven: Yale University Press.Google Scholar
Mourelatos, Alexander (2010), “The Epistemological Section (29b–d) of the Proem in Timaeus’ Speech: M. F. Burnyeat on eikôs mythos, and a Comparison with Xenophanes B34 and B35”, in One Book, the Whole Universe: Plato’s Timaeus Today, ed. by Mohr, Richard and Sattler, Barbara, Las Vegas: Parmenides Publishing, pp. 225–47.Google Scholar
Mourelatos, Alexander (2011), “Parmenides, Early Greek Astronomy, and Modern Scientific Realism”, in Parmenides, Venerable and Awesome, ed. by Cordero, Néstor-Luis, Las Vegas: Parmenides Publishing, pp. 167–89.Google Scholar
Mueller, Ian (1970), “Aristotle on Geometrical Objects”, Archiv für Geschichte der Philosophie 52, pp. 156–71.Google Scholar
Mueller, Ian (1981), Philosophy of Mathematics and Deductive Structure in Euclid’s Elements, Cambridge, MA: MIT Press.Google Scholar
Naddaf, Gérard (2008), Le concept de nature chez les présocratiques, Paris: Klincksieck.Google Scholar
Nehamas, Alexander (1981), “On Parmenides’ Three Ways of Inquiry”, Deucalion 33–4, pp. 97111.Google Scholar
Netz, Reviel (2002), “Did Plato Have a Philosophy of Science? A Discussion of Andrew Gregory, Plato’s Philosophy of Science”, Oxford Studies in Ancient Philosophy 23, pp. 247–63.Google Scholar
O’Brien, Denis (1967), “Anaximander’s Measurements”, Classical Quarterly 17, pp. 423–32.Google Scholar
Odzuck, Sebastian (2014), The Priority of Locomotion in Aristotle’s Physics. Göttingen: Vandenhoeck & Ruprecht.CrossRefGoogle Scholar
Osborne, Catherine (2006), “Was There an Eleatic Revolution in Philosophy?”, in Rethinking Revolutions through Ancient Greece, ed. by Goldhill, Simon and Osborne, Robin, Cambridge: Cambridge University Press, pp. 218–45.Google Scholar
Owen, G. E. L. (1957–58), “Zeno and the Mathematicians”, Proceedings of the Aristotelian Society 58, pp. 199222.Google Scholar
Owen, G. E. L. (1960), “Eleatic Questions”, Classical Quarterly 10, pp. 84102.Google Scholar
Owen, G. E. L. (1966), “Plato and Parmenides on the Timeless Present”, Monist 50, pp. 317–40.Google Scholar
Owen, G. E. L. (1970), “Plato on Not-Being”, in Plato I: Metaphysics and Epistemology, ed. by Vlastos, Gregory, Garden City: Anchor Books, pp. 223–67.Google Scholar
Palmer, John (1999), Plato’s Reception of Parmenides, Oxford and New York: Oxford University Press.Google Scholar
Palmer, John (2009), Parmenides and Presocratic Philosophy. Oxford: Oxford University Press.Google Scholar
Palmer, John (2016), “Parmenides”, in The Stanford Encyclopedia of Philosophy, ed. by Zalta, Edward N., https://plato.stanford.edu/archives/fall2019/entries/parmenides/.Google Scholar
Pape, Wilhelm (1880), Altgriechisches Wörterbuch, Berlin: Braunschweig.Google Scholar
Pariente, Jean-Claude (1985), L’analyse du langage à Port-Royal, Paris: Les Editions de Minuit.Google Scholar
Price, H. (1990), “Why ‘Not’?”, Mind 99, pp. 221–38.Google Scholar
Pritchard, Paul (1995), Plato’s Philosophy of Mathematics, Sankt Augustin: Academia Verlag.Google Scholar
Rapp, Christof (1993), “Aristoteles über die Rechtfertigung des Satzes vom Widerspruch”, Zeitschrift für philosophische Forschung 47:4, pp. 521–41.Google Scholar
Rapp, Christof (2006), “Zeno and the Eleatic Anti-Pluralism”, in La costruzione del discurso filosofico nell’età det Presocratici, ed. by Sassi, M. M, Pisa: Edizione della Normale, pp. 161–82.Google Scholar
Reinhardt, Karl (1916), Parmenides und die Geschichte der griechischen Philosophie, Bonn: F. Cohen.Google Scholar
