Skip to main content Accessibility help
×
  • Cited by 109

Book description

This lively book lays out a methodology of confidence distributions and puts them through their paces. Among other merits, they lead to optimal combinations of confidence from different sources of information, and they can make complex models amenable to objective and indeed prior-free analysis for less subjectively inclined statisticians. The generous mixture of theory, illustrations, applications and exercises is suitable for statisticians at all levels of experience, as well as for data-oriented scientists. Some confidence distributions are less dispersed than their competitors. This concept leads to a theory of risk functions and comparisons for distributions of confidence. Neyman–Pearson type theorems leading to optimal confidence are developed and richly illustrated. Exact and optimal confidence distribution is the gold standard for inferred epistemic distributions. Confidence distributions and likelihood functions are intertwined, allowing prior distributions to be made part of the likelihood. Meta-analysis in likelihood terms is developed and taken beyond traditional methods, suiting it in particular to combining information across diverse data sources.

Reviews

‘This book presents a detailed and wide-ranging account of an approach to inference that moves the discipline towards increased cohesion, avoiding the artificial distinction between testing and estimation. Innovative and thorough, it is sure to have an impact both in the foundations of inference and in a wide range of practical applications of inference.'

Nancy Reid - University Professor of Statistical Sciences, University of Toronto

‘I recommend this book very enthusiastically to any researcher interested in learning more about advanced likelihood theory, based on concepts like confidence distributions and fiducial distributions, and their links with other areas. The book explains in a very didactical way the concepts, their use, their interpretation, etc., illustrated by an impressive number of examples and data sets from a wide range of areas in statistics.’

Ingrid Van Keilegom - Université Catholique de Louvain

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Aalen, O. O. (1978). Nonparametric inference for a family of counting processes. Annals of Statistics, 6:701–726.
Aalen, O. O., Borgan, Ø., and Gjessing, H. K. (2008). Survival and Event History Analysis: A Process Point of View. Springer-Verlag, Berlin.
Aldrich, J. (1997). R. A. Fisher and the making of maximum likelihood 1912–1922. Statistical Science, 12:162–176.
Aldrich, J. (2000). Fisher's “inverse probability” of 1930. International Statistical Review, 68:155–172.
Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on Counting Processes. Springer-Verlag, Berlin.
Andersen, P. K. and Gill, R. D. (1982). Cox's regression model for counting processes: A large sample study. Annals of Statistics, 10:1100–1120.
Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis. John Wiley & Sons, New York.
Anderson, T. W. and Goodman, L. A. (1957). Statistical inference about Markov chains. Annals of Mathematical Statistics, 28:89–110.
Baddeley, A. J.Rubak, E. and Turner, R. (2015). Analyzing Spatial Point Patterns with R. Chapman & Hall/CRC, London.
Baddeley, A. J. and Turner, R. (2005). Spatstat: An R package for analyzing spatial point patterns. Journal of Statistical Software, 12:1–42.
Bai, Z. D. (1999). Methodologies in spectral analysis or large dimensional random matrices, a review [with discussion and a rejoinder]. Statitica Sinica, 9:611–677.
Ball, F. K., Britton, T. and O'Neill, P. C. (2002). Empty confidence sets for epidemics, branching processes and Brownian motion. Biometrika, 89:211–224.
Banerjee, M. and McKeague, I. W. (2007). Confidence sets for split points in decision trees. Annals of Statistics, 35:543–574.
Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference Under Order Restrictions: The Theory and Application of Isotonic Regression. JohnWiley & Sons, New York.
Barnard, G. A. (1967). The use of the likelihood function in statistical practice. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I, pp. 27–40. University of California Press, Berkeley.
Barndorff-Nielsen, O. E. (1983). On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70:343–365.
Barndorff-Nielsen, O. E. (1986). Inference on full or partial parameters based on the standarized signed log-likelihood ratio. Biometrika, 73:307–322.
Barndorff-Nielsen, O. E. (2014). Information and Exponential Families in Statistical Theory. John Wiley & Sons, New York. A re-issue of the 1978 edition, with a new preface.
Barndorff-Nielsen, O. E. and Cox, D. R. (1979). Edgeworth and saddle-point approximations with statistical applications [with discussion and a rejoinder]. Journal of the Royal Statistical Society, Series B, 41:279–312.
Barndorff-Nielsen, O. E. and Cox, D. R. (1989). Asymptotic Techniques for Use in Statistics. Chapman & Hall, London.
Barndorff-Nielsen, O. E. and Cox, D. R. (1994). Inference and Asymptotics. Chapman & Hall, London.
Barndorff-Nielsen, O. E. and Cox, D. R. (1996). Prediction and asymptotics. Bernoulli, 2:319–340.
Barndorff-Nielsen, O. E. and Wood, T. A. (1998). On large deviations and choice of ancillary for p* and r*. Bernoulli, 4:35–63.
Barry, D. and Hartigan, J. A. (1987). Asynchronous distance between homologous DNA sequences. Biometrics, 43:261–276.
Barth, E. and Moene, K. O. (2012). Employment as a price or a prize of equality. Nordic Journal of Working Life Studies, 2:5–33.
Bartlett, M. S. (1936). The information available in small samples. Proceedings of the Cambridge Philosphical Society, 32:560–566.
Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London, Series A, 160:268–282.
Bartlett, M. S. (1939). Complete simultaneous fiducial distributions. Annals of Mathematical Statistics, 10:129–138.
Bartlett, M. S. (1965). R.A. Fisher and the last fifty years of statistical methodology. Journal of the American Statistical Association, 60:395–409.
Bartlett, M. S. (1966). Review of Hacking's ‘Logic of Statistical Inference’. Biometrika, 53:631–633.
Basharin, G. P., Langville, A. N. and Naumov, V. A. (2004). The life and work of A. A. Markov. Linear Algebra and Its Applications, 386:3–26.
Basu, A., Harris, I. R., Hjort, N. L. and Jones, M. C. (1998). Robust and efficient estimation by minimising a densithy power divergence. Biometrika, 85:549–559.
Basu, A., Shioya, H. and Park, C. (2011). Statistical Inference: TheMinimum Distance Approach. Chapman & Hall/CRC, London.
Bayarri, M. J. and Berger, J. O. (2004). The interplay of Bayesian and frequentist analysis. Statistical Science, 19:58–80.
Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57:290–300.
Beran, R. J. (1977). Minimum Hellinger distance estimates for parametric models. Annals of Statistics, 5:445–463.
Beran, R. J. (1987). Prepivoting to reduce level error of confidence sets. Biometrika, 83:687–697.
Beran, R. J. (1988a). Balanced simultaneous confidence sets. Journal of the American Statistical Association, 83:679–686.
Beran, R. J. (1988b). Prepivoting test statistics: A bootstrap view of asymptotic refinements. Journal of the American Statistical Association, 74:457–468.
Beran, R. J. (1990). Calibrating prediction regions. Journal of the American Statistical Association, 85:715–723.
Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, Berlin.
Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors [with discussion and a rejoinder]. In Bernardo, J. M., Berger, J. O., Dawid, A. P. and Smith, A. F. M., editors, Bayesian Statistics 4, pp. 35–60. Oxford University Press, Oxford.
Berger, J. O., Liseo, B. and Wolpert, R. L. (1999). Integrated likelihood methods for eliminating nuisance parameters [with discussion and a rejoinder]. Statistical Science, 14:1–28.
Berger, J. O. and Sun, D. (2008). Objective priors for the bivariate normal model. Annals of Statistics, 36:963–982.
Berger, J. O. and Wolpert, R. (1984). The Likelihood Principle. Institute of Mathematical Statistics, Hayward, CA.
Berk, R., Brown, L., Buja, A., Zhang, K. and Zhao, L. (2013). Valid post-selection inference. Annals of Statistics, 41:802–837.
Bernstein, P. L. (1996). Against the Gods. John Wiley & Sons, New York.
Berry, G. and Armitage, P. (1995). Mid-p confidence intervals: A brief review. The Statistician, 44:417–423.
Bickel, P. J. and Doksum, K. A. (2001). Mathematical Statistics: Basic Ideas and Selected Topics, Vol. I [2nd ed.]. Prentice-Hall, London.
Bie, O., Borgan, Ø. and Liestøl, K. (1987). Confidence intervals and confidence bands for the cumulative hazard rate function and their small sample properties. Scandinavian Journal of Statistics, 14:221–233.
Billingsley, P. (1961). Statistical Inference for Markov Processes. University of Chicago Press, Chicago.
Billingsley, P. (1968). Convergence of Probability Measures. John Wiley & Sons, New York.
Birnbaum, A. (1961). Confidence curves: An omnibus technique for estimation and testing statistical hypotheses. Journal of the American Statistical Association, 56:246–249.
