Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T11:20:14.987Z Has data issue: false hasContentIssue false

Foreword to A Compendium of Continuous Lattices

Published online by Cambridge University Press:  13 August 2009

G. Gierz
Affiliation:
University of California, Riverside
K. H. Hofmann
Affiliation:
Technische Universität, Darmstadt, Germany
K. Keimel
Affiliation:
Technische Universität, Darmstadt, Germany
J. D. Lawson
Affiliation:
Louisiana State University
M. Mislove
Affiliation:
Tulane University, Louisiana
D. S. Scott
Affiliation:
Carnegie Mellon University, Pennsylvania
Get access

Summary

A mathematics book with six authors is perhaps a rare enough occurrence to make a reader ask how such a collaboration came about. We begin, therefore, with a few words on how we were brought to the subject over a ten-year period, during part of which time we did not all know each other. We do not intend to write here the history of continuous lattices but rather to explain our own personal involvement. History in a more proper sense is provided by the bibliography and the notes following the sections of the book, as well as by many remarks in the text. A coherent discussion of the content and motivation of the whole study is reserved for the introduction.

In October of 1969 Dana Scott was led by problems of semantics for computer languages to consider more closely partially ordered structures of function spaces. The idea of using partial orderings to correspond to spaces of partially defined functions and functionals had appeared several times earlier in recursive function theory; however, there had not been very sustained interest in structures of continuous functionals. These were the ones Scott saw that he needed. His first insight was to see that – in more modern terminology – the category of algebraic lattices and the (so-called) Scott-continuous functions is cartesian closed. Later during 1969 he incorporated lattices like the reals into the theory and made the first steps toward defining continuous lattices as “quotients” of algebraic lattices.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×