Resnik, Michael (1997), Mathematics as a Science of Patterns, Oxford: Clarendon Press.Google Scholar
Ripley, David (2011), “Negation, Denial, and Rejection”, Philosophy Compass, 6, pp. 622–9.Google Scholar
Roark, Tony (2011), Aristotle on Time: A Study of the Physics, Cambridge: Cambridge University Press.Google Scholar
Robinson, Richard (1971), “Plato’s Separation of Reason from Desire”, Phronesis 16:1, pp. 3848.Google Scholar
Rosen, Jacob (2015), “Physics V–VI versus VIII: Unity of Change and Disunity in the Physics”, in Aristotle’s Physics: A Critical Guide, ed. Leunissen, Mariska, Cambridge: Cambridge University Press, pp. 206–24.Google Scholar
Rowett, Catherine (2013), “Philosophy’s Numerical Turn: Why the Pythagoreans’ Interest in Numbers Is Truly Awesome”, in Doctrine and Doxography: Studies on Heraclitus and Pythagoras, ed. by Sider, David and Dirk, Obbink, De Gruyter, pp. 331.Google Scholar
Runia, David (2008), “The Sources for Presocratic Philosophy”, in Oxford Handbook of Presocratic Philosophy, ed. by Curd, Patricia and Graham, Daniel, Oxford: Oxford University Press, pp. 2754.Google Scholar
Russell, Bertrand (1945), A History of Western Philosophy, New York: Simon and Schuster.Google Scholar
Russell, Bertrand (1970), “The Problem of Infinity Considered Historically”, in Zeno’s Paradoxes, ed. by Salmon, Wesley C, Indianapolis: Bobbs-Merrill, pp. 4558.Google Scholar
Russell, Bertrand (1972), The Principles of Mathematics, London: Allen & Unwin.Google Scholar
Ryle, Gilbert (1939), “Plato’s Parmenides,” Mind 48, pp. 129–51, 302–25.Google Scholar
Salmon, Wesley C. (1970), Zeno’s Paradoxes, Indianapolis: Bobbs-Merrill.Google Scholar
Salmon, Wesley C. (1980), Space, Time and Motion: A Philosophical Introduction, 2nd, rev. ed., Minneapolis: University of Minnesota Press.Google Scholar
Schaeffer, Jonathan (2007), “From Nihilism to Monism”, Australasian Journal of Philosophy 85:2, pp. 175–91.Google Scholar
Sattler, Barbara (2010), “A Time for Learning and for Counting: Egyptians, Greeks and Empirical Processes in Plato’s Timaeus”, in One Book, the Whole Universe: Plato’s Timaeus Today, ed. by Mohr, Richard and Sattler, Barbara, Las Vegas: Parmenides Publishing, pp. 249–66.Google Scholar
Sattler, Barbara (2011), “Parmenides’ System: The Logical Origins of his Monism”, in Proceedings of the Boston Area Colloquium in Ancient Philosophy, Vol. XXVI ed. by Gurtler, Gary M and Wians, William, Leiden and Boston: Brill, pp. 2570.Google Scholar
Sattler, Barbara (2012), “A Likely Account of Necessity, Plato’s Receptacle as a Physical and Metaphysical Basis of Space”, Journal of the History of Philosophy 50, pp. 159–95.Google Scholar
Sattler, Barbara (2013), Review of Oxford Handbook of Presocratic Philosophy, ed. by Patricia Curd and Daniel Graham, Ancient Philosophy 33, pp. 187–93.Google Scholar
Sattler, Barbara (2014), Review of John Palmer, Parmenides and Presocratic Philosophy, Classical World 107:3, pp. 421–3.Google Scholar
Sattler, Barbara (2015), “Time Is Double the Trouble: Zeno’s Moving Rows”, Ancient Philosophy 35:1, pp. 122.Google Scholar
Sattler, Barbara (2016), “Von der Bewegung himmlischer zu der irdischer Körper – Die wissenschaftliche Erfassung physischer Bewegung in der griechischen Antike”, in ΣΩΜΑ. Körperkonzepte und körperliche Existenz in der antiken Philosophie und Literatur, ed. by Buchheim, Thomas, Wachsmann, Nora, and Meißner, David, Hamburg: Felix Meiner Verlag, pp. 437–54.Google Scholar