Birnbaum, A. (1962). On the foundations of statistical inference. Journal of the American Statistical Association, 57:269–306.
Bjørnsen, K. (1963). 13 år med Kuppern & Co. Nasjonalforlaget, Oslo.
Blackwell, D. (1947). Conditional expectation and unbiased sequential estimation. Annals of Mathematical Statistics, 18:105–110.
Blaisdell, B. E. (1985). A method for estimating from two aligned present day DNA sequences their ancestral composition and subsequent rates of composition and subsequent rates of substitution, possibly different in the two lineages, corrected for multiple and parallel substitutions at the same site. Journal of Molecual Evolution, 22:69–81.
Bogstad, B., Dingsør, G. E., Ingvaldsen, R. B. and Gjøsæter, H. (2013). Changes in the relationship between sea temperature and recruitment of cod, haddock and herring in the Barents Sea. Marine Biology Research, 9:895–907.
Boitsov, V. D., Karsakov, A. L. and Trofimov, A. G. (2012). Atlantic water temperature and climate in the Barents Sea, 2000–2009. ICES Journal of Marine Science, 69:833–840.
Bolt, U. (2013). Faster Than Lightning: My Autobiography. HarperSport, London.
Boole, G. (1854). The Laws of Thought [reprinted by Dover, New York, 1958]. Macmillan, London.
Borenstein, M., Hedges, L. V., Higgins, J. and Rothstein, H. (2009). Introduction to Meta-Analysis. John Wiley & Sons, New York.
Borgan, Ø. (1984). Maximum likelihood estimation in parametric counting process models, with applications to censored failure time data. Scandinavian Journal of Statistics, 11:1–16.
Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations [with discussion and a rejoinder]. Journal of the Royal Statistical Society, Series B, 26:211–252.
Box, G. E. P. and Draper, N. R. (1987). Empirical Model-Building and Response Surfaces. John Wiley & Sons, New York.
Box, G. E. P. and Tiao, G. C. (1973). Bayesian Inference in Statistical Models. John Wiley & Sons, New York.
Brandon, J. R. and Wade, P. R. (2006). Assessment of the Bering-Chukchi-Beaufort Seas stock of bowhead whales using Bayesian model averaging. Journal of Cetacean Resources Management, 8:225–239.
Brazzale, A. R. and Davison, A. C. (2008). Accurate parametric inference for small samples. Statistical Science, 23:465–484.
Brazzale, A. R., Davison, A. C. and Reid, N. (2007). Applied Asymptotics: Case Studies in Small-Sample Statistics. Cambridge University Press, Cambridge.
Breiman, L. (1992). The little bootstrap and other methods for dimensionality reduction in regression: X-fixed prediction error. Journal of the American Statistical Association, 87:738–754.
Breiman, L. (2001). Statistical modeling: The two cultures [with discussion and a rejoinder]. Statistical Science, 16:199–231.
Breslow, N. E. (1981). Odds ratio estimators when the data are sparse. Biometrika, 68:73–84.
Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88:9–25.
Breuer, P. T. and Bowen, J. P. (2014). Empirical patterns in Google Scholar citation counts. arxiv.org.
Brillinger, D. R. (1962). Examples bearing on the definition of fiducial probability with a bibliography. Annals of Mathematical Statististics, 33:1349–1355.
Brillinger, D. R. (2001). Time Series: Data Analysis and Theory. SIAM, London.
Browman, H. I. (2014). Commemorating 100 years since Hjort's 1914 treatise on fluctuations in the great fisheries of northern Europe: Where we have been, where we are, where we are going. ICES Journal of Marine Science, 71:1989–1992.
Brown, L. D. (1986). Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory. Institute of Mathematical Statistics, Hayward, CA.
Carlin, B. P. and Louis, T. A. (2009). Bayesian Methods for Data Analysis. Chapman & Hall/CRC, Boca Raton, FL.
Cheng, X. and Hansen, B. E. (2015). Forecasting with factor-augmented regression: A frequentist model averaging approach. Journal of Econometrics, 186:280–293.
Claeskens, G. and Hjort, N. L. (2003). The focused information criterion [with discussion and a rejoinder]. Journal of the American Statistical Association, 98:900–916.
Claeskens|G. and Hjort, N. L. (2008). Model Selection and Model Averaging. Cambridge University Press, Cambridge.
Claeskens, G. and Van Keilegom, I. (2003). Bootstrap confidence bands for regression curves and their derivatives. Annals of Statistics, 31:1852–1884.
Collett, D. (2003). Modelling Survival Data in Medical Research (2nd ed.). Chapman & Hall/CRC, Boca Raton, FL.
Cook, T. D. and Campbell, D. T. (1979). Quasi-experimentation. Houghton Mifflin, Boston.
Cornish, E. A. and Fisher, R. A. (1938). Moments and cumulants in the specification of distributions. Review of the International Statistical Institute, 5:307–320.
Cox, D. R. (1958). Some problems with statistical inference. Annals of Mathematical Statistics, 29:357–372.
Cox, D. R. (1977). The role of significance tests [with discussion and a rejoinder]. Scandinavian Journal of Statistics, 4:49–70.
Cox, D. R. (2006). Principles of Statistical Inference. Cambridge University Press, Cambridge.
Cox, D. R. (2013). Discussion of M. Xie and K. Singh's paper. International Statistical Review, 81:40–41.
Cox, D. R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference [with discussion and a rejoinder]. Journal of the Royal Statistical Society, Series B, 49:1–39.
Cox, D. R. and Snell, E. J. (1981). Analysis of Binary Data. Chapman & Hall, London.
Cox, D. R. and Snell, E. J. (1989). Applied Statistics: Principles and Examples. Chapman & Hall, London.
Cramér|H. (1946). Mathematical Methods of Statistics. Princeton University Press, Princeton, NJ.
Cramér, H. and Wold, H. (1936). Some theorems on distribution functions. Journal of the London Mathematical Society, 1:290–294.
Creasy, M. A. (1954). Limits for the ratio of normal means. Journal of the Royal Statistical Society, Series B, 16:186–194.
Cressie, N. (1993). Statistics for Spatial Data [revised ed.]. John Wiley & Sons, New York.
Cunen, C. M. L. and Hjort, N. L. (2015). Optimal inference via confidence distributions for two-by-two tables modelled as poisson pairs: Fixed and random effects. In Proceedings 60th World Statistics Congress, 26–31 July 2015, Rio de Janeiro, volume I. International Statistical Institute, Amsterdam.
Darmois, G. (1935). Sur les lois de probabilitéà estimation exhaustive. Comptes Rendus de l'Académie des Sciences Paris 2, 200:1265–1266.
Darroch, J. N. (1958). The multiple-recapture census. I: Estimation of a closed population. Biometrika, 45:343–359.
da Silva, C. Q., Zeh, J. E., Madigan, D., Lake, J., Rugh, D., Baraff, L., Koski, W. and Miller, G. (2000). Capture-recapture estimation of bowhead whale population size using photo-identification data. Journal of Cetacean Reserve Management, 2:45–61.
David, H. A. and Nagaraja, H. N. (2003). Order Statistics [3rd ed.]. John Wiley & Sons, New York.
Davies, P. L. (2008). Approximating data [with discussion and a rejoinder]. Journal of the Korean Statistical Society, 37:191–211.
Davison, A. C. (2001). Biometrika centenary: Theory and general methodology. Biometrika, 13–52.
Davison, A. C. (2003). Statistical Models. Cambridge University Press, Cambridge.
Davison, A. C. and Hinkley, D. V. (1997). BootstrapMethods and Their Application. Cambridge University Press, Cambridge.
De Blasi, P. and Hjort, N. L. (2007). Bayesian survival analysis in proportional hazard models with logistic relative risk. Scandinavian Journal of Statistics, 34:229–257.
De Blasi, P. and Schweder, T. (2015). Tail symmetry of confidence curves based on the log-likelihood ratio. Submitted.
De Leeuw, J., Hornik, K. and Mair, P. (2009). Isotone optimization in R: Pool-adjacent-violators algorithm (PAVA) and active set methods. Journal of Statistical Software, 21:1–23.
Dempster, A. P. (1963). Further examples of inconsistencies in the fiducial argument. Annals of Mathematical Statistics, 34:884–891.
Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 38:325–339.
Dennis, J. E. and Schnabel, R. B. (1983). Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ.
DiCiccio, T. J. and Efron, B. (1996). Bootstrap confidence intervals [with discussion and a rejoinder]. Statistical Science, 11:189–228.
Diggle, P. (2013). Statistical Analysis of Spatial and Spatio-Temporal Point Patterns [3rd ed.]. Chapman & Hall/CRC, London.
Dufour, J. M. (1997). Some impossibility theorems in econometrics with applications to structural and dynamic models. Econometrica, 65:1365–1387.
Dyrrdal, A. V. and Vikhamar-Scholer, D. V. (2009). Analysis of long-term snow series at selected stations in Norway. Technical report, Norwegian Meteorological Institute, Oslo.
Eddington, A. S. (1914). Stellar Movements and the Structure of the Universe. Macmillan, New York.
Edgeworth, F. Y. (1909). Addendum on ‘Probable errors of frequency constants’. Journal of the Royal Statistical Society, 72:81–90.
Edwards, A. W. F. (1992). Likelihood [expanded edition]. Johns Hopkins University Press, Baltimore.
Efron, B. (1982). Maximum likelihood theory and decision theory. Annals of Statistics, 10:340–356.
Efron, B. (1987). Better bootstrap confidence intervals [with discussion and a rejoinder]. Journal of the American Statistical Association, 82:171–200.
Efron, B. (1993). Bayes and likelihood calculations from confidence intervals. Biometrika, 80:3–26.
Efron, B. (1996). Empirical Bayes methods for combining likelihoods. Journal of the American Statistical Association, 91:538–550.
Efron, B. (1998). R.A. Fisher in the 21st century [with discussion and a rejoinder]. Statistical Science, 13:95–122.
Efron, B. (2013). Discussion of M. Xie and K. Singh's paper. International Statistical Review, 81:41–42.
Efron, B. (2014). Estimation and accuracy after model selection [with discussion and a rejoinder]. Journal of the American Statistical Association, 109:991–1007.
Efron, B. and Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information [with discussion and a rejoinder]. Biometrika, 65:457–487.
Efron, B. and Morris, C. (1973). Stein's estimation rule and its competitors – an empirical Bayes approach. Journal of the American Statistical Association, 68:117–130.
Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman & Hall, London.
Einmahl, J. H. J. and Magnus, J. R. (2008). Records in athletics through extreme-value theory. Journal of the American Statistical Association, 103:1382–1391.
Einmahl, J. H. J. and Smeets, S. G. W. R. (2011). Ultimate 100 m world records through extreme-value theory. Statistica Neerlandica, 65:32–42.
Einstein, A. (1934). On the method of theoretical physics. The Philosophy of Science, 1:163–169.
Elstad, M., Whitelaw, A. and Thoresen, M. (2011). Cerebral Resistance Index is less predictive in hypothermic encephalopathic newborns. Acta Paediatrica, 100:1344–1349.
Elvik, R. (2011). Publication bias and time-trend bias in meta-analysis of bicycle helmet efficacy: A re-analysis of Attewell, Glase and McFadden. Accident Analysis and Prevention, 43:1245–1251.
Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance. Springer-Verlag, London.
Ericsson, N. R., Jansen, E. S., Kerbesian, N. A. and Nymoen, R. (1998). Interpreting a monetary condition index in economic policy. Technical report, Department of Economics, University of Oslo.
Ezekiel, M. (1930). Methods of Correlation Analysis. John Wiley & Sons, New York.
Fahrmeier, L. and Tutz, G. (1994). Multivariate Statistical Modelling Based on Generalized Linear Models. Springer-Verlag, Berlin.
Feigl, P. and Zelen, M. (1965). Estimation of exponential survival probabilities with concomitant information. Biometrics, 21:826–838.
Feller, W. (1950). An Introduction to Probability Theory and Its Applications. John Wiley & Sons, New York.
Felsenstein, J. (2004). Inferring Phylogenies. Sinauer Associates, Sunderland, MA.
Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach. Academic Press, New York.
Ferguson, T. S. (1996). A Course in Large Sample Theory. Chapman & Hall, London.
Fieller, E. C. (1940). The biologial standardization of insuline. Journal of the Royal Statistical Society Supplement, 7:1–64.
Fieller, E. C. (1954). Some problems in interval estimation. Journal of the Royal Statistical Society, Series B, 16:175–185.
Fine, T. L. (1977). Book review of Shafer: A mathematical theory of evidence. Bulletin of the American Statistical Society, 83:667–672.
Fischer, H. (2011). A History of the Central Limit Theorem: From Classical to Modern Probability Theory. Springer, Science & Business Media, New York.
Fisher, R. A. (1912). On an absolute criterion for fitting frequency curves. Messenger of Mathematics, 41:155–160.
Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in small samples. Biometrika, 10:507–521.
Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Philosophical Transactions of the Royal Society of London, 52:399–433.
Fisher, R. A. (1920). A mathematical examination of the methods of determining the accuracy of an observation by the mean error, and by the mean square error. Monthly Notices of the Royal Astronomical Society, 80:758–770.
Fisher, R. A. (1922). On the mathematical foundation of theoretical statistics. Philosophical Transactions of the Royal Society of Edinburgh, Series A, 222:309–368.
Fisher, R. A. (1925). Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh.
Fisher, R. A. (1930). Inverse probability. Proceedings of the Cambridge Philosophical Society, 26:528–535.
Fisher, R. A. (1933). The concepts of inverse probability and fiducial probability referring to unknown parameters. Proceedings of the Royal Society, Series A, 139:343–348.
Fisher, R. A. (1934). Two new properties of mathematical likelihood. Proceedings of the Royal Society of London, Series A, 144:285–307.
Fisher, R. A. (1935). The fiducial argument in statistical inference. Annals of Eugenics, 6:391–398.
Fisher, R. A. (1941). The asymptotic approach to Behrens's integral, with further tables of for the d test of significance. Annals of Eugenics, 11:141–172.
Fisher, R. A. (1954). Contribution to a discussion of a paper on interval estimation byM. A. Creasy. Journal of the Royal Statistical Society, Series B, 16:212–213.
Fisher, R. A. (1956). Statistical Methods and Scientific Inference. Hafner Press, New York.
Fisher, R. A. (1958). Cigarettes, cancer and statistics. Centennial Review, 2:151–166.
Fisher, R. A. (1973). Statistical Methods and Scientific Inference (3rd ed.). Hafner Press, New York Extended version of the 1956 edition.
Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Survival Analysis. John Wiley & Sons, New York.
Fraser, D. A. S. (1961a). The fiducial method and invariance. Biometrika, 48:261–280.
Fraser, D. A. S. (1961b). On fiducial inference. Annals of Mathematical Statistics, 32:661–676.
Fraser, D. A. S. (1966). Some remarks on pivotal models and the fiducial argument in relation to structural models. International Statistical Review, 64:231–236.
Fraser, D. A. S. (1968). The Structure of Inference. John Wiley & Sons, New York.
Fraser, D. A. S. (1998). Contribution to the discussion of Efron's paper. Statistial Science, 13:120–122.
Fraser, D. A. S. (2011). Is Bayes posterior just quick and dirty confidence? [with discussion and a rejoinder]. Statistial Science, 26:249–316.
Friesinger, A. (2004). Mein Leben, mein Sport, meine besten Fitness-Tipps. Goldmann, Berlin.
Frigessi, A. and Hjort, N. L. (2002). Statistical methods for discontinuous phenomena. Journal of Nonparametric Statistics, 14:1–5.
Galton, F. (1889). Natural Inheritance. Macmillan, London.
Gauss, C. F. (1816). Bestimmung der Genauigkeit der Beobachtungen. Zeitschrift Astronomischen Verwandte Wissenschaften, 1:185–196.
Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis [2nd ed.]. Chapman & Hall/CRC, London.
Gelman, A. and Nolan, D. (2002). Teaching Statistics: A Bag of Tricks. Oxford University Press, Oxford.
Gilbert, R., Salanti, G., Harden, M. and See, S. (2005). Infant sleeping position and the sudden infant death syndrome: Systematic review of observational studies and historical review of recommendations from 1940 to 2002. International Journal of Epidemiology, 34:874–887.
Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in Practice. Chapman & Hall, London.
Girón, J., Ginebra, J. and Riba, A. (2005). Bayesian analysis of a multinomial sequence and homogeneity of literary style. The American Statistician, 59:19–30.
Givens, H., Huebinger, R. M., Patton, J. C., Postma, L. D., Lindsay, M., Suydam, R. S., C., G. J., Matson, C. W. and Bickham, J. W. (2010). Population genetics of Bowhead whales (Balaena mysticetus) in the Western Arctic. Arctic, 63:1–12.
Glad, I. K., Hjort, N. L. and Ushakov, N. G. (2003). Correction of density estimators that are not densities. Scandinavian Journal of Statistics, 30:415–427.
Goldstein, H. (2011). Multilevel Statistical Models [4th ed.]. John Wiley & Sons, London.
Good, I. J. (1983). Good Thinking: The Foundations of Probability and Its Applications. University of Minnesota Press, Minneapolis.
Goodman, L. A. (1954). Some practical techniques in serial number analysis. Journal of the American Statistical Association, 49:97–112.