Sattler, Barbara (2017a), “Aristotle’s Measurement Dilemma”, Oxford Studies in Ancient Philosophy 52, pp. 257301.Google Scholar
Sattler, Barbara (2017b), “How Natural Is a Unified Notion of Time? Temporal Experience in Early Greek Thought”, in The Routledge Handbook of the Philosophy of Temporal Experience, ed. by Phillips, Ian, London and New York: Routledge, 2017, pp. 1929.Google Scholar
Sattler, Barbara (2018a), “Sufficient Reason in the Phaedo and its Presocratic Antecedents”, in Plato’s Phaedo: Selected Papers from the Eleventh Symposium Platonicum, ed. by Cornelli, Gabriele, Bravo, Francisco, and Robinson, Tom, International Plato Studies, St. Augustin: Academia Verlag, pp. 239–48.Google Scholar
Sattler, Barbara (2018b), “Measurement and Scales in Aristotle”, Insights e-Journal 10:16, www.dur.ac.uk/ias/insights/volume10/article16/.Google Scholar
Sattler, Barbara (2019a), “The Notion of Continuity in Parmenides”, in Philosophical Inquiry 43:1–2, pp. 4053.Google Scholar
Sattler, Barbara (2019b), “The Labours of Zeno – a Supertask?”, Ancient Philosophy Today: DIALOGOI 1, pp. 117.Google Scholar
Sattler, Barbara (2019c), “Time and Space in Plato’s Parmenides”, Etudes Platoniciennes 15, https://journals.openedition.org/etudesplatoniciennes/1717.Google Scholar
Sattler, Barbara (forthcoming), “From the Object to the Subject: Plato’s Version of the Principle of Non-Contradiction in Republic IV”, in Re-Reading Plato’s Republic, ed. by McCabe, M. M. and Trépanier, S, Edinburgh: Edinburgh University Press.Google Scholar
Sattler, Barbara Ancient Notions of Time from Homer to Plato, book manuscript in progress.Google Scholar
Sattler, Barbara “Reconstructing Zeno’s Fourth Paradox of Motion”, submitted article.Google Scholar
Sattler, Barbara Conceptions of Space in Ancient Greek Thought, book manuscript in preparation for CUP.Google Scholar
Sattler, Barbara “Thinking Makes the World Go Round: Intellection and Astronomy in Plato’s Timaeus”, unpublished article.Google Scholar
Sattler, Barbara “What Is Doing the Explaining? An Atomistic Idea”, unpublished paper.Google Scholar
Schibli, H. S. (1996), “On the One in Philolaus, Fragment 7”, Classical Quarterly 46:1, pp. 114–30.Google Scholar
Schmalzriedt, Egidius (1970), Peri physeōs: Zur Frühgeschichte des Buchtitels, Munich: Fink.Google Scholar
Schofield, Malcom (2002), “Leucippus, Democritus and the οὐ μα̑λλον Principle: An Examination of Theophrastus ‘Phys. Op.’ Fr. 8”, Phronesis 47, pp. 253–63.Google Scholar
Sedley, David (1982), “Two Conceptions of Vacuum”, Phronesis 27:2, pp. 175–93.Google Scholar
Sedley, David (1992), “Sextus Empiricus and the Atomist Criteria of Truth”, Elenchos 13, pp. 2156.Google Scholar
Sedley, David (1998), “Platonic Causes”, Phronesis 43, pp. 114–32.Google Scholar
Sedley, David (2007), Creationism and Its Critics in Antiquity, Berkeley: University of California Press.Google Scholar
Sedley, David (2008), “Atomism’s Eleatic Roots”, in The Oxford Handbook of Presocratic Philosophy, ed. by Curd, Patricia and Graham, Daniel, Oxford: Oxford University Press, pp. 305–32.Google Scholar
Sedley, David (2017), “Zenonian Strategies”, Oxford Studies in Ancient Philosophy 53, pp. 132.Google Scholar
Silverman, Allan (2002), The Dialectic of Essence, Princeton: Princeton University Press.Google Scholar
Sisko, John and Weiss, Yale (2015), “A Fourth Alternative in Interpreting Parmenides”, Phronesis 60, pp. 4059.Google Scholar
Smith, A.M. (1981), “Saving the Appearances of the Appearances: The Foundations of Classical Geometrical Optics”, Archiv for the History of the Exact Sciences 24, pp. 7399.Google Scholar