Gould, S. J. (1995). The median isn't the message. In Adam's Navel and Other Essays, pp. 15–21. Penguin Classics, London. First published in Discover Magazine, June 1985.
Gould, S. J. (2003). The Hedgehog, the Fox, and the Magister's Pox. Harmony Books, New York.
Green, P. J., Hjort, N. L. and Richardson, S. (2003). Highly Structured Stochastic Systems. Oxford University Press.
Gujarati, X. (1968). The relation between help-wanted index and the unemployment rate: A statistical analysis, 1962–1967. The Quarterly Review of Economics and Business, 8:67–73.
Guttman, L. (1985). The illogic of statistical inference for cumulative science. Applied Stochastic Models and Data Analysis, 1:3–9.
Haavelmo, T. (1943). The statistical implications of a system of simultaneous equations. Econometrica, 11:1–12.
Haavelmo, T. (1944). The probability approach in econometrics. Econometrica, 12:iii–vi+1–115.
Hacking, I. (1975). The Emergence of Probability: A Philosophical Study of Early Ideas About Probability, Induction and Statistical Inference. Cambridge University Press, Cambridge.
Hacking, I. (2006). The Emergence of Probability: A Philosophical Study of Early Ideas About Probability, Induction and Statistical Inference. Cambridge University Press, Cambridge. This is the third edition of the book, with an extended preface.
Hacking, I. M. (1965). Logic of Statistical Inference. Cambridge University Press, Cambridge.
Hald, A. (1990). A History of Probability and Statistics and Their Applications Before 1750. John Wiley & Sons, New York.
Hald, A. (1998). A History of Mathematical Statistics from 1750 to 1930. John Wiley & Sons, New York.
Hald, A. (1999). On the history of maximum likelihood in relation to inverse probability and least squares. Statistical Science, 14:214–222.
Hall, P. (1988). Theoretical comparison of bootstrap confidence intervals. Annals of Statistics, 16:927–953.
Hall, P. (1992). The Bootstrap and Edgeworth Expansions. Springer-Verlag, Budapest.
Hampel, F. (2001). An outline of a unifying statistical theory. Technical Report 95, Seminar für Statistik, ETH Zürich.
Hampel, F. (2006). The proper fiducial argument. In Ahlswede, R. (ed.), General Theory of Information Transfer and Combinatorics, Lecture Notes in Computer Science, No. 4123, pp. 512–526. Springer-Verlag, Heidelberg.
Hampel, F. R., Ronchetti, E., Rousseuw, P. J. and Stahel, W. A. (1986). Robust Statistics: The Approach Based on Influence Functions. John Wiley, New York.
Hand, D. J., Daly, F., Lunn, A., McConway, K. J. and Ostrowski, E. (1994). A Handbook of Small Data Sets. Chapman & Hall, London.
Hannig, J. (2009). On generalized fiducial inference. Statistica Sinica, 19:491–544.
Hannig, J., Iyer, H. and Patterson, P. (2006). Fiducial generalized confidence intervals. Journal of the American Statistical Association, 101:254–269.
Hannig, J. and Lee, T. C. M. (2009). Generalized fiducial inference for wavelet regression. Biometrika, 96:847–860.
Hannig, J. and Xie, M. (2012). A note on Dempster–Shafer recombination of confidence distributions. Electronic Journal of Statistics, 6:1943–1966.
Hansen, B. E. (2008). Least squares forecast averaging. Journal of Econometrics, 146:342–350.
Härdle, W. K. and Simar, L. (2012). Applied Multivariate Statistical Analysis (3rd ed.). Springer-Verlag, Berlin.
Harris, R. R. and Harding, E. F. (1984). The fiducial argument and Hacking's principle of irrelevance. Journal of Applied Statistics, 11:170–181.
Hary, A. (1960). 10,0. Copress, München.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 9:97–109.
Heger, A. (2011). Jeg og jordkloden. Dagsavisen, December 16.
Helland, I. S. (1982). Central limit theorems for martingales with discrete or continuous time. Scandinavian Journal of Statistics, 9:79–94.
Helland, I. S. (2015). Epistemic Processes: A Basis for Statistics and for Quantum Mechanics. Springer, Science & Business Media, New York.
Hermansen, G. H. and Hjort, N. L. (2015). Focused information criteria for time series. Submitted.
Hermansen, G. H., Hjort, N. L. and Kjesbu, O. S. (2015). Modern statistical methods applied on extensive historic data: Hjort liver quality time series 1859–2012 and associated influential factors. Canadian Journal of Fisheries and Aquatic Sciences, 72.
Hjort, J. (1914). Fluctuations in the Great Fisheries of Northern Europe, Viewed in the Light of Biological Research. Conseil Permanent International Pour l'Exploration de la Mer, Copenhagen.
Hjort, J. (1933).Whales and whaling. Hvalr°adets skrifter: Scientific Results of Marine Biological Research.
Hjort, J. (1937). The story of whaling: A parable of sociology. The Scientific Monthly, 45: 19–34.
Hjort, N. L. (1985). Discussion contribution to P. K. Andersen and Ø. Borgan's article ‘counting process models for life history data: A review’. Scandinavian Journal of Statistics, 12:97–158.
Hjort, N. L. (1986a). Bayes estimators and asymptotic efficiency in parametric counting process models. Scandinavian Journal of Statistics, 13:63–85.
Hjort, N. L. (1986b). Statistical Symbol Recognition [Research Monograph]. The Norwegian Computing Centre, Oslo.
Hjort, N. L. (1988a). The eccentric part of the noncentral chi square. The American Statistician, 42:130–132.
Hjort, N. L. (1988b). On large-sample multiple comparison methods. Scandinavian Journal of Statistics, 15:259–271.
Hjort, N. L. (1990a). Goodness of fit tests in models for life history data based on cumulative hazard rates. Annals of Statistics, 18:1221–1258.
Hjort, N. L. (1990b). Nonparametric Bayes estimators based on Beta processes in models for life history data. Annals of Statistics, 18:1259-1294.
Hjort, N. L. (1992). On inference in parametric survival data models. International Statistical Review, 60:355–387.
Hjort, N. L. (1994a). The exact amount of t-ness that the normal model can tolerate. Journal of the American Statistical Association, 89:665–675.
Hjort|N. L. (1994b). Minimum L2 and robust Kullback–Leibler estimation. In Lachout, P. and Vísek, J. A. (eds.), Proceedings of the 12th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, pp. 102–106. Academy of Sciences of the Czech Republic, Prague.
Hjort, N. L. (1994c). Should the Olympic sprint skaters run the 500 m twice? Technical report, Department of Mathematics, University of Oslo.
Hjort, N. L. (2003). Topics in nonparametric Bayesian statistics. In Green, P. J., Hjort, N. L., and Richardson, S. (eds.), Highly Structured Stochastic Systems, pp. 455–478. Oxford University Press, Oxford.
Hjort, N. L. (2007). And quiet does not flow the Don: Statistical analysis of a quarrel between Nobel laureates. In Østreng, W. (ed.) Concilience, pp. 134–140. Centre for Advanced Research, Oslo.
Hjort, N. L. (2008). Discussion of P.L. Davies’ article ‘Approximating data’. Journal of the Korean Statistical Society, 37:221–225.
Hjort, N. L. (2014). Discussion of Efron's ‘Estimation and accuracy after model selection’. Journal of the American Statistical Association, 109:1017–1020.
Hjort, N. L. and Claeskens, G. (2003a). Frequentist model average estimators [with discussion and a rejoinder]. Journal of the American Statistical Association, 98:879–899.
Hjort, N. L. and Claeskens, G. (2003b). Rejoinder to the discussion of ‘Frequentist model average estimators’ and ‘The focused information criterion’. Journal of the American Statistical Association, 98:938–945.
Hjort, N. L. and Claeskens, G. (2006). Focused information criteria and model averaging for Cox's hazard regression model. Journal of the American Statistical Association, 101:1449–1464.
Hjort, N. L. and Fenstad, G. (1992). On the last time and the number of times an estimator is more than e from its target vaule. Annals of Statistics, 20:469–489.
Hjort, N. L. and Glad, I. K. (1995). Nonparametric density estimation with a parametric start. Annals of Statistics, 23:882–904.
Hjort, N. L., Holmes, C., Müller, P. and Walker, S. (2010). Bayesian Nonparametrics. Cambridge University Press, Cambridge.
Hjort, N. L. and Jones, M. C. (1996). Locally parametric nonparametric density estimation. Annals of Statistics, 24:1619–1647.
Hjort, N. L. and Koning, A. J. (2002). Tests for constancy of model parameters over time. Journal of Nonparametric Statistics, 14:113–132.
Hjort, N. L., McKeague, I. W. and Van Keilegom, I. (2009). Extending the scope of empirical likelihood. Annals of Statistics, 37:1079–1111.
Hjort, N. L. and Omre, H. (1994). Topics in spatial statistics [with discussion and a rejoinder]. Scandinavian Journal of Statistics, 21:289–357.
Hjort, N. L. and Petrone, S. (2007). Nonparametric quantile inference using Dirichlet processes. In Nair, V. (ed.), Advances in Statistical Modeling and Inference: Essays in Honor of Kjell Doksum, pp. 463–492. World Scientific, Hackensack, NJ.
Hjort, N. L. and Pollard, D. B. (1993). Asymptotics for minimisers of convex processes. Technical report, Department of Mathematics, University of Oslo.
Hjort, N. L. and Rosa, D. (1998). Who won?Speedskating World, 4:15–18.
Hjort, N. L. and Varin, C. (2008). ML, PL, QL in Markov chain models. Scandinavian Journal of Statistics, 35:64–82.
Hjort, N. L. and Walker, S. (2009). Quantile pyramids for Bayesian nonparametrics. Annals of Statistics, 37:105–131.
Hobolth, A. and Jensen, J. L. (2005). Statistical inference in evolutionary models of DNA sequences via the EM algorithm. Technical report, Department of Theoretical Statistics, University of Aarhus.
Hoeting, J. A., Madigan, D., Raftery, A. E. and Chris, T.Volinsky, C. T. (1999). Bayesian model averaging: A tutorial [with discussion and a rejoinder]. Statistical Science, 14:382–417.
Hollings, X. and Triggs, X. (1993). Influence of the new rules in international rugby football: Implications for conditioning. Technical report.
Holum, D. (1984). The Complete Handbook of Speed Skating. High Peaks Cyclery, Lake Placid.
Hosmer, D. W. and Lemeshow, S. (1999). Applied Logistic Regression. John Wiley & Sons, New York.
Hotelling, H. (1931). The generalization of Student's ratio. Annals of Mathematical Statistics, 2:360–378.
Houde, E. D. (2008). Emerging from Hjort's shadow. Journal of Northwest Atlantic Fishery Science, 41:53–70.
Huber, P. J. (1967). The behavior of maximum likelihood estimators under nonstandard conditions. In Le Cam, L. and Neyman, J. (eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I, pp. 221–233. University of California Press, Berkeley.
Huber, P. J. (1981). Robust Statistics. John Wiley & Sons, New York.
IPCC (2007). Climate Change 2007: Fourth Assessment Report of the Intergovernmental Panel on Climate Change. United Nations, New York. Published by Cambridge University Press, New York.
IPCC (2013). Climate Change 2013: Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Nations, New York. Published by Cambridge University Press, New York.
Jansen, D. (1994). Full Circle. Villard Books, New York.
Jeffreys, H. (1931). Theory of Probability. Cambridge University Press, Cambridge.
Jeffreys, H. (1961). Scientific Inference. Oxford University Press, Oxford.
Jensen, J. L. (1993). A historical sketch and some new results on the improved likelihood ratio statistic. Scandinavian Journal of Statistics, 20:1–15.
Johansen, S. (1979). Introduction to the Theory of Regular Exponential Families. Institute of Mathematical Statistics, University of København, København.
Jones, M. C. (1992). Estimating densities, quantiles, quantile densities and density quantiles. Annals of the Institute of Statistical Mathematics, 44:721–727.
Jones, M. C., Hjort, N. L., Harris, I. R. and Basu, A. (2001). A comparison of related density-based minimum divergence estimators. Biometrika, 88:865–873.
Jordan, S. M. and Krishnamoorthy, K. (1996). Exact confidence intervals for the common mean of several normal populations. Biometrics, 52:77–86.
Jorde, P. E., Schweder, T., Bickham, J. W., Givens, G. H., Suydam, R., Hunter, D. and Stenseth, N. C. (2007). Detecting genetic structure in migrating bowhead whales off the coast of Barrow, Alaska. Molecular Ecology, 16:1993–2004.
Joshi, V. M. (1967). Inadmissibility of the usual confidence sets for the mean of a multivariate normal population. Annals of Mathematical Statistics, 38:1868–1875.
Jøssang, A. and Pope, S. (2012). Dempster's rule as seen by little colored balls. Computational Intelligence, 4:453–474.
Joyce, P. and Marjoram, P. (2008). Approximately sufficient statistics and Bayesian computation. Statistical Applications in Genetics and Molecular Biology, 7:1–18.
Jullum, M. and Hjort, N. L. (2015). Parametric or nonparametric? A focussed information criterion approach. Submitted.
Kagan, J. (2009). The Three Cultures: Natural Sciences, Social Sciences, and the Humanities in the 21st Century. Cambridge University Press, Cambridge.
Kahneman, D. (2011). Thinking, Fast and Slow. Farrar, Straus and Giroux, New York.
Kahneman, D. and Tversky, A. (1979). Prospect theory: An analysis of decisions under risk. Econometrica, 47:263–291.
Kahneman, D. and Tversky, A. (1984). Choices, values and frames. American Psychologist, 39:341–350.
Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data (2nd ed.). John Wiley & Sons, New York.
Kalbfleisch, J. G. and Sprott, D. A. (2006). Fiducial probability. In General Theory of Information Transfer and Combinatorics, Lecture Notes in Computer Science, pp. 99–109. Springer-Verlag, Heidelberg.
Kardaun, O. J. W. F., Salomé, D., Schaafsma, E., Steerneman, A. G. M., Willems, J. C. and Cox, D. R. (2003). Reflections on fourteen cryptic issues concerning the nature of statistical inference [with discussion and a rejoinder]. International Statistical Review, 71:277–318.
Karlin, S. and Matessi, C. (1983). The eleventh R. A. Fisher memorial lecture: Kin selection and altruism. Proceedings of the Royal Society of London, 219:327–353.
Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes. Academic Press, New York.
Kass, R. (2011). Statistical inference: The big picture. Statistical Science, 26:1–9.
Kavvoura, F. K. and Ioannidis, J. P. A. (2008). Methods for meta-analysis in genetic association studies: A review of their potential and pitfalls. Human Genetics, 123:1–14.
Kelly, F. P. and Ripley, B. D. (1976). On Strauss's model for clustering. Biometrika, 63:357–360.
Keynes, J. M. (1921). Treatise on Probability. Macmillan & Co., London.
Kim, J. and Pollard, D. (1990). Cube root asymptotics. Annals of Statistics, 18:191–219.
Kimura, M. (1981). Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences USA, 78:454–458.
Kjesbu, O. S., Opdal, A. F., Korsbrekke, K., Devine, J. A. and Skjæraasen, J. E. (2014). Making use of Johan Hjort's ‘unknown’ legacy: Reconstruction of a 150-year coastal time-series on northeast Arctic cod (Gadus morhua) liver data reveals long-term trends in energy allocation patterns. ICES Journal of Marine Science, 71:2053–2063.
Knutsen, H., Olsen, E. M., Jorde, P. E., Espeland, S. H., André, C. and Stenseth, N. C. (2011). Are low but statistically significant levels of genetic differentiation in marine fishes ‘biologically meaningful’? A case study of coastal Atlantic cod. Molecular Ecology, 20:768–783.
Kohler, R. E. (1994). Lords of the Fly: ‘Drosophila’ Genetics and the Experimental Life. University of Chicago Press, Chicago.
Kolmogorov, A. N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin. Translation of OCHOBHLIe ΠOHЯTИЯ TeopИИ BepoИTHOCTeЙ, Nauka, Moskva.
Kolmogorov, A. N. (1998). OCHOBHLIe ΠOHЯTИЯ TeopИИ BepoИTHOCTeЙ Fazis, Moskva. 3rd edition of the Russian 1936 original, containing more material than the 1933 German edition.
Konishi, K., Tamura, T., Zenitani, R., Bano, T., Kato, H. and Walløe, L. (2008). Decline in energy storage in the Antarctic minke whale (Balaenoptera bonaerensis) in the Southern Ocean. Polar Biology, 31:1509–1520.
Konishi, K. and Walløe, L. (2015). Substantial decline in energy storage and stomach fullness in Antarctic minke whales during the 1990s. Submitted.
Koopman, B. (1936). On distribution admitting a sufficient statistic. Transactions of the American Mathematical Society, 39:399–409.
Koschat, M. A. (1987). A characterisation of the Fieller solution. Annals of Statistics, 15:462–468.
Lancaster, T. (2000). The incidental parameter problem since 1948. Journal of Econometrics, 95:391–413.
Langaas, M., Lindqvist, B. H. and Ferkingstad, E. (2005). Estimating the proportion of true null hypotheses, with application to DNA microarray data. Journal of the Royal Statistical Society, Series B, 67:555–572.
Laplace, P. S. (1774). Mémoire sur la probabilité des causes par les év‘evemens. Mémoires de Mathmátique et de Physique, Tome Sixi`eme, Paris.