Smith, Robin (2002), “Ancient Greek Philosophical Logic”, in A Companion to Philosophical Logic, ed. by Jacquette, Dale, Oxford: Blackwell, pp. 1123.Google Scholar
Smyth, H. W. (1956), Greek Grammar, rev. by Messing, G. M.. Cambridge, MA: Harvard University Press.Google Scholar
Solmsen, Friedrich (1960), Aristotle’s System of the Physical World: A Comparison with his Predecessors, Ithaca: Cornell University Press.Google Scholar
Solmsen, Friedrich (1971), “The Evidence about Zeno Re-Examined”, Phronesis 16:1, pp. 116–41.Google Scholar
Sorabji, Richard (1980), Necessity, Cause and Blame, London: Duckworth.Google Scholar
(1983), Time, Creation and the Continuum: Theories in Antiquity and the Early Middle Ages, London: Duckworth.Google Scholar
Sorabji, Richard (1988), Matter, Space, and Motion: Theories in Antiquity and their Sequel, London: Duckworth.Google Scholar
Stenzel, Julius (1933), Zahl und Gestalt bei Platon und Aristoteles, Leipzig and Berlin: Teubner.Google Scholar
Stokes, Michael (1971), One and Many in Presocratic Philosophy, Washington, DC: Center for Hellenic Studies.Google Scholar
Strobach, Niko (1998), The Moment of Change: A Systematic History in the Philosophy of Space and Time, Dordrecht: Kluwer Academic Publishers.Google Scholar
Suppes, Patrick (2000), “Measurement, Theory of”, in Concise Routledge Encyclopedia of Philosophy, ed. by Craig, Edward, London: Routledge, pp. 549–50.Google Scholar
Tannery, Paul (1930), Pour l’histoire de la science hellène. De Thalès à Empédocle, 2nd ed., Paris: Gauthier-Villars et Cie.Google Scholar
Taylor, Richard. (1951), “Mr Black on Temporal Paradoxes”, Analysis 12:2, pp. 3844.Google Scholar
Taylor, C. C. W. (2007), “Nomos and Phusis in Democritus and Plato”, Social Philosophy and Policy 24:2, pp. 120.Google Scholar
Thomson, J. F. (1954), “Tasks and Supertasks”, Analysis 15, pp. 113.Google Scholar
Überweg, Friedrich (2004), Grundriss der Geschichte der Philosophie, Vol. 3, ed. by Flashar, Hellmut, Basel: Schwabe Verlag.Google Scholar
Überweg, Friedrich (19832018), Grundriss der Geschichte der Philosophie, Basel: Schwabe Verlag.Google Scholar
Unguru, Sabetai (1975), “On the Need to Rewrite the History of Greek Mathematics”, Archive for History of Exact Sciences 15, pp. 67114.Google Scholar
Verdenius, Willem Jacob (1942), Parmenides, Some Comments on his Poem, trans. by A. Fontein, Groningen: J. B. Wolters.Google Scholar
Vlastos, Gregory (1969), “Reasons and Causes in the Phaedo”, The Philosophical Review 78, pp. 291325.Google Scholar
Vlastos, Gregory (1973), Platonic Studies, Princeton: Princeton University Press.Google Scholar
Vlastos, Gregory (1975a), “Zeno’s Race Course”, in Studies in Presocratic Philosophy, Vol. II: The Eleatics and Pluralists, ed. by Allen, R. E. and Furley, David J., London: Routledge and Kegan Paul, pp. 201–20.Google Scholar
Vlastos, Gregory (1975b), “A Note on Zeno’s Arrow”, in Studies in Presocratic Philosophy, Vol. II: The Eleatics and Pluralists, ed. Allen, R. E. and Furley, David J., London: Routledge and Kegan Paul, pp. 184200.Google Scholar
Vlastos, Gregory (1975c), Plato’s Universe, Oxford: Clarendon Press.Google Scholar
Vlastos, Gregory (1995), “Creation in the Timaeus: Is It a Fiction?”, in Studies in Greek Philosophy, Vol. II: Socrates, Plato, and Their Tradition, ed. by Graham, Daniel W., Princeton: Princeton University Press.Google Scholar