Lawless, J. F. and Fredette, M. (2005). Frequentist prediction intervals and predictive distributions. Biometrika, 92:529–542.
Laws, R. M. (1977). Seals and whales of the Southern Ocean. Philosophical Transactions of the Royal Society, Series B, 279:81–96.
Le Cam, L. (1964). Sufficiency and approximate sufficiency. Annals of Mathematical Statistics, 35:1419–1455.
Le Cam, L. and Yang, G. L. (2000). Asymptotics in Statistics: Some Basic Concepts. Springer-Verlag, Berlin.
Lee, Y., Nelder, J. and Pawitan, Y. (2006). Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood. Chapman & Hall/CRC, Boca Raton, FL.
Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models [with discussion and a rejoinder]. Journal of the Royal Statistical Society, Series B, 58:619–678.
Lehmann, E. L. (1959). Testing Statistical Hypotheses. John Wiley & Sons, New York.
Lehmann, E. L. (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Francisco.
Lehmann, E. L. (1983). Theory of Point Estimation. John Wiley & Sons, New York.
Lehmann, E. L. (1993). The Fisher, Neyman–Pearson theories of testing hypotheses: One theory or two?Journal of the American Statistical Association, 88:1242–1249.
Lehmann, E. L. (1999). Elements of Large-Sample Theory. Springer-Verlag, Berlin.
Lehmann, E. L. (2011). Fisher, Neyman, and the Creation of Classical Statistics, Springer-Verlag, New York.
Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation (2nd ed.). Springer, Berlin.
Lehmann, E. L. and Romano, J. P. (2005). Testing Statistical Hypotheses (3rd ed.). John Wiley & Sons, New York.
Le May Doan, C. (2002). Going for Gold. McClelland & Stewart Publisher, Toronto.
Lerudjordet, M. (2012). Statistical analys of track and field data [master's thesis]. Technical report, Department of Mathematics, University of Oslo.
Liang|H., Zou|G., Wan|A. T. K. and Zhang|X. (2011). Optimal weight choice for frequentist model average estimators. Journal of the American Statistical Association, 106:1053–1066.
Lindley|D. V. (1958). Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society, Series B, 20:102–107.
Lindqvist, B. H. and Taraldsen, G. (2006). Monte Carlo conditioning on a sufficient statistic. Biometrika, 92:451–464.
Lindqvist, B. H. and Taraldsen, G. (2007). Conditional Monte Carlo based on sufficient statistics with applications. In Nair, V. (ed.), Advances in Statistical Modeling and Inference: Essays in Honor of Kjell Doksum, pp. 545–562. World Scientific, Hackensack, NJ.
Linnik, Y. V. (1963). On the Behrens–Fisher problem. Bulletin of the Institute of International Statistics, 40:833–841.
Liu, C.-A. (2015). Distribution theory of the least squares averaging estimator. Journal of Econometrics, 186:142–159.
Liu, D., Liu, R. Y. and Xie, M. (2014a). Exact meta-analysis approach for discrete data and its application to 2×2 tables with rare events. Journal of the American Statistical Association, 109:1450–1465.
Liu, D., Liu, R. Y. and Xie, M. (2015). Multivariate meta-analysis of heterogeneous studies using only summary statistics: Efficiency and robustness. Journal of the American Statistical Association, 110:326–340.
Mandelkern, M. (2002). Setting confidence intervals for bounded parameters [with discussion and a rejoinder]. Statistical Science, 17:149–159.
Manley, G. (1974). Central england temperatures: Monthly means 1659 to 1973. Quarterly Journal of the Royal Meteorological Society, 100:389–405.
Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. Academic Press, New York.
Marin, J.-M., Pudlo, P., Robert, C. P. and Ryder, R. J. (2012). Approximate Bayesian computational methods. Statistics and Computing, 22:1167–1180.
Markov, A. A. (1906). Распространие зaKOHa бoлLшиx чиceл Ha BeличиHLI, заВисЯщие друт OT друтa [Extending the law of large numbers for variables that are dependent of each other]. Известия Физиĸо-математичесκого общества при Казанском университете (2-я серия), 15:124–156.
Markov, A. A. (1913). Пример статистичедования иследования над текстом “Евгения Онегина”, иллюстрирующий связL испLІтаний в цепL [Example of a statistical investigation illustrating the transitions in the chain for the ‘Evgenii Onegin’ text]. Известия Akademii Nauk, Sankt-Peterburg (6-я seriя), 7:153–162.
Marshall, E. C. and Spiegelhalter, D. J. (2007). Identifying outliers in Bayesian hierarchical models: A simulation-based approach. Bayesian Analysis, 2:409–444.
Mayo, D. G. (2010). An error in the argument from conditionality and sufficiency to the likelihood principle. In Mayo, D. G. and Spanos, A. (eds.), Error and Inference: Recent Exchanges on Experimental Reasoning, Reliability and the Objectivity and Rationality of Science, pp. 305–314. Cambridge University Press, Cambridge.
Mayo, D. G. (2014). On the Birnbaum argument for the strong likelihood principle [with discussion and a rejoinder]. Statistical Science, 29:227–239.
McCloskey, R. (1943). Homer Price. Scholastic, New York.
McCullagh, P. (2002). What is a statistial model? [with discussion and a rejoinder]. Annals of Statistics, 30:1225–1308.
McCullagh, P. and Nelder, J. (1989). Generalized Linear Models (2nd ed.). Chapman & Hall/CRC, Boca Raton, FL.
Melville, H. (1857). The Confidence-Man. Dix, Edwards & Co., New York.
Milyukov, V. and Fan, S.-H. (2012). The Newtonian gravitational constant: Modern status of measurement and the new CODATA value. Gravitation and Cosmology, 18:216–224.
Mogstad, E. K. (2013). Mode hunting and density estimation with the focused information criterion [master's thesis]. Technical report, Department of Mathematics, University of Oslo.
Moher, D., Schulz, F. and Altman, D. G. (2010). CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. BMC Medicine, 8:8:18 doi:10.1186/1741–7015–8–18.
Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point Processes. Chapman & Hall/CRC, London.
Moyeed, R. A. and Baddeley, A. J. (1991). Stochastic approximation of the mle for a spatial point pattern. Scandinavian Journal of Statistics, 18:39–50.
Murtaugh, P. A., Dickson, E. R., Van Dam, G. M., Malinchoc, M., Grambsch, P. M., Langworthy, A. L. and Gips, C. H. (1994). Primary biliary cirrhosis: Prediction of short-term survival based on repeated patient visits. Hepatlogy, 20:126–134.
Nadarajah, S., Bityukov, S. and Krasnikov, N. (2015). Confidence distributions: A review. Statistical Methodology, 22:23–46.
Nair, V. N. (1984). Confidence bands for survival functions with censored data: A comparative study. Technometrics, 26:265–275.
Narum, S., Westergren, T. and Klemp, M. (2014). Corticosteroids and risk of gastrointestinal bleeding: A systematic review and meta-analysis. BMJ Open, 4:1–10.
Nelder, J. E. and Wedderburn, W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A, 135:370–384.
Nelson, J. P. and Kennedy, P. E. (2009). The use (and abuse) of meta-analysis in environmental and natural resource economics: An assessment. Environmental Resources and Economics, 42:345–377.
Newcomb, S. (1891). Measures of the velocity of light made under the direction of the Secretary of the Navy during the years 1880–1882. Astronomical Papers, 2:107–230.
Neyman, J. (1934). On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection. Journal of the Royal Statistical Society, Series A, 97:558–625.
Neyman, J. (1941). Fiducial argument and the theory of confidence intervals. Biometrika, 32:128–150.
Neyman, J. and Pearson, E. (1933). On the problem of the most efficient tests of statistical hypotheses [with discussion and a rejoinder]. Journal of the Royal Statistical Society, Series A, 231:289–337.
Neyman, J. and Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16:1–32.
Niemiro, W. (1992). Asymptotics for M-estimators defined by convex minimization. Annals of Statistics, 20:1514–1533.
Nissen, S. E. and Wolski, K. (2007). Effect of Rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. The New England Journal of Medicine, 356:2457–2471.
Norberg, R. (1988). Discussion of Schweder's paper ‘A significance version of the basic Neyman–Pearson test theory for cumulative science’. Scandinavian Journal of Statistics, 15:235–241.
Normand, S.-L. T. (1999). Tutorial in biostatistics: Meta-analysis: Formulating, evaluating, combining, and reporting. Statistics in Medicine, 18:321–359.
Oeppen, J. and Vaupel, J. W. (2002). Broken limits to life expectancy. Science, 296:1029–1031.
Oja, H. (2010). Multivariate Nonparametric Methods with R: An Approach Based on Spatial Signs and Ranks. Springer-Verlag, Berlin.
Ottersen, G., Hjermann, D. Ø. and Stenseth, N. C. (2006). Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fisheries Oceanography, 15:230–243.
Owen, A. (1990). Empirical likelihood ratio confidence regions. Annals of Statistics, 18:90–120.
Owen, A. (1991). Empirical likelihood for linear models. Annals of Statistics, 19:1725–1747.
Owen, A. (1995). Nonparametric likelihood confidence bands for a distribution function. Journal of the American Statistical Association, 90:516–521.
Owen, A. (2001). Empirical Likelihood. Chapman & Hall/CRC, London.
Paccioli, L. (1494). Summa de arithemetica, geometria et proportionalità, Venezia.
Parmar, M. K. B., Torri, V. and L., S. (1998). Extracting summary statistics to perform meta-analysis of the published literature for survival endpoints. Statistics in Medicine, 17:2815–2834.
Pawitan, Y. (2000). Computing empirical likelihood from the bootstrap. Statistics and Probability Letters, 47:337–345.
Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press, Oxford.
Paxton, C. G. M., Burt, M. L., Hedley, S. L., Vikingsson, G., Gunnlaugsson, T. and Deportes, G. (2006). Density surface fitting to estimate the abundance of humpback whales based on the NASS-95 and NASS-2001 aerial and shipboard surveys. NAMMCO Scientific Publishing, 7:143–159.
Pearson, E. S. (1966). The Neyman-Pearson story: 1926–34. In Research Papers in Statistics: Festschrift for J. Neyman. John Wiley & Sons, New York.
Pearson, K. (1902). On the change in expectation of life in man during a period of circa 2000 years. Biometrika, 1:261–264.
Pedersen, J. G. (1978). Fiducial inference. International Statistical Review, 146:147–170.
Peplow, M. (2014). Social sciences suffer from severe publication bias. Nature.
Pitman, E. J. G. (1936). Sufficient statistics and intrinsic accuracy. Mathematical Proceedings of the Cambridge Philosophical Society, 32:567–579.
Pitman, E. J. G. (1939). The estimation of location and scale parameters of a continuous population of any given form. Biometrika, 30:391–421.
Pitman, E. J. G. (1957). Statistics and science. Journal of the American Statistical Association, 52: 322–330.
Pollard, D. B. (1991). Asymptotics for least absolute deviation regression estimators. Econometric Theory, 7:295–314.
Poole, D. and Raftery, A. E. (2000). Inference in deterministic simulation models: The Bayesian melding approach. Journal of the American Statistical Association, 95:1244–1255.
Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations. Annals of Statistics, 22:300–325.
Quenoille, M. H. (1958). The Fundamentals of Statistical Reasoning. Charles Griffin, London.
Raftery, A. E., Givens, G. H. and Zeh, J. E. (1995). Inference from a deterministic population dynamics model for bowhead whales [with discussion and a rejoinder]. Journal of the American Statistical Association, 90:402–430.
Raftery, A. E. and Schweder, T. (1993). Inference about the ratio of two parameters, with application to whale censusing. The American Statistician, 47:259–264.
Rao, C. R. (1945). Information and accuracy attainable in the estimation of statistical parameters. Bulletin of the Calcutta Mathematical Society, 37:81–91.
Rausand, M. and Høyland, A. (2004). System Reliability Theory: Models, Statistical Methods, and Applications. John Wiley & Sons, Hoboken, NJ.
Rebolledo, R. (1980). Central limit theorems for local martingales. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 51:269–286.
Reeds, J. A. (1985). Asymptotic number of roots of Cauchy likelihood equations. Annals of Statistics, 13:775–784.
Reid, C. (1982). Neyman: From Life. Springer-Verlag, New York.
Reiss, R.-D. (1989). Approximate Distributions of Order Statistics. Springer-Verlag, Heidelberg.
Ripley, B. D. (1977). Modelling spatial patterns [with discussion and a rejoinder]. Journal of the Royal Statistical Society, Series B, 39:172–212.
Ripley, B. D. (1981). Spatial Statistics. John Wiley & Sons, New York.
Ripley, B. D. (1988). Statistical Inference for Spatial Processes. Cambridge University Press, Cambridge.
Robinson, M. E. and Tawn, J. A. (1995). Statistics for exceptional athletics records. Journal of the Royal Statistical Society, Series C, 44:499–511.
Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press, Princeton.
Rodgers, J. L. and Doughty, D. (2001). Does having boys or girls run in the family?Chance, 8–13.
Romano, J. P. and Wolf, W. (2007). Control of generalized error rates in multiple testing. Annals of Statistics, 35:1378–1408.
Rothstein, H., Sutton, A. J. and Borenstein, M. (2005). Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments. John Wiley & Sons, Chichester.
Royall, R. M. (1997). Statistical Evidence: A Likelihood Paradigm. Chapman & Hall, London.
Rücker, G., Schwarzer, G., Carpenter, J. and Olkin, I. (2008). Why add anything to nothing? The arcsine difference as a measure of treatment effect in meta-analysis with zero cells. Statistics in Medicine, 28:721–738.
Salomé, D. (1998). Statistical Inference via Fiducial Methods [PhD dissertation]. Technical report, University of Groeningen.
Savage, L. J. (1976). On rereading R. A. Fisher. Annals of Statistics, 4:441–500.
Scheffé, H. (1959). The Analysis of Variance. John Wiley & Sons, New York.
Scheffé, H. (1970). Practical solutions to the Behrens–Fisher problem. Journal of the American Statistical Association, 65:1501–1508.
Schweder, T. (1975). Window estimation of the asymptotic variance of rank estimators of location. Scandinavian Journal of Statistics, 2:113–126.
Schweder, T. (1988). A significance version of the basic Neyman–Pearson theory for scientific hypothesis testing [with discussion and a rejoinder]. Scandinavian Journal of Statistics, 15:225–242.
Schweder, T. (1995). Discussion contribution to ‘Inference from a deterministic population dynamics model for bowhead whales’ by Raftery, Givens, Zeh. Journal of the American Statistical Association, 90:420–423.
Schweder, T. (2003). Abundance estimation from multiple photo surveys: Confidence distributions and reduced likelihood for Bowhead whales off Alaska. Biometrics, 59:974–983.
Schweder, T. (2007). Confidence nets for curves. In Nair, V. (ed.), Advances in Statistical Modeling and Inference: Essays in Honor of Kjell Doksum, pp. 593–609. World Scientific, Hackensack, NJ.
Schweder, T. and Hjort, N. L. (1996). Bayesian synthesis or likelihood synthesis – what does Borel's paradox say?Reports of the International Whaling Commission, 46:475–479.
Schweder, T. and Hjort, N. L. (2002). Likelihood and confidence. Scandinavian Journal of Statistics, 29:309–322.
Schweder, T. and Hjort, N. L. (2003). Frequentist analogues of priors and posteriors. In Stigum, B. (ed.), Econometrics and the Philosophy of Economics: Theory Data Confrontation in Economics, pp. 285–217. Princeton University Press, Princeton, NJ.
Schweder, T. and Hjort, N. L. (2013a). Discussion of M. Xie and K. Singh's ‘Confidence distributions, the frequentist estimator of a parameter: A review’. International Statistical Review, 81:56–68.
Schweder, T. and Hjort, N. L. (2013b). Integrating confidence intervals, likelihoods and confidence distributions. In Proceedings 59th World Statistics Congress, 25–30 August 2013, Hong Kong, volume I, pp. 277–282. International Statistical Institute, Amsterdam.
Schweder, T. and Ianelli, J. N. (1998). Bowhead assessment by likelihood synthesis: methods and difficulties. Technical Report 50/AS2 the Scientific Committee of the International Whaling Commission, 16pp.
Schweder, T. and Ianelli, J. N. (2001). Assessing the Bering-Chukchi-Beaufort Seas stock of bowhead whales from survey data, age-readings and photo-identifications using frequentist methods. Technical Report 52/AS13, the Scientific Committee of the International Whaling Commission, 16pp.
Schweder, T., Sadykova, D., Rugh, D. and Koski, W. (2010). Population estimates from aerial photographic surveys of naturally and variably marked bowhead whales. Journal of Agricultural Biological and Environmental Statistics, 15:1–19.
Schweder, T. and Spjøtvoll, E. (1982). Plots of P-values to evaluate many tests simultaneously. Biometrika, 69:492–502.
Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. JohnWiley & Sons, New York.
Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ.
Sharma, S. (1980). On Hacking's fiducial theory of inference. The Canadian Journal of Statistics, 8:227–233.
Sheather, S. J. and Marron, J. S. (1990). Kernel quantile estimation. Journal of the American Statistical Association, 85:410–416.
Shmueli, G. (2010). To explain or to predict?Statistical Science, 25:289–310.
Shumway, R. H. (1988). Applied Statistical Time Series Analysis. Prentice-Hall, Englewood Cliffs, NJ.