von Fritz, Kurt (1970), “The Discovery of Incommensurability by Hippasus of Metapontum”, in Studies in Presocratic Philosophy, Vol. 1: The Beginnings of Philosophy, ed. by Furley, David J. and Allen, R. E, London: Routledge and Kegan Paul, pp. 382412.Google Scholar
Waschkies, Hans-Joachim (1977), Von Eudoxos zu Aristoteles, das Fortwirken der Eudoxischen Proportionstheorie in der Aristotelischen Lehre vom Kontinuum, Amsterdam: Grüner.Google Scholar
Waterhouse, W. C. (1972–3), “The Discovery of the Regular Solids”, Archive for the History of Exact Sciences 9, pp. 212–21.Google Scholar
Waterlow, Sarah (1982), Nature, Change and Agency in Aristotle’s Physics, Oxford: Oxford University Press.Google Scholar
Waterlow, Sarah (1984), “Aristotle´s Now”, Philosophical Quarterly 34, pp. 104–28.Google Scholar
Watling, John (1952), “The Sum of an Infinite Series”, Analysis 13, pp. 3946.Google Scholar
Wedin, Michael (2004), “Aristotle on the Firmness of the Principle of Non-Contradiction”, Phronesis 49:3, pp. 225–65.Google Scholar
Weidemann, Hermann (2017), “Potentiality and Actuality of the Infinite: A Misunderstood Passage in Aristotle’s Metaphysics (Θ.6, 1048b14-17)”, Phronesis 62, pp. 210–25.Google Scholar
Weyl, Hermann (1949), Philosophy of Mathematics and Natural Science, Princeton: Princeton University Press.Google Scholar
White, Michael (1992), The Continuous and the Discrete: Ancient Physical Theories from a Contemporary Perspective, Oxford: Clarendon Press.Google Scholar
White, Stephen A. (2008), “Milesian Measures: Time, Space, and Matter”, in Oxford Handbook of Presocratic Philosophy, ed. by Curd, Patricia and Graham, Daniel, Oxford: Oxford University Press, pp. 89133.Google Scholar
Wieland, Wolfgang (1962), Die aristotelische Physik. Untersuchungen über die Grundlagen der Naturwissenschaft und die sprachlichen Bedingungen der Prinzipienforschung bei Aristoteles, Göttingen: Vandenhoeck & Ruprecht.Google Scholar
Wilamowitz-Moellendorf, Ulrich von (1899), “Lesefrüchte”, Hermes 34, pp. 204–5.Google Scholar
Williamson, Timothy (1998), “Identity”, in Routledge Encyclopedia of Philosophy, www.rep.routledge.com/articles/thematic/identity/v-1.Google Scholar
Yavetz, Ido (2003), “On Simplicius’ Testimony Regarding Eudoxan Lunar Theory”, Science in Context 16:3, pp. 319–29.Google Scholar
Zhmud, Leonid (1998), “Plato as Architect of Science”, Phronesis 43, pp. 211–44.Google Scholar
Zeller, Eduard (1879), Die Philosophie der Griechen in ihrer geschichtlichen Entwicklung, Vol. II, 3rd ed., Leipzig: R. Reisland.Google Scholar
Zeyl, Donald (2014), “Plato’s Timaeus”, in The Stanford Encyclopedia of Philosophy, ed. by Zalta, Edward N, https://plato.stanford.edu/archives/spr2014/entries/plato-timaeus/.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Barbara M. Sattler, Ruhr-Universität, Bochum, Germany
  • Book: The Concept of Motion in Ancient Greek Thought
  • Online publication: 28 September 2020
  • Chapter DOI: https://doi.org/10.1017/9781108775199.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Barbara M. Sattler, Ruhr-Universität, Bochum, Germany
  • Book: The Concept of Motion in Ancient Greek Thought
  • Online publication: 28 September 2020
  • Chapter DOI: https://doi.org/10.1017/9781108775199.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Barbara M. Sattler, Ruhr-Universität, Bochum, Germany
  • Book: The Concept of Motion in Ancient Greek Thought
  • Online publication: 28 September 2020
  • Chapter DOI: https://doi.org/10.1017/9781108775199.011
Available formats
×