Simpson, R. J. S. and Pearson, K. (1904). Report on certain enteric fever inoculation statistics. The British Medical Journal, 2:1243–1246.
Sims, C. A. (2012). Statistical modeling of monetary policy and its effects [Nobel Prize Lecture in Economics]. American Economic Review, 102:1187–1205.
Singh, K., Xie, M. and Strawderman, W. E. (2005). Combining information from independent sources through confidence distributions. Annals of Statistics, 33:159–183.
Singh, K., Xie, M. and Strawderman, W. E. (2007). Confidence distribution (CD) – distribution estimator of a parameter. In Complex Datasets and Inverse Problems: Tomography, Networks and Beyond, Vol. 33 of IMS Lecture Notes – Monograph Series, pp. 132–150.
Skeie, R. B., Berntsen, T., Aldrin, M., Holden, M. and Myhre, G. (2014). A lower and more constrained estimate of climate sensitivity using updated observations and detailed radiative forcing time series. Earth System Dynamics, 5:139–175.
Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Chapman & Hall/CRC, London.
Smith, R. L. (1999). Bayesian and frequentist approaches to parametric predictive inference. In Bernardo, J. M., Berger, J. O., Dawid, A. P. and Smith, A. F. M. (eds.), Bayesian Statistics 6, pp. 589–612. Oxford University Press, Oxford.
Smith, T. (1994). Scaling Fisheries: The Science of Measuring the Effects of Fishing, 1855–1955. Cambridge University Press, Cambridge.
Snow, C. P. (1959). The Two Cultures and the Scientific Revolution. Cambridge University Press, Cambridge.
Snow, C. P. (1963). The Two Cultures: A Second Look. Cambridge University Press, Cambridge.
Spiegelberg, W. (1901). Aegyptische und Griechische Eigennamen aus Mumientiketten der Römischen Kaiserzeit. Greek Inscriptions, Cairo.
Spiegelhalter, D. J. (2001). Mortality and volume of cases in paediatric cardiac surgery: Retrospective study based on routinely collected data. British Medical Journal, 326:261.
Spiegelhalter, D. J. (2008). Understanding uncertainty. Annals of Family Medicine, 3:196–197.
Spiegelhalter, D. J., Aylin, P., Best, N. G., Evans, S. J. W. and Murray, G. D. (2002). Commissioned analysis of surgical performance using routine data: Lessons from the Bristol inquiry. Journal of the Royal Statistical Society, Series A, 165:191–221.
Spiegelhalter, D. J., Pearson, M. and Short, I. (2011). Visualizing uncertainty about the future. Science, 333:1393–1400.
Spock, B. (1946). The Common Sense Book of Baby and Child Care. Duell, Sloane and Pearce, New York City.
Stein, C. (1959). An example of wild discepancy between fiducial and confidence intervals. Annals of Mathematical Statistics, 30:877–880.
Stigler, S. M. (1973). Studies in the history of probability and statistics, xxxii: Laplace, Fisher and the discovery of the concept of sufficiency. Biometrika, 60:439–445.
Stigler, S. M. (1974). Linear functions of order statistics with smooth weight functions. Annals of Statistics, 2:676–693.
Stigler, S. M. (1977). Do robust estimators work with real data? [with discussion and a rejoinder]. Annals of Statistics, 5:1055–1098.
Stigler, S. M. (1986a). The History of Statistics: The Measurement of Uncertainty Before 1900. Harvard University Press, Cambridge, MA.
Stigler, S. M. (1986b). Laplace's 1774 memoir on inverse probability. Statistical Science, 1:359–363.
Stigler, S. M. (1986c). Memoir on the probability of the causes of events [translation of Laplace's 1774 memoir]. Statistical Science, 1:364–378.
Stock, J. and Watson, M. (2012). Introduction to Economics: Global Edition. Pearson Education, Upper Saddle River, NJ.
Stolley, P. D. (1991). When genius errs: R. A. Fisher and the lung cancer controversy. Journal of Epidemiology, 133:416–425.
Stone, M. (1969). The role of significance testing: Some data with a message. Biometrika, 56:485–493.
Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society, Series B, 64:479–498.
Stoufer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A. and Williams, R. M. J. (1949). Adjustment During Army Life. Princeton University Press, Princeton, NJ.
Strauss, D. J. (1975). A model for clustering. Biometrika, 63:467–475.
Student (1908). The probable error of a mean. Biometrika, 6:1–25.
Sundberg, R. (2010). Flat and multimodal likelihoods and model lack of fit in curved exponential families. Scandinavian Journal of Statistics, 37:632–643.
Sutton, A. J. and Higgins, J. P. T. (2008). Recent developments in meta-analysis. Statistics in Medicine, 27:625–650.
Sweeting, M. J., Sutton, A. J. and Lambert, P. C. (2004). What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Statistics in Medicine, 23:1351–1375.
Taraldsen|G. and Lindqvist, B. H. (2013). Fiducial theory and optimal inference. Annals of Statistics, 41:323–341.
Teasdale, N., Bard, C., La Rue, J. and Fleury, M. (1993). On the cognitive penetrability of posture control. Experimental Aging Research, 19:1–13.
Thomson, A. and Randall-Maciver, R. (1905). Ancient Races of the Thebaid. Oxford University Press, Oxford.
Tian, L., Cai, T., Pfeffer, M. A., Piankov, N., Cremieux, P.-Y. and Wei, L. J. (2009). Exact and efficient inference procedure for meta-analysis and its application to the analysis of independent 2×2 tables with all available data but without artificial correction. Biostatistics, 10:275–281.
Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76:604–608.
Tocquet, A. S. (2001). Likelihood based inference in non-linear regression models using the p* and r* approach. Scandinavian Journal of Statistics, 28:429–443.
Tukey, J. W. (1986). Sunset salvo. The American Statistician, 40:72–76.
van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.
Veronese, P. and Melilli, E. (2015). Fiducial and confidence distributions for real exponential families. Scandinavian Journal of Statistics, 42:471–484.
Viechtbauer, W. (2007). Confidence intervals for the amount of heterogeneity in meta-analysis. Statistics in Medicine, 26:37–52.
Voldner, N., Frøslie, K. F., Haakstad, L., Hoff, C. and Godang, K. (2008). Modifiable determinants of fetal macrosomia: Role of lifestyle-related factors. Acta Obstetricia et Gynecologica Scandinavica, 87:423–429.
Volz, A. G. (2008). A Soviet estimate of German tank production. The Journal of Slavic Military Studies, 21:588–590.
Wandler, D. V. and Hannig, J. (2012). A fiducial approach to multiple comparison. Journal of Statistical Planning and Inference, 142:878–895.
Wang, C. M., Hannig, J. and Iyer, H. K. (2012). Fiducial prediction intervals. Journal of Statistical Planning and Inference, 142:1980–1990.
Wellner, J. A. and van der Vaart, A.W. (1996). Weak Convergence of Empirical Processes. Springer-Verlag, Berlin.
White, H. (1994). Estimation, Inference and Specification Analysis. Cambridge University Press, Cambridge.
Wilkinson, R. G. and Pickett, K. (2009). The Spirit Level: Why More Equal Societies Almost Always Do Better. Allen Lane, London.
Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. Annals of Mathematical Statistics, 9:60–62.
Windham, M. P. (1995). Robustifying model fitting. Journal of the Royal Statistical Society, Series B, 57:599–609.
Working, H. and Hotelling, H. (1929). Application of the theory of error to the interpretation of trends. Journal of the American Statistical Association, 24:73–85.
Xie, M. and Singh, K. (2013). Confidence distribution, the frequentist distribution estimator of a parameter: A review [with discussion and a rejoinder]. International Statistical Review, 81:3–39.
Xie, M., Singh, K. and Strawderman, W. E. (2011). Confidence distributions and a unifying framework for meta-analysis. Journal of the American Statistical Association, 106:320–333.
Yang, G., Liu, D., Liu, R. Y., Xie, M. and Hoaglin, D. C. (2014). Efficient network meta-analysis: A confidence distribution approach. Statistical Methodology, 20:105–125.
Young, G. A. and Smith, R. L. (2005). Essentials of Statistical Inference. Cambridge University Press, Cambridge.
Yule, G. U. (1900). On the association of attributes in statistics: With illustrations from the material of the childhood society, & c. Philosophical Transactions of the Royal Society, Series A, 194:357–319.
Zabell, S. L. (1992). R. A. Fisher and the fiducial argument. Statistical Science, 7:369–387.
Zabell, S. L. (1995). Alan Turing and the central limit theorem. The American Mathematical Monthly, 102:483–494.
Zech, G. (1989). Upper limits in experiments with background or measurement errors. Nuclear Instruments and Methods in Physics Research, Series A, 277:608–610.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.